Backtrack Programming with SIMULA

Keld Helsgaun

Department of Computer Science, Roskilde University Center, P.O. Box 260, 4000 Roskilde, Denmark

Backtrack programming is a technique which has been built into a number of languages, either by defining new
primitives or by extension, for the solution of problems of a2 combinatorial nature. An extension of SIMULA is
described, from the user’s point of view, which allows all the existing features but also includes facilities for backtrack

programming.

INTRODUCTION

Backtrack programming’™ is a well-known technique
for solving problems of a combinatorial nature. Among
its many applications are combinatorial enumeration,
syntax analysis and optimization problems. The tech-
nique is so widespread that special backtracking primi-
tives have been incorporated into a number of high-level
languages. This is especially true in the area of artificial
intelligence languages.® The generality of the technique
is illustrated by various attempts to extend Fortran, Algol
and Pascal with such primitives.>®

This paper describes an extension of the language
SIMULA with facilities for backtrack programming.
The extension is provided in the form of a SIMULA
class called BACKTRACKING. All of SIMULA’s
features are available to the user, including its simulation
facilities. The use of class BACKTRACKING in
connection with SIMULA’s facilities for text handling
and simulation is demonstrated through examples of a
tutorial nature.

Class BACKTRACKING is described mainly from
the user’s point of view; its implementation is only
sketched. A knowledge of SIMULA is an advantage but
not a necessity.

BACKTRACK PROGRAMMING

Backtrack programming is a simple technique for solving
combinatorial search problems. The combinatorial prob-
lem is perceived as a multi-stage decision problem where,
at each stage, a choice among a number of alternatives is
to be made. The solution of this decision problem can be
expressed as a backtracking algorithm which in this paper
is presented using two special primitives: CHOICE and
BACKTRACK.

CHOICE(N) represents a decision point where one of N
alternatives is to be chosen.

BACKTRACK isused to signal that the previous choices
cannot possibly lead to a solution of the problem.

Execution of a backtracking algorithm results in a series
of choice points corresponding to the algorithm’s invoca-
tion of the CHOICE function. At each choice point the
first alternative is chosen (CHOICE = 1) and the algo-
rithm continues either until a solution is found, or until

BACKTRACK signals that a ‘bad’ choice has been
made. In the latter case, the algorithm backtracks, that is
to say, re-establishes its state exactly as it was at the most
recent choice point and chooses the next untried
alternative at this point. If all the choice point’s
alternatives have been tried, the algorithm backtracks to
the previous choice point.

The backtracking technique is perhaps best understood
by means of an example. A classical example is the
solution of the 8-queens problem. Here the task is to
place eight queens on a chess-board so that no queen is
attacked by another; that is, so that there is at most one
queen in each row, column and diagonal. There are 92
solutions to this problem. One of them is shown in
Fig. 1.

=~ N 0 A 0O O N ©

column —>

Figure 1. One solution of the 8-queens problem.

It is easy to see that in each solution there has to be
one and only one queen per row on the board. Therefore
the problem can be formulated as a multi-stage decision
problem where, for each of the eight rows, one of the
eight possible queen placements may be chosen. Figure
2 shows the corresponding backtracking algorithm
written in an Algol notation.

for ROW: =1 step 1 until 8 do

begin
COL: =CHOICE(8);
if UNDERATTACK(ROW,COL) then BACKTRACK;
PLACEQUEEN(ROW,COL);

end;

PRINTSOLUTION;

Figure2. Backtrackingalgorithm forsolving the 8-queens problem.

CCC-0010-4620/84/0027-0151 $04.00

© Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 151

202 1y 8 U0 1s0nB Aq ZEEEYE/LSGL/Z/L2/I0Ie/|UlWoo /W0 dNoolWapED.//:SA)Y WOl PAPEOjUMOQ



K. HELSGAUN

The procedures UNDERATTACK, PLACEQUEEN
and PRINTSOLUTION contain the details of the board
representation. UNDERATTACK(ROW, COL) is true
if the square (ROW, COL) is under attack. PLACE-
QUEEN(ROW, COL) places a queen on the square
(ROW, COL) and marks all squares in the same column
and in the two diagonals as being under attack.
PRINTSOLUTION prints the solution.

BACKTRACK PROGRAMMING WITH SIMULA

It can be very difficult to use the backtracking technique
with programming languages without backtracking pri-
mitives. Writing algorithms which explicitly handle their
own backtracking, i.e. save information necessary to re-
establish previous states, is difficult, tedious and error-
prone. By using a language which includes backtracking
primitives, the programmer no longer needs to concern
himself with this bookkeeping task; he can concentrate
on solving the actual problem at hand.

The following describes backtracking primitives im-
plemented as an extension of the general-purpose
programming language SIMULA..°

SIMULA, itself an extension of Algol 60, additionally
offers class and coroutine concepts, reference variables,
list handling facilities, discrete-event simulation, and
extensive text and input/output capabilities.

The backtracking extension is an enhancement of
SIMULA, sothat all of SIMULA’s facilities are available
to the user. Thus fairly advanced applications, for
example optimization in connection with simulation, are
within the programmer’s reach.

The backtracking primitives CHOICE and BACK-
TRACK are available as two procedures in a SIMULA
class called BACKTRACKING. An outline of the class
is shown in Fig. 3.

class BACKTRACKING;
virtual: procedure FIASCO;
begin

integer procedure CHOICE(N); integer N; ... ;
procedure BACKTRACK; ... ;
procedure FIASCO;;
end;
Figure 3

The procedure CHOICE generates succesive integer
values from 1 to N. Calling CHOICE returns the value
1. The values 2 to N are returned through subsequent
calls of procedure BACKTRACK.

Class BACKTRACKING is normally used as a prefix
for a block:

BACKTRACKING
begin
< declarations> ;

< backtracking algorithm>;
end;

Calling CHOICE causes the block’s actual state to be
recorded and the value 1 returned. A subsequent call of

152  THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

BACKTRACK causes restoration of the block’s state
and the next integer in succession to be returned as the
value of CHOICE. If the last value, N, has been returned,
BACKTRACK refers to the previous call of CHOICE.

In this way BACKTRACK ‘rolls’ the program back to
the last unfinished call of CHOICE. However, input/
output operations which have taken place will not be
undone.

Calling CHOICE with a non-positive argument is
equivalent to calling BACKTRACK.

The BACKTRACKING block defines a kind of
context for the procedures CHOICE and BACK-
TRACK. Only variables in the BACKTRACKING
block itself will be remembered by CHOICE, and
therefore re-established by BACKTRACK. Variables
outside the block are not touched. Such global variables
make possible communication between calls of CHOICE
and BACKTRACK and are absolutely necessary for
solving optimization problems, as shown later in this
paper.

If in calling BACKTRACK, no unfinished call of
CHOICE exists, the procedure FIASCO is automatically
called after which the BACKTRACKING block is
terminated. FIASCO is predefined with an empty
procedure body but, since the procedure is specified
virtual, the user may program its desired effect.

A complete BACKTRACKING program which
solves the 8-queens problem is shown in Fig. 4. The
integer array Q, initially zero-filled, is used to record the
current placement of queens: Q(COL) contains the row
number of the queen in column COL. If the value is zero,
no queen has yet been placed in that column. The two
Boolean arrays UP and DOWN are used to determine if
a given square is diagonally under attack from queens
already placed. The algorithm exploits the fact that the
difference between row number and column number
uniquely determines an upward diagonal and their sum
likewise determines a downward diagonal.

-

1. BACKTRACKING

2. begin

integer array Q(1:8);

Boolean array UP(-7:7), DOWN(2:16);
integer ROW, COL;

for ROW: =1 step 1 until § do
begin
COL: =CHOICE(8);
if Q(COL) < >0 or UP(ROW-COL) or DOWN(ROW + COL) then BACKTRACK;
10. Q(COL): = ROW; UP(ROW-COL): = DOWN(ROW + COL): =true;
11. end;

12. for COL: =1 step 1 until 8 do

13. begin OUTINT(Q(COL),4); OUTINT(COL,2); end;

14. end;

Figure 4. BACKTRACKING program for solving the 8-queens
problem.

CwNO UrW

The program produced the following output:
11 72 53 84 25 46 67 38

corresponding to the solution pictured in Fig. 1.

The program finds only one of the 92 solutions of the
problem. If all the solutions are desired, one can just add
a BACKTRACK call at the end of the program (between
line 13 and 14). With this addition the program will
continue until all CHOICE-possibilities are exhausted.
Note that calling BACKTRACK does not ‘recall’
previously outputted solutions.

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



BACKTRACK PROGRAMMING WITH SIMULA

BACKTRACKING AND TEXT ANALYSIS

In a BACKTRACKING program all of SIMULA’s
facilities for text handling are available. The following
example shows how these facilities can be used with
regard to syntax analysis. In addition, the example
demonstrates the use of recursion in connection with
backtracking.

Suppose we have a language S defined by the following
syntax rules (BNF notation):

<S> = 2<S>| <A>3

<A> = 1<A>1|1<A>2]| 1

Here 1, 2 and 3 are the terminal symbols and S and A are
the non-terminal symbols. S is the start symbol.

Using class BACKTRACKING it is easy to write a
parser program that can decide whether a given text
string is or is not a sentence in the language. Figure 5
shows such a program.

The program performs top-down parsing. For each of
the non-terminal symbols, S and A, in the language there
exists a corresponding procedure which reads a character
sequence from INPUT and attempts to find a matching
syntax rule. Procedure CHOICE is used to choose such a
rule from among the possible alternatives.

The procedure CHECK (lines 19-20) decides whether
the next character of INPUT is equal to the terminal
symbol in the rule under consideration. If this is not the
case, BACKTRACK is called choosing another rule.

. BACKTRACKING
. begin
procedure FIASCO; OUTTEXT(”SYNTAX ERROR”);

wp s

ok

text INPUT;
integer RULE;

6. procedure S;

7. begin

8.  RULE:=CHOICE(2);

9 if RULE =1 then begin CHECK('2’); S; end else
0. if RULE=2 then begin A; CHECK('3’); end;

1. end;

12. procedure A;

13. begin

14.  RULE:=CHOICE(3);

15.  if RULE=1 then begin CHECK('1’); A; CHECK('1’); end else
16.  if RULE =2 then begin CHECK('1’); A; CHECK(’2'); end else
17.  if RULE =3 then CHECK('1");

18. end;

19. procedure CHECK(C); character C;
20. if INPUT.GETCHAR< >C then BACKTRACK;

21. INPUT:-INTEXT(80);
22. S;

23. CHECK("");

24. OUTTEXT(”NO ERRORS”);
25. end;

Figure 5. BACKTRACKING program for the syntax analysis
example.

The analysis begins with the calling of the procedure S
(line 22). It is assumed that the text string, INPUT, is at
most 80 characters in length and ends with a space.

If the text string obeys the syntax rules, the message
‘NO ERRORS’ is written (line 24). If the syntax rules are

not obeyed, the virtual procedure FIASCO (line 3) is
called and the program stops with the message ‘SYNTAX
ERROR’.

A run of the program with the following input data

22221111122223
produced the correct response: ‘NO ERRORS’.

BACKTRACKING AND SIMULATION

SIMULAs class concept allows for the use of coroutines.
A coroutine is represented as an object of some class
which, with the help of RESUME-operations, co-
operates with objects of the same or of another class.
Coroutines are well suited for creating the illusion of
parallelism, a facility which is useful in simulation.

SIMULA contains a built-in class called SIMULA-
TION which simplifies discrete-event simulation. In
principle this is a package constructed with the coroutine
facilities native to SIMULA. The active objects, or
processes, in a simulation are represented as coroutines
which operate in quasi-parallel under control of a
scheduling algorithm. Incorporating backtracking pri-
mitives in SIMULA makes possible the interesting
combination of backtracking and simulation.

The following example demonstrates how backtrack-
ing can be used in connection with discrete-event
simulation for solving a flow-shop scheduling problem.

A number of different jobs are to be processed by a
series of machines where each machine can process only
one job at a time. Each job must be processed by all
machines in the same fixed sequence. Jobs may pass each
other, that is the processing sequence may vary from
machine to machine. The problem is to find a processing
schedule which minimizes the total elapsed time, which is
the time from the start of the first job until all jobs have
been processed by all machines. -

Assume, for example, that there are 5 jobs and 4
machines, and that each job’s processing time at each
machine is as shown in Table 1.

Table 1. Table of processing times (in

hours)

Machine
Job 1 2 3 4
1 7 4 6 3
2 9 5 1 8
3 5 1 9 7
4 6 2 3 5
5 10 3 2 4

Furthermore, assume that each job is to be processed
by machines 1 to4in that order. The time for transporting
jobs between machines is assumed to be negligible. What
then is the best start time for each job at each machine so
that the total elapsed time is as small as possible?

The logical parallelism inherent in this problem
suggests using simulation, whereas its combinatorial
nature points to using backtracking. The backtracking
extension of SIMULA allows a synthesis of both

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 153

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



K. HELSGAUN

approaches. As shown in Fig. 6 the insertion of a

SIMULATION block in a BACKTRACKING block
makes this possible.

BACKTRACKING
begin

SIMULATION
begin

end;

end;

Figure 6

There are no constraints regarding the use of proce-
dures CHOICE and BACKTRACK ; they can be called
at any point during the simulation. Calling BACK-
TRACK ‘rolls back’ the simulation to the last unfinished
call of CHOICE.

A detailed discussion of a program solving the flow-
shop problem—using a top-down approach—follows.
The program’s outermost block levels are sketched in
Fig. 7.

begin
integer JOBS, MACHINES;
<input JOBS and MACHINES > ;
begin
real array PROCESSTIME, BESTSTARTTIME(1:JOBS, 1:MACHINES);
real MINFINISHTIME;

<input PROCESSTIME> ;

BACKTRACKING
begin

end;

<print solution: MINFINISHTIME and BESTSTARTTIME > ;
end;
end;

Figure 7. Outermost block levels in the flow-shop program.

The input to the program consists of the number of
jobs to be processed, JOBS, the number of machines
involved, MACHINES, and a table, PROCESSING-
TIME, containing each job’s processing time at each
machine (see Table 1).

The output consists of the minimal total processing
time, MINFINISHTIME, and a table, BESTSTART-
TIME, containing the optimal start time of each job at
each machine. Notice that these variables must be global
with respect to the BACK TRACKING block since their
values must remain unchanged by eventual calls of
BACKTRACK.

The BACKTRACKING block solves the actual
optimization problem and is sketched in Fig. 8.

154  THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

BACKTRACKING

begin
real array STARTTIME(1:JOBS, 1:MACHINES);
real FINISHTIME;

MINFINISHTIME: = < /arge value>;

SIMULATION
begin

end;

MINFINISHTIME: = FINISHTIME;
<set BESTSTARTTIME to STARTTIME > ;
BACKTRACK;

end;

Figure 8. BACKTRACKING block of the flow-shop program.

The BACKTRACKING block contains an inner
SIMULATION block which, using both simulation and
backtracking, attempts to determine a schedule where
the total processing time, FINISHTIME, is less than the
shortest processing time previously found, MINFINISH-
TIME. Before entering the SIMULATION block,
MINFINISHTIME is assigned so large a value that at
least one schedule is guaranteed.

Each time the SIMULATION block finds a better
schedule, MINFINISHTIME is set to FINISHTIME
and BESTSTARTTIME is set to STARTTIME.
STARTTIME is the scheduling table under consideration
and contains the start time of each job at each machine.
BACKTRACK is then called in an attempt to find yet a
better schedule. The BACKTRACKING block is exited
when all possibilities have been tried. Figure 9 shows a
sketch of the SIMULATION block.

SIMULATION

begin
ref(HEAD) array QUEUE(1:MACHINES); -
Boolean array BUSY(1:MACHINES);
integer JOBSDONE;

PROCESS class JOB(NUMBER); integer NUMBER;
begin

end;

for M: =1 step 1 until MACHINES do QUEUE(M):-new HEAD;
for J: =1 step 1 until JOBS do activate new JOB (J) at O;
HOLD(MINFINISHTIME);
if JOBSDONE < JOBS then BACKTRACK;

end;

Figure9. SIMULATION block of the flow-shop program.

Jobs are the active components of the system and are
defined in a subclass of PROCESS with the name JOB.
Each job tries to ‘schedule’ itself at each machine in such
a way that the total elapsed time of all jobs, FINISH-
TIME, is less than the provisional minimum, MINFIN-
ISHTIME.

Each machine M has a queue, QUEUE(M), where
jobs can wait. When a job is processed at M, BUSY(M)
1s set to true.

The main program starts by creating empty queues
and activating numbered JOB-objects. It then suspends
itself and waits MINFINISHTIME time units. If not all

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



BACKTRACK PROGRAMMING WITH SIMULA

jobs are finished (JOBSDONE < JOBS) when the main
program again becomes active, procedure BACK-
TRACK is called in a new attempt to find a schedule
where the total elapsed time is less than MINFINISH-
TIME. Figure 10 shows the first version of class JOB.

1. PROCESS class JOB(NUMBER); integer NUMBER;
2. begin
integer MACHINE;

3
4. for MACHINE: =1 step 1 until MACHINES do

5. begin

6 INTO(QUEUE(MACHINE));

7 if BUSY(MACHINE) then PASSIVATE;

8 while CHOICE(2) =2 do

9 begin activate SUC; PASSIVATE; end;

10.  FINISHTIME: = TIME + PROCESSTIME(NUMBER,MACHINE);
11.  if FINISHTIME > = MINFINISHTIME then BACKTRACK;

12 ouT;

13 STARTTIME(NUMBER,MACHINE): = TIME;

14 BUSY(MACHINE): = true;

15 HOLD(PROCESSTIME(NUMBER,MACHINE));

16 BUSY(MACHINE): = false;

17.  activate QUEUE(MACHINE).FIRST;

18. end;

19. JOBSDONE: = JOBSDONE + 1;
20. end;

Figure 10. Class JOB of the flow-shop program.

Class JOB describes the processing of each job. The
integer attribute MACHINE (line 3) denotes the number
of the current machine where processing is to take place.
The algorithm should be fairly self-explanatory. In line 8
a choice is made between two alternatives, namely (1)
the job is processed immediately at the idle machine, or
(2) the job waits and allows other jobs to go first. Line 11
states that a simulation which would take longer than the
current MINFINISHTIME will be stopped by calling
BACKTRACK.

The program is not very efficient. Even with only 5
jobs and 4 machines it can happen that the program must
examine more than 600 million different combinations
before finding the optimal schedule.

Fortunately, the program can easily be made more
efficient. In the first place, it is unnecessary for the very
last job to wait for other jobs to pass. Secondly, it is easy
to show that one need only consider schedules where the
processing sequences at the first and second machines
are the same, and where the processing sequences at the
last and next-to-last machines are the same.!° To
implement these short-cuts lines 8-9 in class JOB are
replaced by the following:

if MACHINE< > 2 and MACHINE < > MACHINES then
while this JOB=/=LASTJOB and CHOICE(2) =2 do
begin activate SUC; PASSIVATE; end;

where LASTJOB refers to the last job of the sequence.
These few changes greatly improve the program’s
efficiency. In the case of the 5 jobs and 4 machines at
most (5!)2 = 14 400 different schedules are examined.
Branch-and-bound techniques yield further improve-
ments. If a lower bound for the total elapsed time can be
calculated from knowledge of the first choice and if this
boundary is greater than the provisional minimum, then
there is no reason to continue with this choice sequence.

This method is implemented in the complete flow-shop
program in Fig. 11. The program maintains two tables,
JSUM and MSUM, where JSUM(J) and MSUM(M)
are, respectively, the sum of job J’s and machine M’s
remaining processing times. The program prunes as
described above when there is at least one job J such that
TIME + JSUM(J) is greater than or equal to MINFIN-
ISHTIME (line 38 and lines 45-46), or when there is at
least one machine M such that TIME + MSUM(M) is
greater than or equal to MINFINISHTIME (lines 35-
36).

1. begin

2. integer JOBS, MACHINES;

3. JOBS:=ININT; MACHINES: = ININT;

4. begin :

5. real array PROCESSTIME, BESTSTARTTIME(1:JOBS, 1:MACHINES);
6.  real MINFINISHTIME;

7 integer J.M;

8 for J: =1 step 1 until JOBS do

9: for M: =1 step 1 until MACHINES do
10. PROCESSTIME(J,M): = INREAL;

11.  BACKTRACKING

12.  begin

13. real array STARTTIME(1:J0BS, 1:MACHINES);
14. real FINISHTIME;

15. MINFINISHTIME: = 1000000;

16. SIMULATION

17. begin

18. ref(HEAD) array QUEUE(1:MACHINES);

19. Boolean array BUSY(1:MACHINES);

20. real array MSUM(1:MACHINES), JSUM(1:JOBS);

21. ref(JOB) LASTJOB;

22. PROCESS class JOB(NUMBER); integer NUMBER;

23. begin

24. integer MACHINE;

25. if NUMBER = JOBS then LASTJOB:-this JOB;

26. for MACHINE: = 1 step 1 until MACHINES do

27. begin

28. INTO(QUEUE(MACHINE));

29. if BUSY(MACHINE) then PASSIVATE;

30. if MACHINE < >2 and MACHINE < > MACHINES then

31. while this JOB=/=LASTJOB and CHOICE(2) = 2 do

32. begin activate SUC; PASSIVATE; end;

33. FINISHTIME: = TIME + PROCESSTIME(NUMBER,MACHINE);

34. MSUM(MACHINE): = MSUM(MACHINE)-PROCESSTIME(NUMBER,MACHINE);
35. for M: = MACHINE,M + 1 while M< = MACHINES and not BUSY(M) do
36. if FINISHTIME + MSUM(M) > = MINFINISHTIME then BACKTRACK;
37. JSUM(NUMBER): = JSUM(NUMBER)-PROCESSTIME(NUMBER,MACHINE);
38. if FINISHTIME + JSUM(NUMBER) > = MINFINISHTIME then BACKTRACK;
39. if this JOB= =LASTJOB and PRED =/ =none then LASTJOB:-PRED;
40. ouT;

41. STARTTIME(NUMBER,MACHINE): = TIME;

42. BUSY(MACHINE): = true;

43. HOLD(PROCESSTIME(NUMBER,MACHINE));

44, BUSY(MACHINE): = false;

45, for J: =1 step 1 until JOBS do

46. if TIME + JSUM(J) > = MINFINISHTIME then BACKTRACK;

47. activate QUEUE(MACHINE).FIRST;

48. end;

49. end * * * JOB * % %

50. for M: =1 step 1 until MACHINES do QUEUE(M):-new HEAD;

51. for M: =1 step 1 until MACHINES do

52. for J:=1 step 1 until JOBS do

53. begin

54. MSUM(M): = MSUM(M) + PROCESSTIME(J,M);

55. JSUM(J): = JSUM(J) + PROCESSTIME(J,M);

56. end;

57. for J: = 1 step 1 until JOBS do activate new JOB(J) at O;

58. HOLD(MINFINISHTIME);

59. end;

60. MINFINISHTIME: = FINISHTIME;
61. for J: =1 step 1 until JOBS do

62. for M: =1 step 1 until MACHINES do

63. BESTSTARTTIME(J,M): = STARTTIME(J,M);
64. BACKTRACK;

65. end;

66. OUTTEXT(”MINIMUM ELAPSED TIME =");

67.  OUTFIX(MINFINISHTIME,2,6); OUTIMAGE; OUTIMAGE;

68. OUTTEXT(”START TIME:”); OUTIMAGE;

69. OUTTEXT(”JOB/MACHINE"); OUTIMAGE;

70. for M: = 1 step 1 until MACHINES do OUTINT(M,7); OUTIMAGE;
71.  for J:=1 step 1 until JOBS do

72.  begin

73. OUTINT(J,2);

74. for M: =1 step 1 until MACHINES do OUTFIX(BESTSTARTTIME(J,M),2,7);
75. OUTIMAGE;

76. end;

77. end;

78. end;

Figure 11. The complete optimized flow-shop program.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 155

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



K. HELSGAUN

Given the input data in Table 1 the program produced
the correct output in Table 2.

Table 2
MINIMUM ELAPSED TIME = 46.00
START TIME:
JOB/MACHINE

1 2 3 4
1 20.00 27.00 31.00 37.00
2 0.00 9.00 14.00 15.00
3 15.00 20.00 21.00 30.00
4 9.00 15.00 17.00 23.00
5 27.00 37.00 40.00 42.00

Even though the pruning strategy is relatively simple
the program’s efficiency is quite satisfactory. The example
data gave rise to only 340 calls of procedure BACK-
TRACK.

This example has illustrated the use of class BACK-
TRACKING in connection with discrete-event simula-
tion. It is also possible to apply the class to combined
continuous and discrete simulation, for example with
DISCO, a SIMULA-class designed for combined simu-
Jlation.'" Used in this way class BACKTRACKING
provides a tool for solving many industrial planning
problems. Typically such problems require combinatorial
decisions within the context of both continuous and
discrete processes. Advanced applications of this type
are interesting but beyond the scope of this introductory
article.

IMPLEMENTATION

If one rules out compiler modifications, there are two
methods of implementing backtracking mechanisms:

(1) By means of a preprocessor which can convert a
backtracking program to a program written in one of
the conventional languages, such as Algol or For-
tran.%’

(2) By means of special procedures for saving and
restoring the program state at CHOICE and BACK-
TRACK points.!?

The present implementation of the SIMULA-class
BACKTRACK uses the second method. The procedures
CHOICE and BACKTRACK are written in assembler
language. They are sketched in Fig. 12 in a kind of
pseudo-SIMULA.

integer procedure CHOICE(N); integer N;
begin
integer CHOSEN;

if N< 1 then BACKTRACK;
if N> 1 then PUSH;
NEXT:
CHOICE: = CHOSEN: = CHOSEN + 1;
if N>1 and CHOSEN =N then POP;
end;

procedure BACKTRACK;
begin

RESTORE;

goto NEXT;
end;

Figure 12

156  THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

CHOICE and BACKTRACK are based upon three
auxiliary procedures: PUSH, RESTORE and POP.
Procedure PUSH saves the program’s state at the top of
a stack. Only information having to do with the user’s
BACKTRACKING block will be saved. Procedure
RESTORE restores the program’s state using the element
at the top of the stack. Procedure POP removes the top
stack element.

The number of elements in the stack at any given time
is equal to the number of unfinished CHOICE-calls. In
order to provide quick access to the stack, space is
allocated in internal storage. This allocation is in most
cases sufficient to contain all stack elements. If, however,
the allocation is insufficient, backing storage is used, in
such a way that as much as possible of the uppermost
portion of the stack is kept internally, while the remaining
portion resides on the backing storage.

The author has implemented the systemona UNIVAC
1100 machine with the assembler portion taking only
about 400 machine instructions. The implementation
assumes a detailed knowledge of SIMULA’s run-time
system. The UNIVAC 1100 SIMULA runtime-system
closely follows the guidelines found in the SIMULA
Implementation Guide.'> As long as these guidelines have
been followed, the same .principles apply when imple-
menting class BACKTRACKING on other machines
with SIMULA.

The procedures CHOICE and BACKTRACK are
available as two external library procedures in class
BACKTRACKING shown in its entirety in Fig. 13.

class BACKTRACKING;
virtual: procedure FIASCO;
begin
external library integer procedure CHOICE(N); integer N;;
external library procedure BACKTRACK;;
external library procedure CUT;;
external library integer procedure NEXTCHOICE;;
external library procedure INITIATE;;
external library procedure TERMINATE;;
procedure FIASCO;;

INITIATE;
if CHOICE(2) = 2 then begin FIASCO; goto EXIT; end;
inner;
EXIT:
TERMINATE;
end;

Figure 13

The first action of the class body is the calling of the
procedure INITIATE which does preparatory tasks such
as file assignment and garbage collection. The CHOICE-
call in the next line returns the value 1 causing the user-
defined portion (inner) of the BACK TRACKING block
to be executed. If all the user’s CHOICE-possibilities are
exhausted and BACKTRACK is called, the procedure
FIASCO is invoked. FIASCO has an empty body.
However, since the procedure is virtual, the user may
define its desired effect. Before exiting the BACK-
TRACKING block, the procedure TERMINATE is
called which empties the stack and releases the file.

The class contains two additional user-procedures,
CUT and NEXTCHOICE, which in certain cases may
be used to reduce the program’s execution time.

Procedure CUT deletes the last CHOICE-call and
causes a BACKTRACK to the prior CHOICE-call.

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



BACKTRACK PROGRAMMING WITH SIMULA

Procedure NEXTCHOICE immediately returns the
next value of the most recent CHOICE-call; but (unlike
BACKTRACK) does not restore the program’s state. If
however, the most recent CHOICE-call is finished,
calling NEXTCHOICE is equivalent to calling BACK-
TRACK. For example, consider the program fragment

I: = CHOICE(N);
if B(l) then BACKTRACK;

As long as an evaluation of the condition B(I) has no
side-effects, it is unnecessary to restore the program state
by calling BACKTRACK. Instead the procedure
NEXTCHOICE can be used as follows:

I:= CHOICE(N);
while B(l) do |: = NEXTCHOICE;

An example using these two procedures is given in the 8-
queens program shown in Fig. 14.

for ROW: =1 step 1 until 8 do

begin
COL: =CHOICE(8);
while UNDERATTACK(ROW,COL) do COL: = NEXTCHOICE;
PLACEQUEEN(ROW,COL);

end;

PRINTSOLUTION;

CUT;

Figure 14

However, the best way to increase the efficiency of a
backtracking program is to reduce the number of nodes
in the search tree. Thus, it is important to prune the tree
using BACKTRACK as much as possible.

Of' secondary importance is the time spent in processing
each node of the tree. This processing time consists of
two elements, namely the user-program’s own computa-
tion time and the administration time (overhead)
involved in calling procedures CHOICE and BACK-
TRACK (saving and restoring the program state). The
efficiency of the actual implementation is such that in
most cases the user-program’s own computation time
dominates.

Table 3 reflects the performance of class BACK-
TRACKING in the examples of this paper. Total
overhead and total execution time are measured in cpu-
seconds on a UNIVAC 1100/82. Each call of CHOICE
or BACKTRACK contributes approximately the same
amount of overhead, on the average 50 microseconds.

Practical experience with class BACKTRACKING
has shown that it is a fairly effective tool, not only with
respect to execution time, but also regarding the
programming effort.

The actual implementation is quite simple and, as
shown in the examples, very general. The procedures
CHOICE and BACKTRACK can be called almost
anywhere in a SIMULA program.

There are, however, a few restrictions regarding the
use of class BACKTRACKING:

Table 3. Performance of class BACKTRACKING in the exam-

ples
Example Numberof Number of Overhead  Execution
CHOICE- BACKTRACK- time time
calls calls

8-queens problem (all

92 solutions) 1966 13 756 0614 0.863
8-queens problem (all

92 solutions, using

NEXTCHOICE and

CUT) 1966 1742 0.155  0.404
Syntax analysis (Figure

5) 29 45 0.005 0.013
Flow-shop (Figure 11) 340 340 0.054 0.190

(1) The number of unfinished CHOICE-calls must not
exceed 1000.

(2) Only one non-terminated BACK TRACKING block
is allowed at any time.

(3) Global references outside the BACKTRACKING
block must not reference objects created by the
BACKTRACKING block.

Violation of the first two restrictions causes the program
to terminate with an explanatory error message. On the
other hand, a violation of the third restriction will not
automatically be detected. In this case there is a risk of a
mystifying run-time error since the object pointed to by
the global reference-variable might have been removed
due to backtracking. The restriction is in itself logical,
but unfortunately its violation will not be discovered
immediately. This is the price for a simple implementa-
tion.

The second restriction, concerning the system’s gener-
ality, is also a consequence of the simplicity of the
implementation. Lindstrom® has proposed an extension
of Pascal which allows for concurrent backtracking
systems. In this way a number of backtracking systems
working in quasi-parallel can co-operate in solving a
given problem. An efficient implementation of such a
facility seems fairly difficult; the author has no knowledge
of any existing implementations.

CONCLUSIONS

The SIMULA-class BACKTRACKING is not only a
didactic aid for demonstrating non-deterministic pro-
gramming using backtracking techniques, but also an
effective tool for solving practical problems of a combi-
natorial nature. In spite of a simple implementation, the
class allows rather advanced applications, especially in
connection with simulation.

The class is available for the UNIVAC 1100 machine
series. Implementations on other machines are consid-
ered.

The backtracking software as implemented for UNI-
VAC SIMULA may be obtained at a nominal cost by
writing to the author.

THE COMPUTER JOURNAL, VOL. 27, NO. 2,1984 157

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



K. HELSGAUN

REFERENCES
1. J. R. Bitner and E. M. Reingold, Backtrack programming 8. G. Lindstrom, Backtracking in a generalized control setting.
techniques. Commun. ACM 18(11), 651-656 (1975). ACM Trans. Prog. Lang. Sys. 1(1), 8-26 (1979).
2. J. Cohen, Non-deterministic algorithms. Computing Surveys 9. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug and K. Nygaard,
11(2), 79-94 (1979). SIMULA BEGIN. Studentlitteratur, Lund (1973).
3. R. W. Floyd, Nondeterministic algorithms. Journal ACM 10. R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of
14(4), 636-644 (1967). Scheduling, pp. 80-81, Addison Wesley, Massachusetts
4. S. W. Golomb and L. D. Baumert, Backtrack programming. (1967).
Journal ACM 12(4), 516-524 (1965). 11. K.Helsgaun, DISCO—a SIMULA-based language for combined
5. 0. G. Borrow and B. Raphael, New programming languages for continuous and discrete simulation. SIMULAT/ON 35(1), 1-
artificial intelligence research. Computing Surveys 6(3), 155- 12 (1980).
174 (1974). 12. J. A. Self, Embedding non-determinism. Software—Practice
6. J. Cohen and E. Carton, Non-deterministic Fortran. The and Experience’,221-227 (1975).
Computer Journal 17(1), 44-51 (1974). 13. O.-J. Dahl and B. Myhrhaug, SIMULA implementation guide.
7. P.Johansen, Non-deterministic programming. B8/T 7, 289-304 Norwegian Computing Center, Publication S-47, Oslo (1973).
(1967).
158 THE COMPUTER JOURNAL, VOL. 27, NO. 2, 1984

20z udy 81 U0 1s8nB AQ ZEEEYE/ LS L/2/LZ/10M4e/|ufLo0/W0d"dNo"oILEPED.//:SARY W) PAPEO|UMOQ



