On the Static Evaluation of Distributed Systems

Performance

A. Mahjoub

Electrical Engineering Department, College of Engineering, King Saud University, Saudi Arabia

This paper examines the problem of response time computation from the system designer’s point of view. It defines
certain properties of system structures that lead to compile-time computation of worst-case response times. The steps

of a fairly efficient algorithm are described.

1. INTRODUCTION

Real-time systems are often programmed as a collection
of internal processes co-operating through a run-time
support package. A signal emitted by a physical process
controlled by a real-time system activates a corresponding
internal process. A very challenging issue in the design
of these systems is the ability to ensure that a particular
system design meets the (stringent) timing requirements
of the external environment it is intended to serve. The
lack of providing adequate response could have the
following effects on the system’s behaviour:

(@) loss of accuracy in controlling the physical process
because some required sampling rate could not be
accommodated

(b) certain external events (or arriving data) may not be
recognized on time by the computer and consequently
will be lost

(c) system malfunctions resulting from slow response.

The classical approach to response time computation
is based on queuing theory.!'? These schemes present
probabilistic analyses which lead to approximations of
expected response times. Such approximations, however,
give little assistance in the design of systems intended to
meet stringent timing requirements even in extreme
situations.

Recent studies»* have advocated some compiler-
assisted techniques that determine if given timing
constraints can be met by a system. The main idea in
these studies is the partition of programs in strips
scheduled for execution in a manner that suits the
prespecified timing constraints. In the absence of
adequate hardware support, this method incurs signifi-
cant overhead due to the run-time scheduling of the code
strips.

The objective of this paper is to define a systematic
procedure for computing worst-case response times. It is
expected that his procedure will be carried out entirely at
compile-time without interfering with the code of the
programs that make up a system.

The next section classifies current system organizations
into two categories and explores the difficulties in
response time computation with respect to each. Section
3 gives an informal outline of the response time
computation, focusing mainly on delays. The basic
definitions and simplifying assumptions are given in
Section 4. A graph model of delays is described in

Sections 5 and 6. Sections 7 and 8 present two cases
where worst-case response times can be computed
efficiently, and Section 9 concludes the paper.

2. SYSTEM STRUCTURES

In a real-time system that supports resource sharing,
response times are largely dependent on the way processes
request service. We can identify at least two ways.

(1) In a monitor-based system, services (operations) that
are requested by more than one process are pro-
grammed as monitor entry procedures. A process
requesting a given service must first call the appro-
priate monitor procedure and wait until the monitor
is free before starting execution. When execution of
the procedure is terminated, the process exits the
monitor and immediately resumes execution of its
own code. The important characteristic of this system
is that a service requested by a process is executed as
if it were part of that process. Namely, the process
resumes execution of its code immediately after
completion of the service. We shall refer to systems
having this characteristic as function-oriented.
Clearly, monitor-based systems are just an example
of these.

(2) In a message-based system, however, services are
requested by the sending of a message. The requestor
is generally required to wait until its message has
been accepted by the receiver, but may continue
afterwards. Thus, contrary to the previous case, a
process requesting a service may execute in parallel
with the service it requested. A process accepts a
reply, which is transmitted to it via a message, when
it is ready to do so. Thus, a reply transmitted while
its recipient is not ready will be delayed. This delay
must be accounted for in response time computations.

In a function-oriented system, the association of a
service request with its corresponding reply is straight-
forward, as processes are required to wait for a reply
after each service request. This association is however
less obvious in message-based systems as a process may
atany given time be waiting for many replies. Intuitively,
response time gives the interval between the instant at
which a service is requested and the instant at which its
corresponding reply is received by the requestor. The
lack of a clear request/reply association undoubtedly
leads to difficulty in response time computation.

CCC-0010-4620/84/0027-0201 $04.00

€ Wiley Heyden Ltd, 1984

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 201

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

A. MAHJOUB

A service request generated by an external stimulus
will be referred to simply as a request. In a system, a
request represents the thread of execution that takes
place as part of the requested service. Thus, we can view
the lifetime of a request as the tracing of a path consisting
of all system modules that implement the various parts
of the task generated by the request (Fig. 1). As a request

Real -time
system

Path of request x is M\, My M3

Figure 1

progresses through its path, it may encounter some delay
when competing with other requests for shared resources.
In the case of monitor based systems, a request may
encounter a delay at each monitor in its path. In a chain
of monitor procedure calls, delays are encountered during
the nested calls, but no delays are experienced when
returning from these calls. Thus, if the path of a request
is a linear chain of monitors, then the lifetime of that
request can be viewed as consisting of two phases: a first
phase where the request progresses through its path,
possibly encountering delay at some of the nodes, and a
second phase during which it retraces (backwards) its
path, but encountering no delays at any node. As a
consequence, the worst case delay would be reduced to
the sum of all delays encountered during the first phase.
This is a significant simplifying factor that makes
response time computation manageable, as will be shown
in the remainder of this paper.

The same conclusion cannot be drawn with respect to
message-based systems. A request received by a system
of this type may encounter delays at any node in its path
during either phase. This makes it very difficult to
compute upper bounds on response times. We will not
elaborate on this issue in this paper; for details, the
reader is referred to Ref. 5. The remainder of this paper
will only deal with function-oriented systems in which
requests result only in linear chains of function calls.

3. RESPONSE TIME COMPUTATION

Given a request x received by a system S, we wish to
compute its response time. This can be expressed as the
sum of :

(a) The total delay encountered by x at all modules in its
pathin S.

(b) The execution time of all functions invoked during
the lifetime of x.

We shall assume that each module in S is a sequential
process executing on a dedicated processor and containing

202 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

an entry point for each service it implements. Conse-
quently, services are executed without interruption and
thus take fixed times. Since these times depend only on
the speed of the processor, we shall assume them to be
known. This process model is inspired by Ref. 6.

The delays are of two kinds:

(a) If two or more requests require services that are
implemented by the same module M, then these
requests could encounter some delay if they simulta-
neously compete for these services. The reason for
this is that M, being a sequential process, can execute
only one service at a time.

(b) Once a service is being performed, its completion
may be dependent on the progress of other requests
in the system. Consider for instance a request x that
calls for a service to acquire exclusive access to a
shared peripheral. This action could be delayed if the
desired peripheral is not available when requested;
and can be performed only when the peripheral is
voluntarily released. This delay is eventually reflected
in the response time of x.

In a system consisting of processes and monitors, the
first type of delay is experienced by processes attempting
to enter an already occupied monitor, whereas the second
type corresponds to delays occurring inside a monitor.

Delays of type (b) are difficult to compute because they
are non-deterministic. Given a process that has acquired
a given resource, it is generally undecidable if and when
that process will release the resource. In this paper, we
shall assume that we are dealing with systems that are
deadlock free, and therefore we can assume that each
service on which the completion of another service is
dependent will, in a finite time bounded by a known
constant, allow it to complete. This assumption encom-
passes all delays that normally occur inside a monitor.

Delays of type (a) are those that are normally associated
with mutual exclusion. These delays could also be non-
deterministic. Consider for instance a system consisting
of a collection of distributed processes.” These processes
implement procedural operations which can be invoked
by other processes. Acceptance of multiple calls to a
given procedure is however non-deterministic, which
implies that one cannot compute nor bound the time a
process waits upon invoking a procedure of another
process. Response time computation is more manageable
if this non-determinism is eliminated and replaced with
a fixed order, e.g. a process implementing n services
(procedures), would look for calls for them in a cyclic
manner. The important implication of this is that, given
a module M implementing n services s,, 55, ...,5,and a
request r waiting for service s;, the maximum delay that
would be experienced by r is

(m+1) Y T6s) - T(s)

i=1

where m denotes the number of requests waiting for s; at
the time of call, and 7(s;) denotes the time taken by s; to
complete. In the worst case, s; would be listed last in the
cycle and all m requests waiting for s; would go before r.
These will cause r to wait for the completion of m cycles.
Hence the above formula. This formula can be simplified
by the assumption that each service is part of at most one
request (i.e. m < 1). This assumption greatly simplifies

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

ON THE STATIC EVALUATION OF DISTRIBUTED SYSTEMS PERFORMANCE

the model. Further generalizations can be made to deal
with multiple requests that require the same service by
making this service available to them under different
names. In the remainder of this paper, we shall deal only
with systems for which this assumption holds.

4. BASIC DEFINITIONS

Essential to the study of response time presented in this
paper is the notion of experiment.

Experiments

In order to analyse the time behaviour of systems, we
shall deal with several requests simultaneously active.
The response time of a given request is clearly dependent
on which requests are simultaneously active with it. This
leads to the notion of experiment. Formally an experiment
represents the activity in the system resulting from (and
only from) the receipt of a set of requests. We shall use
the notation

(<"1, t1>’ <7'2, t2>9 DR <rm tn))

to represent the activity resulting from the arrival of
request r, at time ¢, r, at t,, etc. We shall assume that
before the start of an experiment, the system is in an idle
state, and no requests other than those listed in an
experiment are submitted until the system regains its idle
state. Thus any delays that occur during an experiment
are only due to the interactions of the requests submitted
in that experiment. Clearly the set of all possible
experiments in a given system is infinite.

Résponse time

Let RT(x, e) denote the response time of x in experiment
e. This is the time taken by x to complete execution when
x and all other requests in e are submitted at the times
defined by e and no other request is submitted. The worst
case response time of x, denoted WRT(x), is the
maximum RT(x, e) over all possible experiments e in a
system.

5. GRAPH MODELLING OF DELAYS

An important tool in the analysis of response time
presented in this paper is the delay graph. It is a directed
labelled graph depicting the interactions between re-
quests during an experiment. The delay graph of an
experiment

e=(<r1,t1>’~ D) <rn’tn>)

has n nodes labelled r,, r,, . . ., r,, respectively. It has a
directed edge r; — r; labelled d for each pair r;, r; such that
r;caused d units of delay to r;. A request r; is delayed by r;
at a module M if r; calls for the execution of a service
implemented by M, but, at the time of the call, M is
performing a service s;invoked by r;. The duration of this
delay is the time taken by M to complete the execution
of s; in the absence of any other request in the system.

Thus any delays that r; encounters after r; starts waiting
for it are not included in d. The sequential behaviour of
modules precludes the possibility of a given request being
simultaneously delayed by multiple requests. This, in
conjunction with the ordering property (next section)
precludes the possibility of a request causing delay to
multiple requests simultaneously.

Figure 2(a) gives a system S which accepts four
requests x, ry, r,, r3. The path of each request in the
system is labelled with the name of that request. Figure
2(b) gives a graphical illustration of experiment.

e= (<x’ 20>’ <rl ’ 0>3 <r2) 0>)
Figure 2(c) gives the delay graph of e.

r i |

Figure 2a

Requests
~

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

M M M,
n INVW\N+\NV~NV+\NWV~'1
M3 Ms My
x st ————jwvwwww

1 1 1 1 1 L 1 1 1 1 1 15
Time O 10 20 30 40 50 60 70 80 90 100 110

M
wwwv Indicates request executing in M

—= Indicates request waiting

Figure 2b
O
20
10 @
v 25
O,
Figure 2c

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 203

A. MAHJOUB

Each edge in a delay graph corresponds to some delay.
Further, if in a delay graph two requests are not connected
then they do not delay each other. A delay graph cannot
contain loops, for this would imply the existence of
deadlocks. An isolated node in a delay graph of an
experiment represents a request that had no interaction
with other requests during that experiment. Clearly, such
requests can be ignored altogether in response time
computations. We shall now outline how delay graphs
can be used in the computation of response time. For this
purpose, we introduce the following notation:

x <%,y =1In experiment e, request x is delayed by
request y for a period of 4 units and the waiting
commences at time 6.

If the context does not require specific mentioning of d
or 4, then either (or both) of them may be omitted. If d is
replaced by *, it implies that y causes maximum delay to
X.

x «%y = There exists a chain
X <2y <eZy <e... <2y, <%y, (n>0)

Ordering property

An important factor in real-time analysis is the order in
which events occur.

Consider an experiment e in which three requests x, y
and z are submitted. Let

x<gls,y and y<gh,z

The computation of RT(x, e) is dependent on the relation
between 6, and J,.

(@) 4, <9,

In this case, the delay caused by z to y is d, . However,
only a portion of this delay is subsequently reflected
in the response time of x. This portion is « = max (0,
d, — (6 — 08,)). Let p=d, — a. f represents a delay
which is irrelevant to x and thus must not be included
in RT(x, e). That is, the delay caused to x by y and z
isd, + d, — B. Since 0 < a < d,, it follows that § >
0. Hence, this case shows that the delay encountered
by x due to the execution of z is not optimal. This
suggests the possibility that there may exist other
experiments in which x would encounter more delay
due to the execution of z. This is explored in case (b).
In the experiment of Fig. 2(b), we have,

20 25
X <e6s5T r <e20'2

Thus, & = 0 and d, = 25 is totally irrelevant.
(b) 9, <9,

In this case z starts causing delay to y after y starts
causing delay x. Thus d, takes place while x is waiting
and consequently it should be included in RT(x, e).
Note that d, cannot take place after y has terminated
delaying x because y is then in its second phase and
cannot be delayed. Hence, in this case the delay
encountered by x due to the execution of z is strictly
greater than that of case (a). This suggests that the
delay encountered by x in some experiment e can be
increased (if not already optimal) by proper rear-
rangement of the ordering of the delay events in e.
This is formally shown in Ref. 5.

204 THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984

The important property established in Ref. 5 states
that for determining the worst case response time for x,
it is sufficient to consider experiments in which every
request, other than x, is not delayed until it itself causes
delay (i.e. case (a) above never occurs). We shall refer to
this property of an experiment as the ordering property.

Since delays caused by x are irrelevant to x (for
otherwise it would imply deadlock) they can be ignored
without loss of generality. In the remainder of this paper
we will treat x as the main request, and consider only
experiments in which x is submitted and x does not cause
any delay.

The ordering property has two implications. Let e be
an experiment satisfying the ordering property, then

(a) The delay graph of e is rooted at x, connected, and
contains a path from x to every other node.

(b) The total delay encountered by x during e is the sum
of all labels on the arcs of the delay graph of e.

6. ENUMERATION OF DELAY GRAPHS

The topology of a delay graph, i.e. a delay graph without
its arc labels, illustrates the delay relationship between
requests during an experiment. There may exist several
experiments whose delay graphs have the same topology,
but possibly different labels. Because a system is capable
of supplying only a finite number of distinct services,
there can exist only a finite number of different topologies.
Consider all experiments whose delay graphs have a
given topology. We wish to construct a procedure that
determines which of these experiments results in the
largest response time for x. This procedure can then be
combined with another procedure for enumerating all
possible delay graph topologies to produce an algorithm
for computing the worst case response time for x. This
algorithm is dependent on static information only, and
thus can be carried out entirely at compile time.

In general, there is no simple way of enumerating all
delay graph topologies for a given system. It is shown in
Ref. 5 that this can be reduced to finding a feasible
solution to a linear programming problem, and that its
optimalsolution gives the worst case delay. Unfortunately
this approach is too inefficient for practical purposes.
There are however some classes of systems for which
worst case response times can be derived quite efficiently
and without a need for complete enumeration of all delay
graph topologies. This will be proved in the following
sections.

Tightness

Consider an experiment e in which a request y causes
delay to n requests z,, z,, ...z, (n > 1) which in turn
cause delay to x (see Fig. 3). That s, foralli =1 ton,

x<.z; and z <.,y

Let z, be the first request that starts waiting for y, z, the
second, z; the third, etc. As noted in Section 4, the
intervals of time during which y delays these requests are
disjoint. This implies that z, starts waiting for y after z,
has finished waiting for it, z; starts waiting for y after z,

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

ON THE STATIC EVALUATION OF DISTRIBUTED SYSTEMS PERFORMANCE

M, M,
p N -
N/ 4/ \
DD,
L/ N/ 1/
Zp 2

Figure3

has finished waiting for it, etc. This has two important
implications.

(a) ycausesdelaytoz,,z;,. ..
phase (retracing its path).

(b) Let M; be the module (in the path of y) at which z; is
delayed by y. Then M, is the first among these in
path of y (Fig. 3).

(a) and (b) imply that in the experiment in question
the following relation holds.

, Z, While it is in its second

Foralli=2ton,z; <,y butnot z; <}y

The broken lines (Fig. 3) inside the modules M,,, . .., M,
indicate execution time intervals not added to the delay
of x in e. The above relations in turn imply that

X<,y butnot x«Xy

That is, y has contributed some delay to x, but this delay
is not maximum. Thus, there may exist another experi-
ment e, such that

XLy
For instance, experiment e, may have
2, <2y

This delay is clearly larger than the sum of the delays
causedbyytoz,,z,,...,z,in experimente.

If for a given system we can show the existence of an
experiment e, in which all requests that can potentially
cause delay to x are submitted and for each pair of
requests y, z in this experiment

V<ez=y<2z

then clearly RT(x, e5) = WRT(x). For the systems under
consideration, it is possible to determine the existence of
€.
Systems for which e, exists are hereafter called free
systems. The next section gives a characterization of
these systems and shows how e, can be constructed for
each system.

7. FREE SYSTEMS

The algorithm for determining the existence of e,, for a
given system, comprises three main steps:

Step 1. Construct a directed graph G, the union of all
delay graph topologies for the given system.
Formally G is defined as a directed graph
containing a node x, and a node y for each

request y that contributes to the delay of x in
some experiment e, i.e. x «<.y. For each pair of
nodes y, z in G, there is an arc y—z in G if
and only if there exists an experiment e such that
y<ezify=x,orx«,y<.,zify + x.

Intuitively, the existence of node y in G justifies
the existence of an experiment in which y
contributes to the delay of x. Hence, there must
exist a delay graph in which there is a path from
x to y. Thus G is a directed graph in which there
is a path from x to every other node.

Step 2. Using the graph constructed in Step 1, construct
the topology G, of the delay graph of e,. It can
be shown® that G, is a particular spanning tree
of G.

Step 3. Compute the times of arrival of the requests in
e, and check that when ¢, actually takes place its
delay graph topology will be that constructed in
Step 2, and each request will cause maximum
delay.

Step 1. Construction of G

Algorithm

(a) Initially G contains only the node x.

(b) For each y that intersects the path of x add node y
andarcx —»ytoG.

(c) Repeat this step until no further changes can be
made to G.

If possible, select a path x = y,, y1, y2, ...,y in

G and a node y, ., (which may or may not be in G)
such that the following conditions hold:

(1) There exist distinct modules M; at which y,
intersects y;_, foralli= 1,k + 1.

(2) The path of y; up to M; does not intersect the path
of any other y; up to M, for all i, j=1, k + 1,

i+j.
(3) M;_, appears before M; in the path of y;, for all
i=lk+1.
Then add node y,_, and arc y, = y,+; to G if not
already present.

Construction of G. G can be constructed from the system as
described in the above algorithm. The algorithm builds
G incrementally by adding arcs to the tail end of existing
paths from x. It considers each path and examines the
feasibility of an experiment in which the delay pattern
corresponding to the path may occur. Condition (1)
ensures that each request in the path intersects its
predecessor (to cause delay). Condition (2) avoids the
possibility of two requests blocking each other, thereby
precluding the delay pattern indicated by the path.
Condition (3) ensures that the ordering property can be
satisfied. Satisfaction of these conditions guarantees the
existence of an experiment whose delay graph topology
is the path x, y;, ... Y, Ve+1. A systematic way of
examining all the paths satisfying the conditions is given
in Ref. 5.

Step 2. Generation of G,

As noted earlier, G is the topology of the delay graph of
the experiment ¢, in which each request causes maximum

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 205

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

A. MAHJOUB

delay. G, is a spanning tree of G such that each request
z % x in G has only one predecessor y, and z can cause
greater delay to y than to any of its other predecessors in
G. Thus in order to construct G, we need to identify, for
each z, which of its predecessors should be included in
G, . In order to achieve maximum delay, we must select
the predecessor that intersects the path of z earliest. If
this is true of more than one, then the selection is
arbitrary. Clearly for a given system, G, may not be
unique. The graph G corresponding to the system of Fig.
4(a) is given in Fig. 4(b). Figures 4(c) and 4(d) show two
possible constructions of G, .

Note that each request in e,, other than x, delays
exactly one other request. This is consistent with the
point made in Section 5, that the maximum delay
contributed by a request is not obtained by having that

Figure 4a

Figure 4b

Figure 4c Figure 4d

206 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

request delay a number of other requests, but by allowing
it to delay only one particular request.

Although G, is constructed primarily for the compu-
tation of WRT(x), we shall first use it to derive an upper
bound on WRT(x). This upper bound may not be tight,
i.e. it may not correspond to the response time obtained
in an actual experiment, but can be used as an indication
of the worst case response time.

An upper bound on WRT(x). For each request y in Gy, let
d(y) be the time taken by y to execute (without delay) in
the portion of its path from the first module that it shares
with its predecessor in G, to the end. This is the maximum
delay that y can cause in the experiment e,. Let d(x) be
the time taken by x to execute (excluding any delays).

Lemmal.Letub(x) =Y d(z), then WRT(x) < ub(x).
VzeG,

Proof. Immediate.

Step 3. Definition of ¢,

We wish to define an experiment e, such that
RT(x, ;) = WRT(x). As argued before, e, should be
such that: for all y, z in G,

z<, yez—yisanarcinG, 6))
Z<, y=>2z<2y 2

Consider the experiment e, and define the following
terminology with respect to e, . Let,

a(y) = arrival time of request y
c(y, M) = constant execution time y takes to reach
module M, without any intervening delays
t(y, M) = time at which y reaches module M in ¢,
w(y) = total delay caused by y to its predecessor in
G, (including delays encountered by y).

By definition, we have for all y in G,

w)=dy)+ Y w2
for all successors
zofyinGo

All w(y) can be computed from the system definition. Let
a(x) = 0. We now outline how a(y) can be computed for
all other y in G,. The successors of each y in G, can be
ordered according to the order in which they intersect y.
If two requests intersect at the same module their order
is determined by the fixed cyclic scan at the module. The
tree G, can then be traversed in preorder and a(y) can be
computed for each y in the order defined by this traversal.

Consider an arc y, - y, in G,. Let M be the module at
which y, causes delay to y, . Equation (2) implies that y,
and y, reach M at the same time and y, executes in M
first. Then we have

t()’l,M)=t(}’z;M) (3)

Since the ordering property ensures that y, cannot be
delayed before M, we have

H(y2, M) = a(y,) + c(y2, M))
Equations (3) and (4) give
a(yy) = t(y,, M) — c(y,, M))

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

ON THE STATIC EVALUATION OF DISTRIBUTED SYSTEMS PERFORMANCE

H(y,, M) can be computed as follows:

(y1, M) =a(y,) + c(y,, M) +) w(z) (6)

forall z in
v = successors of y
in G, which intersect
y before M

and hence a(y,) can be expressed in terms of a(y,) as
follows: '

a(y;) =a(y,) +k)
where k is the constant:
k=c(y;, M)—c(y,;, M)+ Y w2)
forallzinv
A tight upper bound on WRT(x)

Definition. For each request y, different from x, in G, the
initial segment of y refers to the portion of its path from
the beginning to the first module it shares with its
predecessor in G,. The remainder of the path is referred
to as the non-initial segment. The initial segment is empty
if the request in question shares with its predecessor the
first module in its path. Each request in G, which is
different from x has a unique initial segment.

Theorem 1

If the initial segments of all requests in G, other than x,
are mutually disjoint then*

(1) forall y, zin G, such that z —» y is an arc in G,

dm
z < e y

(2) RT(x, e9) = WRT(x)

Proof. (2) Assuming that (1) holds, then by lemma 1,
RT(x, eg) = ub(x), and thus RT(x, e;) = WRT(x).

(1) By assumption, the initial segments of requests in
G, do not have any modules in common. We show that
this implies that the initial segment of each request
contains modules that are completely ‘private’ to it and
thus each request can be conveniently submitted so that
it causes the desired delay.

Assume, if possible, that there exists a request y, in
G,, whose initial segment contains a module M that is
also in the path of another request y, in G,. Since the
initial segments are mutually disjoint, M must be in the
non-initial segments of y,. But this implies the existence
of an experiment ¢’ in which

Y2 <oy
Let z be the predecessor of y, in G,. Since z does not
intersect the initial segment of y, it must be distinct from
y». Further d’ > d(y,) as y, executes a larger portion of
its path while y, is waiting for it. Thus z cannot be the
predecessor of y, in G,. Hence a contradiction (Q.E.D.).

8. INTERFERENCE FREE PROPERTY

The thrust of the condition of Theorem 1 is to ensure that
each request can progress in its path without delay until

*d(y) is defined on p. 206.

it reaches the module at which it is supposed to delay its
predecessor in G, . Although mutual disjunction of initial
segments guarantees this situation, it is too strong for
this purpose. It is quite possible, for instance, that two
requests that have a common module in their respective
initial segments execute in that module in such a way
that they do not interfere with each other. Clearly, if we
can guarantee this situation, then theorem 1 would still
be applicable.

The modules of interest in this case are those that are
common to several initial segments. Let y, and y, be two
requests in G, whose initial segments contain a common
module M. In order that in the experiment ¢,, y, and y,
do not interfere with each other at M, it must be the case
that one exits M before the other attempts to enter it. Let
1 be the first to execute in M. (There is a systematic wasy
of determining the order of execution in shared modules.")
We wish to define a relation that ensures that y, does not
reach M until y, has left it. For this purpose we define
the following terms. Let

arrivaltime (y, Q) = the time at which y invokes a
service implemented by a
module Q in its path during
experiment ¢, . This is the same
as t(y, Q) defined on p. 206.

exittime (y, Q) = time at which the execution of the
service invoked by y at Q is
completed.

The following condition ensures that no interference
between y, and y, will occur at M:

exittime (y,, M) < arrivaltime (y,, M)

We shall refer to this as the interference free relation. Since
it depends only on y,, y, and M, we shall denote it as
IFR(yl’yZ’ M)

IFR can be verified statically knowing only the system
structure and the constants giving the sequential execu-
tion times. The actual computation of exittime and
arrivaltime can be derived from Eqns (6) in Section 7.
Below we give a quick outline of how these terms can be
computed.

arrivaltime (y,, M) is computable from a(y,), the time
at which y, is submitted in e,. Since M is in the initial
segment of y,, the execution of y, in the portion of its
path from the beginning to M is a constant.

exittime (y,, M) depends on a(y,) and on the delays
encountered by y, at the modules in its non-initial
segment. These delays correspond to all the arcs in G,
that form the subtree rooted at y, . Thus the total delay
that y, should encounter in ¢, is the sum of w(z) over all
successors z of y, in G,.

Let ¢ be the (constant) time taken by y; to complete
execution (without any delay) in the portion of its path
from M to the end. The reader can verify that

exittime (y,, M) = arrivaltime (y,, M) + ¢
+ Z w(z)

for all z successor
of y, in Gy

Theorem 2

RT(x, e) = WRT(x)if and only if for all pairs of requests
Y1, ¥2 in Gy whose initial segments contain a common
module M, IFR(y,, y,, M) holds.

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 207

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

A. MAHJOUB

Proof. This theorem is a natural conclusion of the above
discussion and its proof reduces to the proof of Theorem
1. The fact that some initial segments share some modules
has been made irrelevant as far as e, is concerned by the
assumption that the interference free property is satisfied,

(QE.D.).

9. CONCLUSIONS

For systems which do not fall in either of the categories
described in Section 2, the procedure for determining
WRT(x) is complex and lengthy to describe. In Ref. 5,
we have characterized two other classes of systems for
which WRT(x) can be found without using linear
programming techniques (which are the most inefficient
in this case). The characterization was based on proper-
ties of the graph G which is the union of all delay graphs.
For all practical purposes, however, an upper bound
should be sufficient.

The problem of response-time prediction is very
difficult. The classical approach to it has been based on
queueing theory. These approaches, however, lead only
to the expected response time and give little indication
of the worst-case response time. This paper has alleviated
the difficulties by considering a simple process model in
which processes have a fixed behaviour. Additional
restrictions have been imposed on the system structure
to simplify the analysis. Clearly much remains to be
investigated in this area, but we hope that this paper has
provided a good first step in compile-time approaches to
response-time computations.

Compute WRT(x) using
/_ Theorems | or 2

\- Compute upper

bound on WRT(x)
using Lemma |

Functional systems

Figureb

The procedure for computing worst-case response
times given in this paper is shown in Fig. 5, and can be
summarized as follows:

(1) Using algorithm given for Step 1, construct G.

(2) Using algorithm given for Step 2, construct G,

(3) Check if initial segments of all requests in G, are
mutually disjoint. If so, apply Theorem 1.

(4) Otherwise, check if IFR(y,, y,, M) holds for each
pair of requests y,, y, in G, whose initial segments
intersect at M. If so, apply Theorem 2 and derive
WRT(x).

(5) Otherwise, use Lemma 1 to derive an upper bound.

REFERENCES

1. G. M. Schneider, A modeling package for simulation of computer
networks. Simulation 31(6), (1978).

2. L. Kleinrock, Queuing Systems, Volume 11: Computer Applica-
tions, Wiley Interscience, N.Y. (1976).

3. J.L.Hennessy, Areal-time language for small processors: design,
definition, and implementation. Ph.D. Thesis, Dept. of Computer
Science, SUNY at Stony Brook, N.Y., August (1977).

4. S. A. Ward, An approach to real-time computation. Proc. of the
Seventh Texas Conf. on Computing Systems, Texas, November
(1978).

5. A. Mahjoub, Analysis of response time in real-time systems.
Ph.D. Thesis, Dept. of Computer Science, SUNY at Stony Brook,
N.Y., May (1979).

6. C. A. R. Hoare, Communicating sequential process. CACM
21(8),666-677 (1978).

7. P. Brinch Hansen, Distributed processes: a concurrent program-
ming concept. CACM 21(11), 934-941 (1978).

Received February 1983

208 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

20z udy 01 U 1s8n6 Aq G69/9€/1.02/€/.Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY WY PAPEOUMOQ

