Correspondence

Dear Sir,

Human Performance in Interactive Graphics
Operations

[R. A. Reynolds, The Computer Journal 26, 93
(1983)]

I find Reynolds’ note interesting but consider
that there are two areas which are unfortu-
nately not covered.

(a) It is not clear whether the results quoted
show a statistically significant difference
between sessions of up to one hour and
those over one hour. A minor further point
here is whether the data should have been
grouped in whole hours or whether a finer
analysis of length of session would have
shown, for example, that very short ses-
sions were atypical.

(b) As to the interpretation of the results the
author mentions that some operator errors
will be accepted as valid commands but
suggests that the number of decisions
taken in any session should be a good
measure of operator performance. From
personal experience in interactive non-
graphics work, the number of mistakes
increases after a certain length of session;
this would tend to reduce the difference
between less than one hour and longer
sessions. In any case, it is presumably
appropriate decisions that constitute a
good measure of operator performance
rather than total decisions; one would
want to distinguish between the operators
who made the same total number of
decisions but significantly different num-
bers of good decisions.

Yours faithfully

G. PHILLPOTTS
Statistical Department
Home Office

Queen Anne’s Gate
London SW1H 9AT
UK

R. A. Reynolds replies

I cannot agree that it is useful to distinguish
between individual operator performances.
The intention of the exercise was to establish
the typical working pattern of an average
operator in order to optimize rostering.

I must of course agree that mistaken
decisions should not ideally be included in a
measure of performance. However, in a mod-
ern interactive draughting system such as the
one described there are normally several ways
of carrying out the same operation, some of
which are more efficient than others in certain
circumstances. The process of detecting mis-
taken decisions is therefore not as straightfor-
ward as is implied. In an observation of a real-
life situation on the scale of the one described,
where over 140 000 commands were issued, it
is probably impracticable.

A laboratory experiment in which a number
of operators carried out similar tasks could of
course be devised, but great care would have
to be taken that these tasks did in fact reflect a
realistic working pattern.

Further comments from G. Phillpotts
I have the following further observations, in
the order in which Mr. Reynolds has replied.

(a) Isuppose my original letter may not have
been sufficiently clear as regards distin-
guishing between operators who had dif-
ferent productivity in terms of good
decisions (last sentence of my letter). My
point was that just as one would in day-to-
day management wish to distinguish be-
tween operators on this basis, so should
statistical measures of the aggregate per-
formance of a number of operators try to
take this into account.

(b) I agree this is a problem.

(c) It occurs to me that an experiment along
the following lines might meet the com-
bined requirements of realism and good
measurement :

Divide the operators into experimental
groups. Within each group, they would
work the same working pattern with a
fixed length of terminal session. The
different groups would be assigned differ-
ent session lengths. Incoming work would
be randomly allocated to groups and the
outcome would be the time taken to ‘deal’
with a piece of work.

Dear Sir,
The Tower of Hanoi as a Trivial Problem

I must take issue with M. C. Er when he calls
the Tower of Hanoi problem ‘intractable’.'
When the problem is used in introductory texts
on computer science, any difficulty which
occurs is more likely to be because the trivial
nature of the problem leads to a lack of
appreciation of the power of recursion, rather
than because of a lack of insight. At least
recursion emphasizes the structure of the
problem.

More importantly, although Er provides a
non-recursive analysis of the problem, it is
insufficient. He analyses the moves of the discs
and not the status of the discs after each move.

If we tabulate for each disc which peg it
resides on after each move the solution is
obvious. Using zero based disc and peg
numbering the peg on which disc j resides
after move x is given by

x+ 2

%E(‘I)J{wa

J (mod 3)
where | | is the floor function. All the
properties of the Tower of Hanoi problem
follow trivially.

90 THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984

Yours faithfully

R.J.HEARD

Programmer

Queensland Institute of Technology
G.P.O. Box 2434

Brisbane

Queensland

Australia, 4001

Reference

1. M. C. Er, A representation approach to
the Tower of Hanoi problem. The Com-
puter Journal 25, 442 (1982).

Dear Sir,
System Prototyping

The idea of system prototyping proposed by
Dearnley and Mayhew (The Computer Journal,
26, 36 (1983)) seems to me very powerful. As
the authors say, prototyping is widely used for
industry systems, but not much for computing
systems, yet a computer with modern software
tools is ideal for modelling real-world situa-
tions, including other computing systems, and
is re-usable. Further, the task of system model-
ling is much more congenial than writing
paper specifications, which leads to higher
productivity.

I would like to add support to system
prototyping by describing two cases in which
I have been involved, both of which worked
very well.

In the first, some years ago, a model of a
process involving parcels of random dimen-
sions being packed into rectangular con-
tainers, clearly demonstrated the superiority
of certain kinds of strategic packing over
random placement, with very little software
design effort and small computer running
costs.

In the second case, more recently, a model
of a system involving the reservation by
computer users of terminals, communications
channels, and interactive processes on several
service computers was created using Fortran
and IDMS on an ICL 2970 mainframe. The
intersections of the five dimensions of user,
time, terminal, channel and interactive process
were represented by a permanently established
network of interconnections in the IDMS
database. A reservation was represented by
marking appropriate nodes. Airline seat reser-
vation is a simple subset of this problem.

In a system of this complexity, it is very
difficult to anticipate the resulting perfor-
mance, as the time to search along the various
axes of the stored data depends critically upon
details of the data structure. The reservation
system required very short response times, or
the time needed to do reservations would
approach the total terminal time available.

The model also included a reservation
dialogue by which the user would obtain
information about unreserved facilities and

© Wiley Heyden Ltd, 1984

20z udy L} uo1senb Aq L E68LH/06/1/.2/101E/UlWod/ W00 dno"dlWspeoe)/:SdjY WoJj paPeojuMoq

make reservations, and various data manage-
ment dialogues. The dialogues combined min-
imum key depressions for experienced users
with prompting for required data for inexpe-
rienced users, and allowed minimum repetition
of data when some part of the input was found
to be invalid.

The whole prototype system was imple-
mented, and extensive performance and usa-
bility test and adjustments carried out, in
under a year of solo effort—probably less than
the effort required to write the specification
for the system under conventional project
management rules. The speed of implementa-
tion reflects not so much the skill of the
implementor, but the excellence of the tools
provided by ICL.

Hofstadter' has declared a prototype prin-
ciple: ‘The most specific event can serve as a
general example of a class of events’, and goes
ontosay, ‘. . . specific events have a vividness
which imprints them so strongly on the
memory that they can later be used as models
for other events . . .".

The principle may be stated more positively
from the system designers point of view as:
‘When you cannot think exactly what to do,
do something’ (it works just as well for jazz
saxophone as it does for system design). The
alternative, which may be called the Micawber
principle, leads to a very low rate of learning
and development.

Yours faithfully
JEFF REEVES
Computing Service

University of Southampton
UK

Reference

1. Douglas R. Hofstadter, Gédel, Escher,
Bach: An Eternal Golden Braid. Penguin
Books, p. 352 (1980).

Dear Sir,
Checking the reproduction of programs

Dunham' mentions the quandary of choosing
between the cost of distributing programs in
machine readable form and the error inherent
in copying printed programs.

The solution proposed by Jacobs,? although
better than nothing, is not effective in detecting
letter inversions for example, a common
copying error, nor does it aid much in locating
an erroneous line in a long program. To
propose a standard method acceptable to
everyone is, in any event, vain.

When sending out a program listing, I use a
small additional program which appends a
running check-sum to the end of each line of
the main program. The small program which
generates the running check-sums is also sent.

The concept of a running check-sum pro-
vides the means of rapidly finding a line in
error as all check-sums past the (first) line in
error will be different from the original. The
check-sum used is a simple analogue of the
cyclic redundancy check.

CORRESPONDENCE

Below is an example in FORTRAN 77.
Program A is an erroneous copy of Program
B. Program B is the correct program which
produces a listing with running check-sums
when a source program is read as input.

The extra programming compared to Ja-
cobs’ suggestion is minimal, but the result
provides at once a better check-sum and a
more efficient method for locating a line in
error in a long program.

PROGRAM CKSUM 72
c PROGRAM A: CONTAINS AN ERROR 72
CHARACTER ABET#49, LINEw?2 3
INTEGER OUT, SUM, STRING 23s
DATA ABET /' ABCDEFGHIJKLMNOPORSTUVHXYZ0123456789=+-%/(),.$"'": '/ 163
DATA IN, OUT, NSHIFT, MODULO. SUM, NONSTD. STRING 194
+ / 5,6, 67, 487. 0. 0, 0/ 443
WRITE (OUT,'(**1°'*)") 271
c 27
1 READ C(IN, '(A>', END=4) LINE 131
IF (LINE(1:1).EQ.°C') GO TO 3 387
Do 2 J=1,72 384
K=INDEXCABET,LINECJ: J)) 273
IF (K.EG.1 .AND. STRING.EG.0) GO TO 2 38 V
IF (K.EG[84p STRING=1-STRING 252 x
IF (K.EQ.0)> NONSTD=NONSTD+1 266
SUM=MODC SUMSNSHIFT+K , MODULO) 228
2 CONTINUE 60
3 WRITE (OUT,'(1X,A.3X,14)') LINE, SUM 419
GO TO 1 148
c 148
4 WRITE (OUT.5) NONSTD 328
5 FORMATC//,1X,17,' NON-FTN?? CHARACTER OCCURRENCES',/,'1') 95
sTOP 145
END 457
0 NON-FTN77 CHARACTER OCCURRENCES
PROGRAM CKSUM 72
c PROGRAM B: THIS PROGRAM CORRECTLY 72
c GENERATES A RUNNING CHECK-SUM AT THE END OF EACH LINE. 72
c ANY SIGNIFICANT DISCREPENCY WILL MODIFY ALL CHECK-SUMS 72
c AFTER THE INCRIMINATED LINE. SPACES NOT ENCLOSED IN 72
c GUOTES AND LINES BEGINNING WITH C ARE IGNORED. THE 72
c POSITION OF A NON-FTN7? CHARACTER IS SIGNIFICANT. 72
CHARACTER ABET®49, LINEw?72 3
INTEGER OUT, SUM, STRING 235
DATA ABET /' ABCDEFGHIJKLMNOPGRSTUVLXYZ0123456789=+-8/(),.8"' " " 163
DATA IN, OUT, NSHIFT, MODULO. SUM. NONSTD. STRING 194
+ / 5.6, 67, 487, 0, 0, 0/ 449
HRITE (OUT,'C'*1'")") 271
c 271
1 READ C(IN, '(A>', END=4) LINE 131
IF (LINEC1:1).EG.'C') GO TO 3 387
Do 2 J=1,72 384
K=INDEXCABET,LINECJ: J)) 273
IF (K.EG.1 .AND. STRING.EG.0) GO TO 2 386
IF (K.EQ.48) STRING=1-STRING 12
IF (K.EG.0) NONSTD=NONSTD+1 426
SUM=MODC SUMSNSHIFT+K , MODULO) 291
2 CONTINUE 306
3 WRITE (OUT.'(1X,A,3X,14)') LINE, SUM 312
GO TO 1 38
c 3s
4 URITE (OUT,S)> NONSTD 174
S FORMAT(//.1X.17,' NON-FTN77 CHARACTER OCCURRENCES',/,'1') 23t
STOP 35
END 385

0 NON-FTN?? CHARACTER OCCURRENCES

THE COMPUTER JOURNAL, VOL. 27, NO. 1,1984 91

20z udy L} uo1senb Aq L E68LH/06/1/.2/101E/UlWod/ W00 dno"dlWspeoe)/:SdjY WoJj paPeojuMoq

