Vulcan: A Modified Viewdata System with
Improved Indexing and Formal Hierarchy

Definition Language

John A. Mariani and Douglas R. McGregor

Department of Computer Science, University of Strathclyde, Glasgow, UK

Conventional viewdata systems have two main drawbacks. First, they store information in a hierarchic structure which
may be more naturally held as a network. As a result, a user may find himself forced to search through the structure in
an illogical fashion. Further, the information provider, who is expected to supply not only the data but also its
structure, is given very little aid. This paper describes the facilities of a modified viewdata system, Vulcan, which
overcomes these problems, and its associated hierarchy specification language, VPREP. Information can be structured
as a ‘natural’ network but is presented to the user as a logically consistent hierarchy. The VPREP language offers
formal assistance for the specification, development and maintenance of the information network structure. The

system described has been in use for several months.

INTRODUCTION

Viewdata systems—such as Britain’s Prestel'—form one
of the major man—computer interfaces in everyday use
throughout the world.? These systems all share one factor
in common—their use of a hierarchic information
structure, which presents a menu-driven interface to the
user. Information, held as ‘pages’ by these systems, can
be accessed either as part of the hierarchic structure or
directly via page numbers.

Information is located by following a path through the
hierarchy, guided by routing and indexing information
held on other pages. As the user works through the
indexes, he gets closer and closer to the required
information. The hierarchic structure can be thought of
as a tree. The user starts at the root of the tree and
traverses its branches towards the relevant information.
However, if the information the user requires is scattered
on different branches of the tree the user must repeat the
search on each branch. Further complications can arise
if the user is unsure of the index classification of the
information required. For example, is a ‘ Motoring Which’
page under the ‘Motoring’, ‘Magazine’ or ‘Which’
branches?

The Vulcan system has been designed to overcome this
basic weakness of the hierarchic information structure
used in existing viewdata systems. In effect, the Vulcan
system allows the data to exist as a more natural network
of pages (therefore allowing all 3 branches in our example
to lead to the ‘ Motoring Which’ page) but superimposes a
standard viewdata hierarchic structure over the network.

This allows information to be indexed under any
number of branches and therefore increases the chances
of the user finding the required page. It is possible to
index pages under Prestel, but accessing such a page may
require the user to jump to a completely different branch.
Vulcan allows such page accessing to continue in a
controlled descent of the imposed hierarchy. To ease
navigation through the hierarchy, Vulcan uses structured
page numbers (detailed below).

The emphasis of viewdata systems has always been on
the simplicity of the system for the end-user—enabling
him to grasp the commands easily and to become
acquainted with the system quickly. However, the
number of pages now available on systems such as Prestel
is over a quarter of a million. The management of such a
vast number of pages is as a horrendous task—even if it
is left to the information providers to maintain their own
branches of the overall database. Equally troublesome is
the specification and development of the structure of the
branches. To overcome these problems, Vulcan has an
associated specification language called VPREP which
provides a formal mechanism for the specification and
development of page structures.

This paper is divided into four sections. In the next
section, the use of structured page numbers is detailed,
then the method of presenting the network of information
as a logically consistent hierarchy is described. The
implementation and use of the current system is then
outlined. In the third section, the VPREP language,
which provides a formal mechanism for the specification
and development of page structures is presented. The
fourth section lists a number of future developments and
extensions for the overall system, before some concluding
remarks are presented in the final section.

THE VULCAN SYSTEM

Structured page numbers

The Vulcan system emphasizes the hierarchic structure
of the data by using structured page numbers which more
closely reflect the information structure than simple page
numbers. For example, ‘42.1.14’ gives the user a better
feel for his position in the information structure than
‘42114°, and leaves the user in no possible doubt as to
how he reached his present position. The standard
formalism (42114) gives multiple possible paths (4.21.14,
42.11.4, 42.1.14, etc.). Simple operators allow the user to
descend or ascend any hierarchy.

CCC-0010-4620/84/0027-0121 $03.00

© Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 121

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

J. A. MARIANI AND D. R. MCGREGOR

The network hierarchy

Conceptually, there are three categories of pages in the
Vulcan system.

1. A B-page, or ‘base’ page. This is, in the current
implementation, a simple, individual text file which
has its page number as its name. A B-page contains
the data of interest to the user.

2. An I-page, or ‘information’ page, which is a pointer
to a B-page.

3. An R-page, or ‘routing’ page. These provide a local
index to the I-pages immediately below the user’s
current position. R-pages form the nodes in the index
hierarchies.

Vulcan achieves its network effect by allowing one
base page (a B-page) to be referenced from any hierarchy
by an I-page. This therefore allows our network of B-
pages to be presented to the user as a logically consistent
hierarchy of I-pages.

For example, in the hierarchic branches described in
Table 1 and Fig. 1, two ‘base’ pages, B-3268 and B-5962,
contain data relating to theatre and cinema performances
in London, respectively. These ‘base’ pages can be
accessed via two different, separate branches of directory
pages (R-pages). Thus a user can look up his desired page
(say B-3268) using the ‘Entertainments’ branch starting
at I-page 10 (or any subsequent node of that branch, such
as 10.10). Thus far the system’s user interface is exactly
like the traditional one. However, he could also access
the required information using the ‘London’ hierarchy
starting at I-page 40 (or lower nodes such as 40.3).

Table 1

10 : Entertainments 40 :London

10.1 : Glasgow 40.1 :Dining Out

10.2 :Edinburgh 40.2 :Public Transport

: 40.3 :Entertainments
10.10 :London 40.9 :Parks and Gardens

40.3.1: Theatres
40.3.2: Cinemas

10.10.1: Theatres
10.10.2: Cinemas

10.10.9: Exhibitions 40.3.9: Exhibitions

10
Entertainments

Regional 10.10

pages 102 London

Edinburgh

10.10.1
Theatre

40.3.1
B-3268

In effect, we have introduced a level of indirection
between the logical page (I-page) as seen by the user and
the actual page (B-page). This allows a many-to-one
mapping between I and B pages, and hence many
indexing branches can be mapped onto a network.

The benefits of such a structure, to the casual user, are
as follows:

1. He can follow a meaningful path to an end-page,
rather than start following one branch only to find he
must then move to another page on another branch.

2. It is easier for a Vulcan user to have a better
understanding of the topography of the database. For
example, he could ‘check out’ the current cinema
offerings in London and know that he need only go up
one level and down another path to discover the
theatre presentations. He never loses himself in a
plethora of numerical series.

The set of user commands is given in Appendix 2,
followed by an example of the use of the system in
Appendix 3.

There are also implications for the information
provider. As the network allows pages to occur in various
indexing hierarchies, the problems of multiple classifi-
cations are eased. The ‘Motoring Which’ page referred to
earlier can now appear under the ‘Motoring’, ‘Magazines’
and ‘Which’ hierarchies and any further suitable indices.
In a hierarchy as we have described, consisting solely of
real pages with duplications where required, an update
to a page (a change of price for a car on a ‘Motoring
Which’ page, for example) must be performed wherever
a page (and any duplicate) appears. If there is no
mechanism which ensures that the person changing or
updating the information is aware of all the duplicates,
copies may be left unaltered. Under Vulcan, a change to
any real page is naturally propagated to all I-pages.

Data structure and access mechanism of experimental
system

The current experimental Vulcan system maintains its
network of pages by storing the necessary information in
a database management system (DBMS). The DBMS
used is a locally developed system called Alpha,®> which
is a simple, sub-relational system which handles data

40
London

Entertainments PT Dining

10.10.2
Cinema

40.3.2
B-5962

Figure 1

122 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

VULCAN: A MODIFIED VIEWDATA SYSTEM WITH IMPROVED INDEXING

conceptually in the form of a table, with each line in the
table a record or tuple, and each entry in the table a field.

A page in Alpha is identified by a record which has the
format

(I-page number: B-page number: index-line)

When a request to view an I-page arrives, the database
is scanned to find the corresponding B-page. If this search
is successful, the B-page is displayed to the user.

An index-line is a brief, one line description of the I-
page’s content. Via Alpha, the user can receive an index
listing (R-page) of all the pages below his current position.
R-pages are assembled dynamically by scanning the
Alpha database for all followers of the current page and
retrieving the associated index lines, which are then
sorted and displayed to the user. Using this method, R-
pages of any depth can be generated, i.e. not just those
immediately below the current page, but also the followers
of the followers, etc. Therefore any alteration to the
indexing information, be it the addition or deletion of
pages, is immediately reflected in the R-pages.

In conventional viewdata systems, pages can be totally
taken up by ‘routing’ information rather than information
itself. In the Vulcan system, cases will naturally arise
when only routing information (held in the R-pages) is
applicable. When this occurs, we have three options for
a redundant I/B page:

(i) it does not exist
(ii) it exists, but holds no information
(iii) it exists, and duplicates the R-page.

The second case is wasteful, and the third case re-
introduces the problems solved (inflexibility in re-
arranging the hierarchy, update problems in the routing
pages) by the R-pages. I-pages must exist as necessary
links in the network, but in Vulcan it need only exist as a
‘page record’, with a null B-page field. When the user
requests such a non-existent I/B-page, the matching R-
page can be displayed by default.

In commercial systems, these liberated I-pages could
be used to carry advertisements which would presumably
be connected with the current classification. In our
previous example (shown in Table 1), in response to a
request for page ‘40.1°, an advertisement for a specific
restaurant might appear. If the user requests a current
index, Table 2 would appear.

Table 2
40.1.1: Italian Restaurants
40.1.2: Chinese Restaurants
40.1.3: Indian Restaurants
;"0.1.9: Arabic Restaurants
System usage

The implementation of Vulcan was originally undertaken
to allow the investigation of a typical menu driven
interface to data, in order to allow comparisons with our
other database work involving query languages. How-
ever, it outgrew this specification and came to its present
use as a viewdata system.

As the system was mounted on a host operating system,
it did not address any communication problems, leaving
the underlying operating system to deal with these
considerations. Freedom from such matters allowed us
to concentrate on the man-machine interface aspects of
the system. Vulcan has evolved over the past two years
since its conception from a very simple file oriented
approach and its investigative purpose to the system
described in this paper.

Since its earliest implementation, Vulcan has been in
use both as a departmental notice-board/magazine and,
primarily, as part of the local AutoProg system.* The
AutoProg system essentially maintains a library of user
source modules, accessible by all users. Vulcan plays a
very important role within the system by providing a
catalogue of the available modules, therefore promoting
the re-use of existing code. The version of Vulcan
described in this paper helps alleviate the classification
problems experienced by both the donating and receiving
programmers connected with such catalogues.

A FORMAL LANGUAGE FOR THE
SPECIFICATION AND DEVELOPMENT OF
PAGE STRUCTURES

Introduction

Viewdata research has always been aimed at the end-
user, with little assistance directed at the information
provider. When a page is added to a viewdata structure,
there is normally no assistance in placing the page, or
assurance that the pages referenced by the new page do
(or will) exist. In standard systems, there is a great deal
of cross-referencing across branches. When a new page
is added, previous cross-referencing can be forgotten,
resulting in a page which is either over or under
referenced.

We now outline the VPREP language, which offers
formal assistance for the specification, development and
maintenance of page structures.

The VPREP language

Perhaps the best way to introduce the very simple
VPREP language is by means of an example. A full
specification of the syntax of VPREP is given in
Appendix 1. The most basic unit of the language is a
page. The declaration of a page is shown below—we will
use this example to highlight the constructions available
within the language.

1 pagename bbc_radio

2 indexline ‘BBC radio programs’

3[

4 big ‘BBC Radio’;

5 Programmes on BBC radio tonight—

6 Select 1 for radio 1 { points. to bbc_radio_1>

7 2 for radio 2 { points. to bbc_radio_2)
8 3 for radio 3 { points. to bbc_radio_3)
9 4 for radio 4

10 J;

11 points. to bbc_radio_4;

12 pointed. at. by bbc_entertainments;
13 endpage bbc_radio;

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 123

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

J. A. MARIANI AND D. R. MCGREGOR

Line 1 shows the pagename statement. This allows the
user to give each page a symbolic name that he can refer
to throughout the specification. Line 2 gives the index
line that should be used to describe the page—this is
applicable in the Vulcan system.

The opening square bracket on line 3 indicates the
start of the data we wish to be presented to the user when
he selects the page in question. However, VPREP
statements can still appear within the data. A special
example of this appears on line 4—the big statement is a
formatting directive which specifies the string following
it is to appear in large letters at the top of the page.

Lines 6, 7, and 8 show VPREP statements appearing
within angled brackets. The points. to statement is
followed by a list of one or more page names and indicates
that the page currently being compiled points to the page
listed. The statement can also appear after the closing
square brackets (as shown on line 11) which indicates the
end of the data. Allowing the points. to statement to
appear within the data enables the user to place the
appropriate points. to statement at a logical place within
the data.

Line 11 shows the usability of the points. to statement
outside the data area. Line 12 introduces the pointed. at.
by statement which gives a list of pages that point at the
current page. This is not strictly necessary but assists
with structure checking at the end of the compilation
process.

During the compilation process, a database is con-
structed which contains all the structural information
gathered from the VPREP statements. Exhaustive
analysis of this database is performed to ensure that

1. All declared pages (except the root page) are pointed
at

2. All the pages specified as being pointed. to exist

3. The pointed. at. by information matches the points. to
information.

In this way, the network structure is verified.

The next state in the compilation process is to generate
the viewdata database in suitable format. This is system
dependent and the current VPREP compiler is based on
the Vulcan system. The compiler starts at the root page
and gives each page one or more logically consistent page
numbers. In this manner, the page specifier is liberated
from the task of ensuring that each page is given a
suitable number.

manager to decide the indices that could validly reference
the page. Possible solutions could involve the provision
of key-words (as in conventional retrieval systems) to aid
the system manager directly or, if key-words were selected
from a fixed collection of such words, the system could
identify similar occurrences and bring prospective loca-
tions to the attention of the manager.

Supervision of the hierarchy

The structure of the data pages exists only in the DBMS.
Therefore, to delete a page, a record referencing that
page is removed from the database. To prevent the
deletion of a hierarchy, no page record which represents
a parent node can be erased.

Control of the hierarchy is achieved by a simple
program interacting with the DBMS which allows
addition and deletion of such page records. By repeated
application of such insertion/deletion actions, complete
subhierarchies can be added or repositioned in the overall
structure.

Extensions to the VPREP language support system

The formal definition exists only as the information
provider’s specification. If the provider wishes to add,
delete or move pages—or entire page structures—the
only way is to edit the specification and recompile. This
is undesirable in the context of a quarter of a million
pages.

The VPREP system needs to be extended to allow on-
line alterations to be made to the database while still
dealing with it in terms of the initial specification. In
addition, it might be useful to be able to generate a new
specification from the current page structure, which an
information provider can then take away and work on in
terms of the VPREP language.

Analogous to conventional programming languages,
the VPREP system should provide separate compilation
of segments of the hierarchy. A tool, similar in function
to a linker, could then link such segments into the overall
hierarchy. This could allow individual information
providers to produce their segments separately from
others.

CONCLUDING REMARKS

FUTURE DEVELOPMENTS

Symbolic path names

We are currently investigating techniques whereby
meaningful symbolic names could be employed efficiently
by users e.g. ‘LONDON. ENTERTAINMENT. CIN-
EMA'’ instead of ‘40.1.10’ (or perhaps a mixture of both
symbolic names and page numbers).

Page classification
In the current system, when a new page is added to the

database, it is not automatically assigned to any loca-
tion(s) within the network. It is then up to the system

124 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

In this paper, we have presented a model of a viewdata
system which allows information to be structured in a
network but presented to the user as a logically consistent
hierarchy. With the additional support of structured page
numbers, these factors combine to present the user with
an easier navigational interface to the information.

The VPREP language provides a much needed formal
definition of page structures for viewdata systems. It is
also a practical aid to information providers, relieving
them of tedious and error-prone tasks and alerting them
to any structural errors.

The model considerably simplifies two main aspects of
viewdata systems, the insertion and the finding of pages.
Insertion has been simplified in that the information
provider can supply any number of classification headings

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

VULCAN: A MODIFIED VIEWDATA SYSTEM WITH IMPROVED INDEXING

he feels suitable, and use a formal language to specify the
structure of the pages. Similarly, the user has a greater
chance of locating the page he requires as he has a larger

number of routes to follow.

Acknowledgements

The authors wish to thank David Hutchison, Doug Shepherd and the
referee for their helpful comments on earlier versions of this paper.

REFERENCES

1. S. Fedida, Viewdata: an interactive information service for the
general public. Communications Networks, London, England,

Sept. 1975 (Uxbridge, Middx., England: Online) pp. 261-282
(1975).

2. R. Woolfe, Videotex—the New Television-Telephone Informa-
tion Services, Computer Science Series, Heyden and Sons Ltd.
(1980).

3. J. A. Mariani, Alpha—A Tabular Database Management System,
Internal Document, Dept. of Computer Science, University of
Strathclyde.

4. D. R. McGregor and J. A. Mariani, AutoProg—a software
development and maintenance system. The /UCC Bulletin 3 (1)
(1981).

Received February 1983

APPENDIX 1

Syntax of the VPREP language

Key to syntax.

{a) denotes a variable

b denotes a terminal symbol

{x) .. =y{z) means that the variable {x) is made up
from the terminal y followed by the variable {z)

(x)::=<a)|{b) means that {(x) is made up from
either {a) or {b)

{(x)::=<a)y|<{null) means that {x) is made up from
either {a) or the special variable (null), which
means {x) would be empty.

(x> ;= a{x)|<{null) means that {x) is made up of no
symbols (is empty) or any number of as.

{string) is a sequence of characters which do not form
a terminal symbol.

Terminal symbols are delimited by one of the follow-
ing: space or end-of-line.

(pages) : : = (page) {pages)
|<page) end

{page) . . = (pagehead) (datasection) (pageend)
{pagefinish)

{pagehead) : . = pagehead {string) ; indexline {string)
{datasection) : . =[(text)]
¢text) : : = big {string) ; {ftext)

| ftext)
{ftext) : . = {pointstohandler) {ftext)

| {string) {ftext)
{pointstohandler) : . = pointsto {pth2)
{pth2) : . = {string), {pth2)

| {string)
{pointedatbyhandler) : . = pointedatby {pbh2)
{pbh2) : : = {string), {pbh2)

| {string) :
{pageend) : . = {pointstohandler) {pageend)
| {pointedatbyhandler) {pageend)

| <null)
{pagefinish) . . = endpage (string)

APPENDIX 2

Synopsis of commands for the system

a [bsolute] page-number:
allows the user to select any page. The page is not
displayed. If the user attempts to select a non-existent
page, he is informed and the command aborted.

d [isplay] page-number:
displays the page requested.

m [ake] page-number:
makes a new page. The user is led through an
interactive input session, which ensures a standard
page appearance.

path:
Descends the hierarchy. If the user is currently on page
‘40.1°, the command:

#24

selects page ‘40.1.2.4°

" digit:
ascends the hierarchy by the number of levels given. If
the user is on page ‘40.1.2.4’, the command:

selects page ‘40°.
p [ath name]:

prints the user’s current position in the hierarchy.
1[ine-print] page-number:

prints the selected page on the line printer.
s [top]:

stops the session
w [here]:

displays an index of the pages below the current page.
h [elp]:

displays list of commands available.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 125

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

J. A. MARIANI AND D. R. MCGREGOR

APPENDIX 3

User session

It is very difficult to give the flavour of an interactive
system on the printed page. Nevertheless, the following
session is described in an attempt to convey the ease of
scan and ‘flick-through’ the Vulcan system supports.

2w [display root index]

1 What’s on in Town

2 Magazines — Current Issues
3 Television
4
5

Local Radio
BBC radio
2:al [select page one, but don’t display]
7w [display page 1's Index]
1 London
2 Glasgow
3 Edinburgh
N H#1 [hierarchically descend to page 1.1]
7w
1 Cinemas
2 Theatre
3 Clubs and Pubs
241 [descend to page 1.1.1]
7:d [display currently selected page]

Vulcan Page 1.1.1
XXXX X X X XXXXXX X X XX
X X X XX X X XX XX X X
X XX X X XXXXX X XX X X X
X XX XXX X X XXXXXX
X XXX XX X X X X X
XXXX X X X XXXXXX X X X X

In London

Key ‘w’ for index.

*“Casablanca” at ABC 1.

See ABC | page for further information.
[This page is merely an advertisement]

7w

1 ABC 5-Cinema Complex
2 Odeon 3-Cinema Complex

241 [Note that we have followed an extensive path,]

[and the user is still dealing in single digits]

1 ABC-1
2 ABC-2
3 ABC-3
4 ABCH4
5 ABC-5

T H#1
7:d
Vulcan

XX XXXXX
X X X
X X XXXXX
XXXXXX X
X X X
X X XXXXX

Casablanca now showing.

Starring Humphrey Bogart and Ingrid Bergman.
Continuous Performances, Full supporting Program.
Doors open 1.00a.m. Program Starts 1.20a.m.

XXXX
X X

KX X
P XK X
e oo

X

XXXX XXX

7w
nowhere [The user has reached a terminal page]
?2:71 [He rises one level of the hierarchy]
42 [He selects a different branch]
7:d
Vulcan Page 1.1.1.1.2
XX XXXXX XXXX XXXX

X X X X X X X X
X X XXXXX X X
XXXXXX X X X XX
X X X X X X X
X X XXXXX XXXX XXXXXX
White Heat

Starring James Cagney
Doors open 7.00p.m. Program starts 7.30p.m.

?:p [The user wants to know exactly where he is]
1.1.1.1.2

2.7 [The user rises 7 levels. As he is only down
[5, he is taken as high as he can go

7w [Root Index]

1 What’s going on in town

2 Magazines - Current Issues

3 Television

4 Local Radio

5 BBC Radio

Page 1.1.1.1.1

]

126 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

20z udy 01 U0 188n6 AQ Z/2E7E/1.21/2/L2/310M4e/|ufoo/Wod"dno"oIepeD.//:SARY W) PAPEo|umoQ

