The Implementation of Abstract Objects in a
Capability Based Addressing Architecture

P. Corsini and G. Frosini

Istituto di Elettronica e Telecomunicazioni, Universita di Pisa, Pisa, Italy

L. Lopriore

Istituto di Elaborazione dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy

The problem of implementing abstract objects in a system having a capability based addressing is analysed in some
detail. Hardware features needed to support a classical capability environment are first pointed out, and a simple
implementation of abstract objects is presented. Then a generalization of the classical capability environment is given,
which allows one to solve the stated problem in a more efficient way.

1. INTRODUCTION

In this paper we analyse the problem of giving a run-time
support to the implementation of abstract objects, which
constitute a well known salient feature of modern
programming languages.’? The characteristic of this
approach, with respect to a compilative implementation,
is that the data encapsulation is maintained in a protected
environment during all the life of the object.

The protection environment to which we refer, recalled
in the first part of the paper, is based on a capability
addressing mechanism.>~” With this mechanism, the
protected entities consist of memory segments, and the
active entities able to perform access attempts (subjects)
are provided with tickets, called capabilities, which give
a subject the proper access rights to memory segments.
More precisely, a capability is a pair (4R, ID), where ID
is a unique identifier for a memory segment and 4R is a
setof access rights on that segment. The set of capabilities
each subject is provided with represents its protection
domain.

It is first shown that in a classical capability environ-
ment the implementation of abstract objects leads to a
noticeable memory waste (owing to the replication of
protection domains), and a consequent proliferation of
memory segments.® Thus, a generalization of the concept
of capability is proposed, by introducing pseudo-capabil-
ities and a mechanism of access right amplification,
thereby allowing a more efficient solution to the stated
problem.

2. PROTECTING MEMORY SEGMENTS VIA
CAPABILITIES

Let us refer to a system with many virtual processors
VP, VP,, ..., VP, (each one allocated to a specific
process), that have access to a common segmented virtual
memory CVM, and let us consider the problem of
protecting the segments of CVM from malicious or
accidental access attempts.

Since the common virtual memory is segmented, the
virtual address of a word has two components: the
segment identifier /D and the offset W. The virtual

memory is mapped into a physical memory by an
addressing mechanism that provides, for every segment
identifier /D, the base address and the limit address of
the segment in the physical memory. Such an addressing
mechanism also adds the offset W to the base address
and checks that the address so obtained does not exceed
the limit address.

Depending on the nature of the information stored in
a segment of CVM, different access rights are associated
with the segment itself. As an example, if a segment
contains data, the possible access rights are READ and
WRITE; if a segment contains a code, a further access
right is EXECUTE.

A pair (AR, ID), where AR is a set of possible access
rights and /D a segment identifier, is called capability. A
set of capabilities specifies the way a subset of the
segments of CVM can be accessed, i.e. specifies an access
domain d,.

At given time, a process p;,, i=1, 2, ..., r, must
operate in a specific domain d,, in the sense that it can
access segments only as specified by d,, itself. A pair
(pi, dy) is called subject s;,, and represents the active
entity whose access to segments must be validated.
During its evolution, a process p; can operate on different
domains, and, when it switches from domain d, to
domain d,, we shall say that subject s; , enters subject s; .
In order to access a segment /D° in a manner a, a subject
s;,» Must possess in the pertinent domain d,, a capability
(AR°, ID°), where AR° contains an access right consistent
with the action a. Subjects are prevented from forging
capabilities, but, if they need new segments, can ask a
special protection monitor for new capabilities. More-
over, subjects can be authorized to transfer capabilities
from one domain to another.

Since it is not viable for the protection monitor to keep
trace of all the capabilities transferred among different
domains, we will suppose that CVM is so large that each
new request for segments by a subject can be honoured
without reusing previously allocated segments. In other
words, capabilities with the same identifier will never be
provided by the protection monitor in the system life. As
an example, a segment identifier of 48 bits allows the
monitor to provide a new capability every 10 us for about
75 years.

Referring to the problem of transferring capabilities,

CCC-0010-4620/84/0027-0127 $04.00

© Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 127

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

P. CORSINI, G. FROSINI AND L. LOPRIORE

a special access right COPY can be associated with any
other access right R in the AR field and, when this
happens, we shall say that the copy flag of R is set. Only
access rights having the copy flag set can be passed when
a capability is transferred from one domain to another.

3. IMPLEMENTING A CAPABILITY BASED
ADDRESSING

A segment of the virtual memory CVM can store, besides
data and codes, also capabilities. The set of all the
capabilities defining a domain is structured as a rooted
tree. Each node of the tree is stored in a segment of
CVM: the segment storing the root is called the base
capability segment (BCS), and the segments storing the
other nodes are called auxiliary capability segments
(ACSs). In the simplest case, all the capabilities are
stored in one segment only, that is in the BCS. Access
rights relative to a segment containing capabilities are
TAKE and GRANT, that allow a subject to read and to
store a capability, respectively. Owing to the rooted tree
structure of the set of capabilities defining a domain, in a
capability segment relative to a node N (excluding the
segments relative to the leaves) there are capabilities for
the capability segments relative to the sons of N, with
access rights TAKE and/or GRANT. This allows a
subject to use capabilities stored in any capability
segment, as will be explained in the following.

Let us now examine in some detail a way to implement
a capability based addressing. Let us suppose that each
virtual processor, besides the classical resources that
allow the process to perform its action, is provided with
some special registers CRy, CR,,..., CR,_,, called
capability registers, whose aim is to store those capabilities
thatare actually used in order to access memory segments.
By hardware convention, when a subject is entered, two
of such registers, say CR, and CR,, are properly
initialised, that is:

(@) CR, is loaded with the capability for the code
segment to be executed first.

(b) CR, is loaded with the capability for the BCS of the
entered subject.

The program counter PC must be more powerful than
the conventional one, as it must contain (a) the index of
the capability register containing the capability for the
code segment in execution, and (b) the offset W, of the
instruction in such a segment. The previous hardware
conventions imply that PC, when a subject is entered, is
loaded with the index of CR, and with the offset zero.
The initial loading of CR,, CR, and PC is performed by
the special instruction Enter, as will be explained later.
In order to better understand the behaviour of the
system, let us consider a virtual processor VP; allocated
to a specific process p;, and let us suppose that a subject
s;n 1s active and is executing the fetch phase of an
instruction. The following actions are performed (Fig.

1): _

(1) Consider the capability in the register whose index is
stored in PC, say (AR, ID,).

(2) If AR, contains the access right EXECUTE, the

fetch phase continues, otherwise an access violation
occurs.

128 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

VP; CVM
CRo *1
o [T] L/ %
. Wo
CR E‘:] Instruction
n-1 ///
pC

Figure 1. Actions involved in the fetch phase of an instruction.

(3) By using the pair (/D,, W,) find in the corresponding
segment the addressed word, that contains the
instruction to be executed.

(4) Evaluate the logical addresses of the operands and
store them into appropriate registers EA,, EA,, . ..
of the virtual processor.

In the execution phase, operands are accessed in the
virtual memory by using the contents of the registers
EA,,EA,, ..., eachone specifying:

(i) the index of the capability register containing the
capability for the data segment
(ii) the offset in the data segment of the operand.

The first instructions to be executed must be special
instructions that load into the capability registers
capabilities taken from capability segments. An instruc-
tion of such a type has the special form

Loadcap CR;, W, CR;

and its execution is performed according to the following
actions (Fig. 2):

(1) Consider the capability stored in CR;, say (4R, ID).

(2) If AR contains the access right TAKE then the
execution phase continues, otherwise an access
violation occurs.

VP, CVM

| B O

AR 1D’

Figure 2. Actions involved in the execution of the Loadcap
instruction.

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

THE IMPLEMENTATION OF ABSTRACT OBJECTS

(3) By using the pair (/ID, W) find, in the addressed
capability segment, the capability to be loaded, and
store it into the capability register CR;.

Note that, when a subject becomes active, the Loadcap
instruction that is executed as the first instruction must
have CR; = CR,. Note also that, by executing successive
Loadcap instructions, capabilities stored in auxiliary
capability segments of any level can be loaded into the
capability registers (recall the rooted tree structure of the
set of capabilities defining a domain).

When the active subject has loaded the appropriate
capabilities into the capability registers, it can execute
standard instructions having the form

Doato CR;, W
whose execution involves the following actions (Fig. 3):

(1) Consider the capability stored in CR;, say (AR, ID).

(2) If AR contains an access right consistent with the
action o, then the execution phase continues, other-
wise an access violation occurs.

(3) By using the pair (D, W) find the addressed word in
the corresponding segment and perform the action a
onit.

VP, cVM

CR,
CR,

Operand

CRn—l

T]
-
: /||

e [T
mia

EA,

g [T]

Figure 3. Actions involved in the execution of the generical
instruction.

If the instruction to be executed is a Jump instruction,
having the form

Jump CR;, W

the execution simply consists in loading the index i and
the offset W into the program counter. The Jump to
Subroutine and the Return from Subroutine instructions
are executed in a similar way.

In executing all the previous instructions, the active
subject always remains the same, that is the process does
not change domain. Let us now introduce two special
instructions, called Enter and Reenter, that allow a subject
s; » to enter subject s; ,, and the subject s; to return to the
initial subject s; ,. A further access right, called ENTER,
is also introduced, that allows the Enter instruction to be
executed. The Enter and Reenter instructions require the
existence of a stack for each process, in which the linking
information is pushed and popped, respectively. The
Enter instruction has the form

Enter CR;, C' ‘
and its execution involves the following actions (Fig. 4):

VP, cVM
CR,
CR,
TAKE .
o na | A

2

CR

n-1

H

PC

0
EA,

15

EA,

Figure4. Actionsinvolvedin the execution of the Enter instruction,
in addition to the saving of the contents of capability registers and
PC in the process stack.

(1) Store the current values of CR,, CR,, .
and of PC in the process stack.

(2) Consider the capability stored in CR;, say (AR, ID,).

(3) If AR contains the access right ENTER, then the
execution phase continues, otherwise an access
violation occurs.

(4) Byusing the pair (ID,, C’), find in BCS, the addressed
capability, say (AR, ID"), and load it into CR,.

.., CR,

(5) Load the capability register CR, with the new’

capability (4R, ID,), where AR, is constituted by
the access right TAKE.

(6) Load the program counter with the index 0 and the
offset 0.

(7) Destroy the contents of all the capability registers,
excluding CR, and CR, .

Note that the aim of point (7) is to prevent the entered
subject from using the capabilities of the entering one.

A subject s; , entered by a subject s; , by means of an
Enter instruction can return to the initial subject s; , by
issuing the instruction

Reenter

whose execution consists in loading the registers CRy,
CR,, ..., CR,_, and PC with the values popped from
the top of the process stack.

In a capability environment, capabilities can be
transferred from one subject to another. A special
instruction is provided for this aim, having the form

Transfer MSK, CR;, AC, CR;, AC’

Its execution involves the following actions (Fig. 5):

(1) Consider the capability stored in CR;, say (AR, ID),
and the capability stored in CR;, say (AR, ID’).

(2) If AR contains the access right TAKE and AR’
contains the access right GRANT, then the execution
phase continues, otherwise an access violation occurs.

(3) By using the pair (ID, AC), find in the pertinent
capability segment the capability to be transferred,
say (AR*, ID¥).

(4) Construct an access right field' 4R° by (a) taking
from AR* only the access rights having the copy flag

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 129

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

P. CORSINI, G. FROSINI AND L. LOPRIORE

VP; CVM
o, o acf |
i AR*| ID*
. 7
sk
AT]]
re 1]
£,

Figure 5. Actions involved in the execution of the Transfer
instruction.

set, and (b) masking such access rights with the MSK
field.

(5) Transfer the capability (4R°, ID¥) into the location
specified by (ID’, AC").

Note that the Transfer instruction operates between
capability segments, and so it is not possible to transfer a
capability contained in a capability register. This fact
prevents a subject from granting another subject the
capability for its BCS, with the access right TAKE,
which was constructed in CR; when the subject was
entered.

Observe that it is not viable to give a subject s; , the
possibility of transferring capabilities into the base
capability segment of a domain d,: in fact, in this case
5; ncould destroy any capability in d; . Instead, the transfer
must have an auxiliary capability segment as its destina-
tion. Moreover, if a subject s; , wants to transfer all the
capabilities contained in an auxiliary capability segment
of its domain into another domain, it can simply transfer
into that domain the capability for the auxiliary capability
segment, with the access right TAKE.

4. A SIMPLE IMPLEMENTATION OF
ABSTRACT OBJECTS

A system having a capability based addressing represents
an environment well suited for implementing abstract
objects of a generical type. An implementative approach,
whose main merit is simplicity, will be given in this
Section. As a working example, we will assume that a
capability is 8 bytes long, 2 bytes for the AR field and 6
bytes for the D field. Moreover, we will refer to abstract
objects of the type Regular_polygon, which is defined as
follows (an arbitrary self-explanatory notation is used):
type Regular_polygon is
representation Regular_polygon is
record
edge_number: integer
edge_size: real
end record;

130 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

function /nit (edge_number . in integer; edge_size: in real)
return Regular_polygon is
- —returns a regular polygon with given edge number and
- —edge size.
begin
return (edge_number, edge_size);
end;
function Similar (polygon: in Regular_polygon; scale: in real)
return Regular_polygon is
— —returns a regular polygon similar to a given one.
begin
return (polygon . edge_number, scale * polygon . edge_size);
end;
function Perimeter (polygon: in Regular_polygon)
return real is
- —returns the perimeter of a given regular polygon.
begin
end;
function Area (polygon: in Regular_polygon)
return real is
- —returns the area of a given regular polygon.
begin

Let us suppose that an object Pol of the type Regular_
polygon is defined, i.e.

declare Pol: Regular_polygon;

A simple implementation of Pol uses a base capability
segment BCSp,;, an auxiliary capability segment ACSp,,,
four code segments CD,, CD,, CD;, CD,, and a data
segment IRSp, (Fig. 6). The BCSp, contains: (i) the
capabilities for the four code segments, each with the
access right EXECUTE (each code segment contains the
re-entrant codes relative to an operation defined in the
Regular_polygon type declaration); (ii) the capability for
the data segment IRSp, with the access rights READ
and WRITE (this segment is reserved for containing the
internal representation of the object Pol); (iii) the

CVM
cp,
p
cp,
BCS p,, CD,
0| EX -
8| EX -—|
cD,

Figure 6. Memory configuration for implementing the abstract
object Pol.

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

THE IMPLEMENTATION OF ABSTRACT OBJECTS

CVM

BCS,

w
~

—t l BCSpy;

3

_\Sixo—l o J
= Oy 5
N

K
)

ACS por

L

Figure 7. Structure of the base capability segment of a subject able
to operate on the abstract object Po/ implemented as in Fig. 6.

capability for ACSp,, with the access rights TAKE and
GRANT (this segment will be used for the transmission
of the capability for the segment reserved for containing
the actual parameter values).

A subject s; , is able of operating on the abstract object
Pol if its base capability segment BCS),, contains (Fig. 7):
(i) the capability for BCSp,, with the accessright ENTER ;
(ii) the capability for ACSp,, with the access rights TAKE
and GRANT; (iii) the capability for a parameter data
segment DS with the access rights READ and WRITE.
When s; , is active, the capability register CR, contains
the capability for BCS, with the access right TAKE, and
CR, contains the capability for the actually running code,
with the access right EXECUTE. If s; , wants to perform
the operation Init on the abstract object Pol, it must first
store the actual values of the parameters edge_number
and edge_size in the parameter data segment DS. Then it
executes the following instructions (the memory situation
shown in Fig. 7 is hypothesized):

Loadcap CR,, 40, CR,
Transfer MSK WRITE, CR,,48,CR,,0
Loadcap CR,, 32, CR;
Enter CR;, O

The first two instructions transfer a capability for the
parameter data segment DS, with the accessright READ,
from BCS, to ACSp,. The two remaining instructions
perform a domain switch so entering the subject s; p,,
which executes the instructions relative to an Init
operation. These instructions are the following:

Loadcap CR,,32,CR,
Loadcap CR,, 40, CR,
Loadcap CR;, 0,CR;
Move CR;, 0,CR,,0
Movelong CR;, 2,CR,,2
Reenter

The first instruction loads the capability for the internal
representation segment /RSp, into CR,. The second
instruction loads the capability for ACSp,, into CR;. The
third instruction loads the capability for DS, from ACS;,
into CR;. The Move instruction moves the integer, which
constitutes the actual value of the parameter edge_
number, from DS into IRSp, (such an integer is supposed

to be 2 bytes long). Similarly, the Movelong instruction
moves the real, which constitutes the actual value of the
parameter edge_size (such a real is supposed to be 4 bytes
long). These two instructions correspond to the body of
the function /nit. Finally, the last instruction re-enters
subject s; 4.

It should be noted that the capability based environ-
ment allows a rigid encapsulation of the object’s internal
representation which cannot be directly modified by
subject s; , in any way: accesses on the internal represen-
tation can only be performed by using the operations
defined in the data type specifications.

The noticeable disadvantage of this implementation
of abstract objects is the wide memory waste which
originates if several objects of the same type are to be
implemented. As an example, if we want to implement
m objects Poll, Pol2, ..., Polm of the type Regular_
polygon, we must introduce m base capability segments
BCSpyi, BCSpya, - - ., BCSpys, m auxiliary capability
segments ACSp,;, ACSpya, . - . ACSpy, and m internal
representation segments IRSpy;, IRSpys, - - . » IRSpom:
only the code segments CD,, CD,, CD;, CD,, do not
need to be replicated. In Fig. 8 the case m = 2 is shown.

The implementation of the generical object Polj
requires 48 bytes for BCSp,;, 8 bytes for ACSp,;, and 6
bytes for IRSpy;. So, the memory overhead associated
with Polj, defined as ov; = (6; — y;)/9;, where J; is the
memory needed for the global implementation of Polj,
and y, is the memory needed for its internal representa-
tion, 1s about 0.9. To overcome this wide memory waste,

CVM
BCS py,

EX | —

EX - CD,
cp,
cp,
cp,

Figure 8. Memory configuration for implementing two abstract
objects Pol/1 and Pol2.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 131

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

P. CORSINI, G. FROSINI AND L. LOPRIORE

we will generalize the concept of capability and introduce
the mechanism of access right amplification as follows in
Section 5. Successively, we will show that the above
generalization and the new mechanism allow the imple-
mentation of several objects of the same type, without
any replication of BCSs and of ACSs (Section 6).

5. GENERALIZING THE CAPABILITY
CONCEPT

Let us now enlarge the capability environment described
in Sections 2 and 3, by: (i) introducing the concept of
extended capability; (ii) lightly modifying the previously
described instructions; (iii) introducing the new special
instruction Amplify and the new access right AMPLIFY.

An extended capability is a triplet (F,, F,, ID), where:
(i) F, is a 1-bit field specifying if the extended capability
is a true-capability or a pseudo-capability ; (ii) F, represents
an access right field if the extended capability is a true-
capability, or an offset field if the extended capability is
a pseudo-capability; and (iii) D is a unique identifier for
a memory segment. Capability registers must now be
reformatted to contain also the F, field. True-capabilities
have exactly the same aim as capabilities, as described
in Section 2. Instead, a pseudo-capability is used in order
to point to a specific entry (i.e. the entry specified by the
offset field F,) of a capability segment (i.e. the segment
identified by the field D). Pseudo-capabilities can only
be loaded into capability registers, and transferred from
one domain to another, but they cannot be used for
effective memory accesses.

All the previously introduced instructions must be
modified to treat extended capabilities. In particular, all
instructions, excluding the Loadcap and Transfer instruc-
tions, must abort if they work on pseudo-capabilities.

In order to understand the aim of pseudo-capabilities,
let us introduce the new special instruction Amplify and
the new access right AMPLIFY. An Amplify instruction
requires, as its operands, a true-capability for a capability
segment with the access right AMPLIFY, and a pseudo-
capability for an entry of the same segment. The result of
the instruction execution is the loading into a capability
register of the extended capability pointed to by the
pseudo-capability. More precisely, the instruction has
the form:

Amplify CR;, CR;

and its execution phase involves the following actions
(Fig. 9):

(1) Consider the extended capability stored in CR;, say
(Fy, F,, ID), and the extended capability stored in
CR;,say (F, F3, ID).

(2) If (F,, F,, ID) is a true-capability, if F, contains the
access right AMPLIFY, if (F, F5, ID’) is a pseudo-
capability, and if ID' = ID, then the execution phase
continues, otherwise an access violation occurs.

(3) By using the pair (ID, F,), find the addressed
extended capability in the pertinent capability seg-
ment, and load it into the capability register CR;.

Observe that the loading of an extended capability
from a capability segment CS into a capability register
CR; can also be performed by using a Loadcap instruction.

132 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

VP; CVM
ek [T 1] -
F, F5* 1D’ Fz_L]
Fy{ Fy . ID"] 3
: J
re [T]

ey]]

Figure 9. Actions involved in the execution of the Amplify
instruction.

While the Loadcap instruction only requires a true-
capability for CS, with the access right TAKE, the
Amplify instruction requires both a true-capability for
CS, with the access right AMPLIFY, and a pseudo-
capability for the proper entry of CS. Moreover, while
the true-capability for CS with the access right TAKE

" (required by the Loadcap instruction) allows the loading

of every extended-capability contained in CS, the true-
capability for CS with the access right AMPLIFY and
the pseudo-capability for an entry of CS (both required
by the Amplify instruction) only allow the loading of a
specific capability stored in CS.

Note that the same true-capability with the access
right AMPLIFY can be used together with different
pseudo-capabilities, in order to load different extended
capabilities taken from the same capability segment into
capability registers. So, the true-capability behaves as an
amplification device, whose input is represented by the
pseudo-capability, and whose outputis the true-capability
that replaces the involved pseudo-capability in the
capability register.

A typical application of the mechanism of access right
amplification is the following: suppose we want (i) a
subject s; , to be able to authorize another subject s; , to
access a specific memory segment DCS, but (ii) s; , itself
not to be able to access DCS. In this case, we provide s; ,
with a true-capability with the access right AMPLIFY
for a capability segment CS, and s;, with a pseudo-
capability for a specific entry of CS, containing in its
turn a true-capability for DCS. Neither s; , nor s;;, can
separately access DCS;; but, if s; , transfers the pseudo-
capability into the domain of s; ; , then s; , can execute an
Amplify instruction, in order to obtain the true-capability
for DCS from CS.

6. AN EFFICIENT IMPLEMENTATION OF
ABSTRACT OBJECTS

A different approach for an efficient implementation of
abstract objects is now given. We suppose that the length
of an extended capability is still 8 bytes, i.e. the F, field

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

THE IMPLEMENTATION OF ABSTRACT OBJECTS

CVM

cD,

D,

BCS p,; CD,

cD,

IRsPoI

Figure 10. Memory configuration for an efficient implementation
of the abstract object Pol.

is now reduced to 15 bits. We will refer, as a working
example, to the object Pol, of the type Regular_polygon
introduced in Section 4. The implementation of Pol uses,
besides BCSpol, ACSpol, CDl, CDz, CD3, CD4 and
IRSpy, also a further capability segment, called hidden
capability segment HCSp,, (Fig. 10). The BCSp, structure
is slightly modified with respect to the one shown in
Section 4. It no longer contains a true-capability for the
segment /RSp,, but a true-capability for HCSp,, with
the access right AMPLIFY: HCSp, in its turn contains
a true-capability for IRSp, with the access rights READ
and WRITE. Moreover, ACSp,, is widened to contain
two extended capabilities.

The structure of the BCS, relative to the subject Sin
able to operate on Pol, is also slightly modified: in fact
BCS, now contains, besides the true-capabilities for
BCSpy, ACSp, and the parameter data segment DS, also
a pseudo-capability for HCSp,, with an offset F, = 0. If
5;,» wants to perform the operation Init on the object Pol,
it must first store the actual values of the parameters (i.e.
the quantities edge_number and edge_size) into the
parameter data segment DS. Then it can execute the
following instructions, that assume the memory situation
shown in Fig. 11:

Loadcap CR,, 40, CR,
Transfer MSK WRITE, CR,, 56, CR,, 0
Transfer CR,,48,CR,,8
Loadcap CR,, 32, CR,
Enter CR;, 0

The first three instructions transfer from BCS, into
ACSp, the true-capability for the parameter data segment
DS, with the access right READ, and the pseudo-
capability for the entry 0 of HCSp,,. The two remaining
instructions perform a domain switch, thereby entering
the subject s; p,, which executes the instructions relative

CVM
BCS,
7
32{T|ENT| —
40|T| g‘l(l' —t BCSI’aI
4Pl 0 | —F—
so[t| | —
/ ///{
DS L ACS pyy
HCS py

Figure 11. Structure of the base capability segment of a subject
able to operate on the abstract object Po/implemented as in Fig. 10.

to the /nit operation. These instructions are the following:

Loadcap CR,, 40, CR,
Loadcap CR,, 0,CR,
Loadcap CR,, 8,CR,
Loadcap CR,, 32, CR,
Amplify CR;, CR,
Move CR;, 0,CR,,0
Movelong CR;, 2,CR,,2
Reenter
CVM
cD,
cD,
BCSRp CD,
T EX | —
T[Ex | —7
T| EX -—
T| EX | €Dy
T|AMP| +——
T —
|
HCS
RD: L RS pyy
&b I l
I IRS oy

Figure 12. Memory configuration for an efficient implementation
of two abstract objects Po/7 and Po/2.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 133

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

P. CORSINI, G. FROSINI AND L. LOPRIORE

The first instruction loads the true-capability for ACSp,
into CR,. The second instruction loads the true-capability
for the parameter data segment DS, from ACSp, into
CR;. The third instruction loads the pseudo-capability
for the entry 0 of HCSp,, from ACSp, into CR,. The
fourth instruction loads the true-capability for /RSp,,
from HCSp, into CR,. The Move and Movelong instruc-
tions move the parameter actual values, from DS into
IRSp,: these two instructions correspond to the body of
the function /nit. Finally, the last instruction re-enters
subject s; .

Let us now show a possible implementation of several
abstract objects of the same type by referring, as a
working example, to the implementation of m objects
Pol,, Pol,, . .., Pol,, of the type Regular_polygon. Only
the internal representation segments must be replicated
m times, so that we have a base capability segment, four
code segments CD,, CD,, CD;, CD,, an auxiliary
capability segment ACSg,, m data segments IRSpy,,
IRSpqi,, - .., IRSp,,, and a hidden capability-segment
HCSpg,, extended to contain the true-capabilities for the
minternal representation segments, with the access rights
READ and WRITE. In Fig. 12 the case m = 2 is shown.

The subject s; , is allowed to use the jth object Polj if its
BSC, contains, besides a true-capability for BCSg, with

the access right ENTER, a true-capability for ACSg,
with the access rights TAKE and GRANT and a true-
capability for DS with the access rights READ and
WRITE, also a pseudo-capability for the jth entry of
HCSp,,.

The memory waste is very much reduced in this
approach, as shown by the following consideration. The
implementation of the generical object Polj requires 6
bytes for IRSp,; and 8 bytes for the jth true-capability in
HCSg,: in such a way the memory overhead ov; has now
decreased to be about 0.4. Moreover, this approach leads
to a noticeable diminution of the number of the required
memory segments, so reducing memory fragmentation
and simplifying memory management.

7. CONCLUSIONS

An efficient run-time support to the implementation of
abstract objects has been given, which uses a capability
environment. The efficiency arises from a proper gener-
alization of the classical capability concept. This gener-
alization consists in the introduction of pseudo-
capabilities and of a mechanism for amplifying access
rights.

REFERENCES

1. B. H. Liskov and S. N. Zilles, Specification techniques for data
abstractions. /EEE Trans. Software Engineering, March, 7-19
(1975).

. J. Guttag, Abstract data types and the development of data

structures. Comm. ACM, June, 396-404 (1977).

G. S. Graham and P. J. Denning, Protection—principles and

practice. Proc. AFIPS 1972, SJCC, 417-429 (1972).

. R. S. Fabry, Capability-based addressing. Comm. ACM, July,

403-412 (1974).

. J. H. Saltzer and M. D. Schroeder, The protection of information
in computer systems. Proc. IEEE, Sept., 1278-1308 (1975).

o A W N

6. P. Corsini, G. Frosini and L. Lopriore, Protection structures in
computer systems. /nformatica, January, 83-102 (1982).

7. P. Corsini, G. Frosini, F. Grandoni and L. Lopriore, Capability
based addressing: an overview. Proc. AICA Annual Conference
‘80, AICA, Oct., 164-176 (1980).

8. D.C. Cosserat, A data model based on the capabilities protection
mechanism. Proc. Int. Workshop on Protection in Operating
Systems, IRIA, Aug., 35-53 (1974).

Received April 1983

134 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

20z udy 01 U 188n6 Aq 98ZE¥E//21/2/LZ/310M4e/|uf0o/W0d"dNo"oILePEDE//:SARY WO.) PAPEOUMOQ

