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A fragmentation model based upon the concept of an achievable equilibrium has proved successful with large systems
but breaks down when the numbers of reserved blocks or free fragments are small. A Markov chain model is presented
which, by assuming thorough spatial mixing and a strict temporal alternation of reservations and releases, reduces
computational complexity to manageable proportions in systems of intermediate size. Good continuity across the two

models is demonstrated.

1. INTRODUCTION

A recent paper’ has described results obtained from a
particular model of free-store fragmentation in which
expected changes in configuration resulting from the
block allocation and release mechanisms were derived.
In equilibrium, allocations and releases take place at the
same mean rate and the equilibrium configuration was
determined as that for which the combined effects of
allocations and releases produce no net change.

Formally the model yields two loosely coupled sets of
equations. One set determines the manner in which
reserved blocks cluster together in contiguous sequences
of varying size. The other determines the distribution of
sizes of the fragments of free store which separate the
clusters. The two sets are linked by two simple equations.
One has been well known for many years as the fifty per
cent rule.? This has the form

F

B =1ip (1)

where F and B are the numbers of free fragments and of

reserved blocks in the store, and p is the probability that
arequest for space will be allocated from an oversize free
fragment. It is convenient to write

2F

7= (2
and then the fifty per cent rule may be expressed as

p=x 3)

The second equation is new and determines the propor-
tion of isolated reservations (i.e. clusters having just a
single member). Denoting by ¢, the number of clusters of
r reservations, the relation is

¢ x?

4= @

B (x+4)
or equivalently, from the definition of x,
G __2x
F (x+4) ©)

The fragmentation equations involve the size distri-
bution of reservations but the cluster equations, being

concerned with block counts rather than block sizes, do
not. In this sense the cluster analysis has the greater
generality.

The predictions of the model are in general consistent
and satisfactory. At high levels of utilization the
composition of the store is insensitive to the absolute
sizesof Band F, depending upon their ratio as determined
by x. At lower B and F values however, the model breaks
down. Indeed, in this region the cluster equations yield
negative values for some of the ¢, counts!

The most likely explanation lies in the assumption that
the mean store configuration is achievable. This is a
reasonable and justified approximation when configura-
tions are dense around the mean but at low occupation
numbers it is equivalent to the indiscretion, familiar to
statisticians, of looking for the average family with 2.4
children.

This then is the background to the present paper. We
recognize that the equilibrium should be treated as
dynamic. The appropriate model is a Markov chain and
this is set up in Section 2 for the analysis of clustering.
This paper concentrates upon clustering, partly because
of its generality and partly because it was here that the
imperfections of the earlier model were first revealed. A
comparable treatment of fragmentation remains a possi-
bility for the future.

It quickly becomes apparent that the number of
configurations which are, in principle, candidates for
recognition as separate states increases dramatically with
B. Various devices for controlling this explosion are
described in Sections 3 and 4. Two of them deserve
mention here.

Rather than treat each spatial arrangement of a given
set of cluster sizes as a separate state, the assumption of
thorough spatial mixing allows them to be treated as one
single state. The significance of this lumping together of
configurations is reflected in the title of this paper.

Secondly, we recall the substantial success of the earlier
model at higher B values. There, the achievability of the
mean configuration suggests that transitions are concen-
trated within a cloud of states close to the mean. The
more distant states have low probability of occurrence
and are thus not significant. The program organization
described in Section 4 exploits this concept to identify
dynamically, and to record, only those states which are
judged to be significant.
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2. THE MARKOV MODEL

A store configuration consists of clusters of contiguous
reservations separated by blocks of free store, the whole
regarded as circular so that end effects may be disre-
garded. The size of a cluster is a count of the number of
reservations it contains: we are not concerned with the
amount of storage occupied.

The specific approximation introduced by the present
model is that a system state is characterized by a set of
counts ¢,, r > 1, where ¢, is the number of clusters of size
r. All orderings of clusters around the store are equivalent
and the model assumes random mixing. Thus the
probability that a randomly selected cluster is of size r is
¢,/F where F is the number of clusters, and hence of free
blocks, given by

F=Yc (6)

Similarly the number B of reservations is given by

B=Yre @)

Transitions between states take place through the two
basic mechanisms of reservation and release. In the one
case, all or part of a sufficiently large free block is
allocated to accommodate a fresh reservation and in the
other, the space occupied by an existing reservation is
freed.

2.1 The reservation mechanism

The model assumes the so-called random allocation
strategy in which a sufficiently large free block is selected
at random. In a real situation one can envisage the
possibility that heavy fragmentation may combine with
a large request size so that there is no way of satisfying
the request. Similarly it is possible either that the largest
fragment exactly matches the request or that all free
fragments are larger than the current request size. These
are extreme possibilities corresponding to the certainty
of an exact fit and of an oversize fit, respectively. More
usually one may expect a range of fragment sizes, some
less than, some equal to and some greater than the size of
the current request. Each of the fragments in the latter
two categories is then equally likely to be picked to
accommodate the request.

The present model assumes that a sufficiently large
free block can always be found and that the probability p
of selecting an oversize fragment is constant. This is the
only point at which the physical sizes of store blocks
enter the discussion. In modelling terms this represents a
powerful simplification. Its justification rests upon the
expectation that the dominant configurations will have
broadly similar fragmentation patterns.

When an oversize free block is used, the new
reservation is allocated space at one end rather than in
the middle in order to avoid needless fragmentation of
free store. The probability that the adjacent cluster which
it joins has size r initially is pc,/F and the effect on the
sizecountsisc, ¢, _yand ¢,y < c,4q + 1.

The probability of an exact fitis g = 1 — p. If the sizes
of the neighbouring clusters on the left and right are r
and s respectively, then the effect is to yield a single
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cluster of size r + s + 1. The effect on the size counts is
¢ —1, ¢csqc,—1 and ¢ 4541 C15+1+ 1. The
associated probability may be written as ¢'¥,, where

C,-(C,-“ l) : _
T'S_I_’(F—l)’ ifr=s
¢ G .
_;’(F— l)’ ifr#s ®)

This expression depends upon the assumption of
thorough spatial mixing of clusters. The left-hand cluster,
say, is randomly selected and then the right-hand one is
selected independently at random from those that remain.

2.2 The release mechanism

The model makes the usual assumption of random
releases. Each current reservation is equally likely to be
released next. Three categories arise, according as the
released block has 0, 1 or 2 free neighbours.

Category 0 blocks are the internal members of a cluster
of size r, r > 3. Let the reservations be numbered 0 to
r — 1. The effect of releasing the block in position u,
1 < u < r—2,istosplit the cluster into two, having sizes
u and r — u — 1. Thus, with probability c,/B the effect
on the size counts for each of the (r — 2) possible values
ofuisc,«~c,—1,¢c,«<c,+landc,_,_;«<c,_,_1 + 1.

Category 1 blocks are the end members of a cluster of
size r, r > 2. The space freed is merged with the adjacent
free block and the cluster size reduces tor — 1. Thus with
probability 2¢,/B the effect is ¢,«—c,— 1 and c,_; «
Cr-1 + 1. )

The category 2 blocks are the lone reservations: the
clusters of size 1. The space released is merged with the
two adjacent free blocks. Thus with probability c,/B the
effectisc; «c¢; — 1.

2.3 Equilibrium

These mechanisms enable the probabilities to be deter-
mined of a transition from any cluster configuration of B
blocks to each configuration of B + 1 blocks in the case
of areservation and to each configuration of B — 1 blocks
in the case of a release. In statistical equilibrium,
reservations and releases take place at the same mean
rate and so preserve a mean level of store utilization.

The author’s earlier paper treated mean cluster counts
as actual values. Equations were formed expressing the
requirement that the net effect of reservations and
releases on the equilibrium set of counts is zero. This
assumption is satisfactory when the counts are sufficiently
large but was found to be suspect at low store loadings.

Betteridge® has given an analysis in terms of a Markov
system in which each distinct spatial configuration of
blocks is regarded as a separate state. This approach is
rigorous but leads to equations of immense complexity
and size. It seems likely that its application is limited to
small systems having B < 10 say.

The present work seems to occupy the middle ground
between these extremes. The assumption of thorough
spatial mixing enables the various permutations of a
particular partitioning of B reservations into F clusters
to be lumped together into a single effective state. This
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too is an approximation and we shall explore its
consequences.

Ideally one would like to include all B-values in the
reckoning, with transitions which are equally likely to be
reservations or releases. This would add greatly to the
complexity of the calculations, and there are unresolved
theoretical difficulties about selecting a dominant B value
to determine mean store loading.

Instead therefore we regard each transition as a two-
stage process, a release followed by a reservation, applied
only to states with a specified B value. There is thus an
intermediate state corresponding to B — 1 reservations.
This mechanism is chosen for its simplicity. We could
equally well have chosen a reservation followed by a
release, but this would be more complicated since there
are many more configurations of B + 1 intermediate
states than of B — 1. Similarly, more complex combina-
tions were also excluded. With the model as proposed,
therefore, there are two free parameters, B and p.

Suppose that the different c-sets corresponding to the
different states of a system of B reservations are ordered
in some way and let X, be the equilibrium probability of
the rth state. Similarly, order the states of a system of
B — 1 reservations and let Y, be the equilibrium proba-
bility of the rth such intermediate state. The mechanisms
of reservation and release described above enable us to
compute the transition matrices G and H where G, is the
probability of a transition from the sth B-state to the rth
(B — 1)-state, and H,, is the probability of the reverse
transition. The equilibrium requirement is thus given by
the two equations

Y=GX )
and

X =HY (10)
The overall transition matrix is

T =HG (1)
and the requirement

X=TX (12)

determines X as the quantity of theoretical interest. Once
X is available, it is a simple matter to compute the mean
values of F and of each c,.

3. ENUMERATION OF STATES

The states of a system of B reservations are the partitions
of B, taking no account of the ordering of components.
Each cluster is a component so that the number of
components is F. We wish to determine for any given
system both how many states there are, and how to order
them. The number of states determines the size of the
problem and the ordering facilitates referencing states.

It would be convenient to group states according to
their F value but this is found to create substantially
increased complexity and so has not been pursued.

Denote by P(B, n) the number of partitions of B into
components of size n or less. The cases of practical
concern correspond to 1 < »n < B. Itis clear thatif n > B
then P(B, n) = P(B, B).

In general, the number of partitions of B having r as
the largest component is P(B — r, r) since there remain

B — r items to be grouped into components still of size r
or less. It follows that

P(B,n)= P(B,n— 1)+ P(B — n, n) (13)

Applying the obvious boundary conditions, we may
calculate P(B, n) as follows

P(B,n)=1, ifn=1
=PB,n—1)+PB—-nk), ifl<n<B
=PB,n—1)+1, ifn=8 (14)
where
k = min(n, B — n) (15)

The total number of partitions for any B is P(B, B).
This increases rapidly with B as is shown by the following
specimen values:

B 7 10 13 20 30 40 50
P(B,B) 15 42 101 627 5604 37338 204226

It is clear that the feasibility of solving Eqn (12)
depends upon exploiting the special features of the
problem to give a more compact representation than that
implied by the conventional matrix notation.

3.1 Ordering of states

We turn now to the problem of arranging the partitions
for given B into a standard order so that we may reference
them by position number w, 1 <w < P(B, B). It is
convenient first to transform from the set (¢, ¢,, . ..) of
counts to the corresponding partition (p,, p,, . ..) with
components in decreasing order. Thus for B = 6, the
state with ¢; = 3, ¢; = 1 becomes the partition 3111.

The states are then arranged in the lexicographical
order of their partitions. Thus if (p,,p,,...) and
(41,942, . ..) are two such partitions P and Q, then P
precedes or follows Q according as p; < g; or p; > q; where
p;and g; are the leftmost non-matching pair. For example,
the ordering of the 7 partitions of 5 is (11111), (2111),
(221), (311), (32), (41), (5).

The position number w of a partition (p,, p,,...) is
obtained by counting the number of partitions that
precede it. First there are P(B, p, — 1) whose largest
component is less than p,. Then there are P(B — p,,
P, — 1) whose largest component matches p; and whose
second component is less than p,. And so on. Thus

w=1+PB,p, — 1)+ P(B—p;,p, — 1)
+--4+PB—-—p—p——p-1,0,— 1) (16)

where p, , ; would be 1 or 0.

Conversely, given w, we may determine the partition
and hence the set of counts. Thus p, is the smallest x
such that P(B, x) > w. p, is the smallest x such that
P(B—p,,x)>w— P(B,p, — 1), and so on until the
partition is complete.

For given B we require algorithms which will convert
in either direction between the position number and the
count-set representation of states. Recursive evaluation
of P(B, n) is very slow and we have preferred to evaluate
and pre-store the elements so that they may be obtained
by table look-up in a linearized triangular array. For B
values up to 50, an array of 50 x 5% = 1275 elements is
sufficient.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 137

20 udy 01 U0 188n6 AQ €0EETE/SE L/2/LZ/310M4e/|ulo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



C. M. REEVES

Though time-consuming in execution, these conver-
sions permit a substantial economy in the space required
to represent states.

4. THE STATE VECTOR REPRESENTATION

As with every choice of data structure, all depends upon
the needs of the operations to be performed upon it. In
this case it was decided to solve Eqn (12) by the method
of successive multiplication. An initial estimate of the
vector X of state probabilities is repeatedly multiplied by
the transition matrix T until convergence is achieved.
Each iteration may be considered as consisting of four
steps therefore :

Z=X; Y=GX; X=HY; compare(Z,X) (17)

Considering the step Y '= GX, the elements X; may be
taken in any convenient order and the contributions
G, X; to each Y, accumulated. Similarly with the step
X =HY. Both G and H are sparse and so the two steps
via Y are preferred to the explicit use of T. However,
even though G and H are sparse, there are too many non-
zero elements to store them explicitly and so they are
generated afresh as required.

These various economies are not in themselves suffi-
cient. The size of the X, Y and Z vectors is an added
problem. Previous experience suggests, particularly at
larger B values, that the significant states at equilibrium
will have count-sets which lie close to their mean values.
It is thus expected that the X, Y and Z vectors will
themselves be sparse as regards significant elements.

These considerations lead to the representation of the
state vectors as disc files of key-value pairs (r, V,) ordered
onr. Thus, to compute Y = GX for example, the range of
subscripts of Y is split into slices such that a slice of Y
elements fits into main store. The X file is scanned once
per slice and the selected Y elements are accumulated.
Those pairs (r, Y,) for which Y, > ¢, for some small ¢, are
written to the file Y. The sum of the significant Y elements
is appended to the file so that the vector Y may be
renormalized on subsequent use.

The number of states judged insignificant by this
criterion is hoped to be large. The parameter ¢ must be
chosen small enough for the net probability of all the
insignificant states taken together to be small.

This device is not logically watertight. It is possible
that the effect of truncating the state vector could be to
confine successive iterates to a region of their domain
which excludes the true solution. It is hoped that the
consistency and quality of the results, particularly in
relation to the limit B — oo, will persuade the reader, as
it does the author, that such fears have not been realized.
A pointer in this direction must be the fairly strong
connectivity of the transition matrix.

S. IMPLEMENTATION DETAILS

A program was written in Pascal and run in batch mode
on the GEC 4082 system at Keele. The main runs were
with & = 0.000005 at intervals of 0.1 in p for a range of B
values, namely 7, 10, 13 and 20. It was intended to extend
the range of B up to about 50 but it became clear that this

138  THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

would have been more antisocial than the results would
have warranted.

A major objective was to study the behaviour of system
properties as B increases towards infinity. The usefulness
of the very limited range of B values thus depends
critically upon their ability to establish a clear trend. In
the circumstances it was felt that the niceties of numerical
extrapolation would be no more convincing than simple
plots of properties against 1/B. The chosen B values are
well spread in the scale of 1/B and, of course, having
infinity on the paper does facilitate extrapolation!

The precision of real arithmetic on the GEC 4082
corresponds to a little over six significant decimal digits.
As all matrix elements and vector components are non-
negative, there is no loss of accuracy through differencing
in the calculations.

6. THE SIGNIFICANT CONFIGURATIONS

For B = 7 and B = 10 the calculations with ¢ = 0.000005
showed that all configurations were significant. At the
higher B values, a number of configurations are not
significant. Figures 1(a) and 1(b) show the proportions of
significant states for B = 13 and B = 20. These are seen
to be sensitive to p, being largest near p = 0.8.

The net probability associated with the insignificant
states is at most 4¢ for B = 13 and 28¢ for B = 20. Not
surprisingly, this probability is greatest where the number

1.0
(a)B=13 _
d=3
05
d=2
0 | J
0 0.5 1.0
p
1.0

05 d=5
d=4
d=3

L~ ——d=2
0 1 J

0 0.5 1.0
P

Figure 1. Proportions of significant configurations.
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of insignificant states is greatest, i.e. near p =0 and
p=1

Also shown in Figs 1(a) and 1(b) are the effects of
varying ¢. Writing ¢ = 0.5 x 107 curves are plotted for
d=5,4,3 and 2. Those for d = 5 are obtained from the
calculations as described. Those for d = 4, 3 and 2 are
obtained by counting the numbers of elements of the
solution vector for d = 5 which exceed the corresponding
threshold. '

It is seen that, for any given ¢, as B increases the
proportion of significant configurations does indeed drop
but not at a rate which competes with the increase in the
total number of configurations. Thus the complexity of
each calculation rises sharply with B, this being most
apparent near p = 0.8. In practical terms this made it
impolitic to extend the main series of calculations beyond
B =20 though two isolated runs were performed for
B=30 at p=0.2 and 1.0 giving the proportions of
significant configurations as 0.29 and 0.16 respectively
for ¢ = 0.000005 with 230¢ and 106¢ as the probabilities
of insignificant states. Knuth pointed out that with a
mixture of request sizes, the effective value of p will lie
close to 1.0.

Finally in this section it may be of interest to list quite
arbitrarily in Table 1 the dozen most probable configu-
rations for the case B = 20, p = 0.6. Their individual c-
count sets may be compared with the mean values derived
by averaging over all 558 configurations significant at the
& = 0.000005 level.

Table 1. 12 most significant configurations for B = 20, p = 0.6

r X, cy Ce Cs A c3 cy c4
149 0.012526 1 1 2 2 1
145 0.010206 1 1 1 3 2
228 0.009138 1 1 2 1 2
157 0.009094 1 2 1 1 2
311 0.008846 1 1 1 2 2
247 0.008832 1 1 1 2 2
226 0.008110 1 1 1 3 1
314 0.008063 1 1 2 1 1
250 0.008056 1 1 2 1 1
236 0.008030 1 2 1 1 1
182 0.008021 2 1 1 1 1

89 0.007973 2 2 2 2

means 0.211 0.312 0.459 0.676 0.997 1.416 1.485

Table 2. Computed mean x values

\B 7 10 13 20 30
P

0.1 0327 0.246 0.203 0.154
0.2 0374 0.301 0264 0.225 0.200
03 0428 0365 0.336 0.309
04 0489 0439 0418 0.402
05 0558 0521 0.508 0.500
06 0.634 0.609 0.603 0.599
0.7 0.717 0.703 0.701 0.699
0.8 0.806 0.800 0.800 0.799
09 0.901 0.900 0.900 0.900
1.0 1.000 1.000 1.000 1.000 1.002

10’- ————— O_Cp=‘1 4 / ///v
A

Figure 2. Variation of x with B and p.

0.8

@@p=02
0.6} B=1
B=10
B=13
04} B=20
B=30
02|
OO L
0 0.5 1.0 15
X
5-10
B=
04 B-13 (b)p =06
B =20

0.2

c)p=10
0.4 ©»

o o b o
L[ T
BREE

0.2

Figure 3. Probabilities of achievable x values.
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7. NUMBERS OF FRAGMENTS

By accumulating the probabilities of individual configu-
rations with respect to the number of fragments in each,
the probability of each value of F is obtained, and hence
the mean value. From this the mean value of x = 2F/B is
determined. Table 2 lists these results which are then
plotted against 1/B for each p in Fig. 2.

In Figs 3(a), 3(b) and 3(c) the probabilities of each x
value are plotted for a selection of p and B values. The
concentration of x values as B increases is apparent at
each p. Atlow p values, since F is a whole number, values
of B less than 2/p result in all achievable x values, and
hence their mean, being above the putative limiting
value p. For each p, as soon as B is big enough to yield a
mean F value above about 3 (i.e. B> 6/p) the x
distribution adopts a quasi-normal form with mean close
top.

In Fig. 2 the radial lines correspond to the achievable
values of F. Above F = 3 good agreement with the fifty
per cent rule x = p is observed. Below F = 3, x is seen to
vary approximately linearly with 1/B.

8. NUMBERS OF ISOLATED RESERVATIONS

A similar analysis applied to ¢, in place of F yields for
each B, p pair a probability for each achievable value of
¢, and a corresponding mean value. Table 3 lists the
mean values of c,/B together with the putative limiting
values p%/(p + 4) derived from Eqns (3) and (4). These
results are plotted against 1/B for each p in Fig. 4.

In Figs 5(a), 5(b) and 5(c) the probabilities of each
c¢,/B value are plotted for a selection of p and B values.

L g0 —m 0= —=O- ;557 =0

) ek Jufenii, Ju 11 WA

® o 2 1310 7
B

Figure 4. Variation of ¢,/B with B and p.
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Table 3. Computed mean c, /B values

B 7 10 13 20 30 P*/(p+48)
p N
0.1 0.006 0.005 0.004 0.003 0.0024
0.2 0.014 0.012 0.011 0.010 0.008 0.0095
0.3 0.025 0.022 0.021 0.020 0.0209
0.4 0.037 0.035 0.034 0.034 0.0364
05 0.053 0.052 0.052 0.053 0.0556
0.6 0.072 0.072 0.073 0.074 0.0783
0.7 0.094 0.096 0.098 0.100 0.1043
0.8 0.120 0.123 0.126 0.128 0.1333
0.9 0.149 0.154 0.157 0.160 0.1653
1.0 0.183 0.188 0.191 0.194 0.197 0.2000

0. @p=02
0.6 B=1

B=10

B =13
0.4 B=20

B =30
0.2

0 0.1 0.2 0.3
®)p=06

0.6

0.4

L T}

LT
3zs™

0.2

0.5 0.6

©p=10

W R = 2
oowo

0 01 02 03 04 05 06 o

Figure 5. Probabilities of achievable c,/B values.

As with Fig. 3 an increasing concentration near the limit
is observed with increasing B for each p. In this case
the achievable values always straddle the limit, since
¢, = 0 is achievable. Once again it is seen that for fixed
p, and for B large enough to yield three or more achiev-
able values below the limit, the distribution of ¢,/B
adopts a quasi-normal form.

In Fig. 4 the radial lines correspond to the achievable
values of ¢, . There is some evidence in Fig. 4 to suggest
that, for each p, the mean value of ¢,/B approaches the
limit from below as B increases. At higher p values this
monotonic behaviour persists right through the B range.
At lower values of p and of B however, the mean value of
¢, /B decreases with increasing B to a turning point below
the limiting value. This is clearly seen in Table 3 where
for p = 0.5 the minimum value is about 0.052 at B = 11
and the limiting value is 0.0556. With lower p values the
location of the minimum moves towards higher B values.
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9. CLUSTER-SIZE PROFILE

The proportion of clusters of size r is o, = c,/F. Mean
values of g, for each r should be derived by averaging
¢,/F with respect to the probability of each configuration.
More conveniently, a pseudo-mean has been calculated
as the ratio of the computed mean values of ¢, and F.
This is wrong in principle but in practice is unlikely to be
misleading. In each case the values for each r sum to
unity as they should and it is unlikely that significant
errors, if present, would so neatly compensate each other.

Table 4 shows values of o, for p = 1.0. The right-hand
column lists the values predicted by the analytical model
of the earlier paper. The case p = 1 is special in that its
predicted ¢ distribution is independent of B. It is
expected therefore that this should correspond to the
limit of the present Markov model predictions as B
increases to infinity. In Fig. 6 g, is plotted against 1/B for

Table 4. Computed mean o, values at p = 1.0

0.000 0.000 0.000 0.000 0.0001
0.000 0.000 0.000 0.000 0.0001

\\B 7 10 13 20 30 ©

F 3500 5.000 6.500 10.004 15.032

r

1 0.365 0.377 0.382 0.389 0.393 0.4000
2 0.371 0.358 0.352 0.345 0.342 0.3333
3 0.184 0.180 0.178 0.176 0.174 0.1714
4 0.061 0.063 0.064 0.065 0.065 0.0667
5 0.015 0.017 0.018 0.019 0.020 0.0212
6 0.003 0.004 0.004 0.005 0.005 0.0057
7 0.001 0.001 0.001 0.001 0.001 0.0013
8

9

04 o)

G)

0.3

T

Figure 6. Variation of g, with B atp = 1.0.

various r and this expectation is fulfilled in the most
gratifying manner. For each r, g, is seen to vary linearly
with 1/B over the whole range of B studied.

Tables 5(a) and 5(b) provide similar details for the case
p =0.6. Table 5(a) applies to the Markov model and
Table 5(b) to the earlier model where now o, depends
upon B for r > 2. Indeed it was the collapse of that model
at low F values that prompted the present study. Figure
7 shows o, plotted against 1/B for various r with
continuous curves corresponding to the Markov model

Table 5(a). Computed mean o, values at p = 0.6

B8 7 10 13 20
 F 2218 3.047 3917 5.991
r

1 0.226 0.236 0.242 0.248
2 0.248 0.243 0.240 0.236
3 0.173 0.170 0.169 0.166
4 0.117 0.115 0.114 0.113
5 0.080 0.078 0.077 0.077
6 0.045 0053 0.052 0.052
7 0.111 0035 0.035 0.035
8 0.024 0.024 0.024
9 0.014 0016 0.016
>10 0.032 0.031 0.033

Table 5(b). Analytical , values at = 0.6

,N? 7 10 20 40 ©

0.2609 0.2609 0.2609 0.2609 0.2609
0.2308 0.2308 0.2308 0.2308 0.2308
0.1381 0.1490 0.1590 0.1599 0.1623
0.1240 0.1179 0.1122 0.1117 0.1104
0.0668 0.0709 0.0741 0.0744 0.0751
0.0587 0.0531 0.0525 0.0512
0.0347 0.0343 0.0346 0.0347 0.0349
0.0328 0.0287 0.0250 0.0246 0.0238
0.0139 0.0151 0.0160 0.0160 0.0162
0.0333 0.0337 0.0343 0.0345 0.0344

SOWONOANDWN -
o
=)
&
A
J

\
Py

——— Markov
0.3 .
— — —— Analytical

Figure 7. Variation of o, with B atp = 0.6.
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and broken curves to the analytical model. There is again
clear indication of agreement between the models as B
increases. The Markov model predicts strong linearity of
o, against 1/B for the lower r values whereas there is
evident non-linearity in the analytical model.

An interesting speculation raised by these curves is
whether the inclusion of B-dependence in the analytical
model is worth while. At small B values it causes the
model to collapse. At large values it is irrelevant. At
intermediate values it yields poorer agreement with the
Markov model than does the limiting case. On the other
hand, there are no compelling reasons to support the
superiority of the Markov model as a reflection of ‘the
truth’. The strength of the case for including B-
dependence in the analytical model is its essential role in

the development of the high and low utilization regimes
in the analysis of the size distribution of free fragments.

As a final observation, it turns out happily that 20 is
quite a good approximation to infinity. We have
investigated a number of properties of the system and
have concluded that, where there are at least two or three
achievable values on either side of the mean, there is
good agreement between the two models. Those ancient
shepherds with one-two—-many as their counting system
had a point. In retrospect it seems likely that an earlier
appreciation of their wisdom would have led to a different
program design. Accepting a more limited range of B, a
better balance between space and time resources would
come from filing the matrix elements of the transitions
rather than regenerating them at each iteration.
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