Hash Trees Versus B-Trees

D. A. Bell
School of Computer Science, Ulster Polytechnic, UK

S. M. Deen

Department of Computing Science, University of Aberdeen, UK

The hash trees method of external hashing is known to have advantages for certain types of primary key distribution.
In this paper the value of the method as a general indexing technique—for secondary keys as well as primary keys—is
assessed, and a comparison with the B-trees method is presented.

1. INTRODUCTION

The problem of organizing large files of data on secondary
storage devices has been recognized since the earliest
attempts at applying computers to handle large-scale
information systems. Retrieval efficiency can only be
attained by proper and judicious organization of the
records in the file. Most of the early solutions to emerge
involved fairly crude methods of hashing, indexing,

linking and overflowing to deal with direct access to data.

items and growth of data volumes. Sequential access on
some key was achieved generally by contiguous place-
ment. Only recently—within the last decade—have
attempts been made to adapt methods traditionally used
only in primary storage for data access. Much of the
motivation for this has come from the advent of database
management systems (DBMS), which allow a single
conceptual view of a database consisting of many
integrated data files which are potentially related on
many keys rather than a single one. Traversal between
the files constituting the database typically require more
complex access paths than are supported by traditional
methods—for example, direct linking on several keys
rather than just one, and sequential access on more than
one key. Also the control software has to keep track of
the available space to be left for insertions and freed by
deletions on many different files. The inflexibility of the
crude traditional access structures and strategies forces
recourse to even cruder reorganization measures when
the cost of high occupancy levels of the originally assigned
data accommodation is intolerably high in performance

Table 1. Comparison of external hashing schemes

S tiality G ful S dary Directaccess Load factor
P overflow indexing
facilitated

D-hash X X v X 1-2 69%
X-hash X v v X 1-2 70%

(weak)
T-hash v v v X 1-2 70%
B*-trees v v v X 3-5 70%

1.1

H-trees v v v v (10%0/F)

(weak) (weak) 1.33 85-90%

(30%0/F)

N.B. (i) Fand P areasin Figure 1. (ii) Other contenders are either
very complex, have a weak load factor or require re-hashing for
collision-handling.

terms. Also, the basic tree structures for direct access are
not very well balanced in the sense that much more
probing is required at some parts of the file than at others.

The methods of Refs 1-3 all claim advantages over
traditional methods for some mode of access to data or
some particular distribution of primary and secondary
keys. These methods are collectively called external
hashing schemes, and their features have been compared
elsewhere* and in Table 1.

Two particular methods from the repertoire of external
hashing methods are compared in this paper. B-trees,
which can now be considered to be a classical tree
method, first became an official contender in 1972 when,
Bayer and McCreight’ proposed the method and claimed
relatively inexpensive costs for insert, delete and direct
access operations.

The method of hash trees, H-trees, was first introduced
in publication in 1981 by Deen et al.,% although it
appeared as early as 1978 in internal reports, and the
method is claimed to support the insert, delete and direct
and sequential access operations, but also to promote
immunity of indexing to changes in data addresses.’

In the next section we outline the features of external
hashing methods, and in Sections 3 and 4, describe briefly
the H-tree and B-tree methods. In Section 5 we examine
their performances for direct and sequential access. A
summary of their strengths, weaknesses and relative
appropriateness appears in Section 6.

2. EXTERNAL HASHING METHODS

A hashing function is a transformation which maps an
identifier attribute, or key, to an address location. Often
this transformation is to an intermediate directory, as in
Fig. 1, instead of directly to the address space. This is
particularly true of the enquiries made on the file
involving predicates on several different attributes—
sometimes referred to as primary and secondary keys.

In Fig. 1 the key space of a file for a particular key is a
collection of elements each representing a possible value
of the key. The collection of available secondary storage
location addresses in which the records are actually
stored are referred to as the address space of the file, or
the data pages. A directory provides a level of indirection
between the key and address spaces, and can facilitate
direct and sequential access. So when the ‘logical’ address
has been determined by hashing the key, the ‘physical’
address can be found by inspecting the contents of the

CCC-0010-4620/84/0027-0218 $03.50

218 THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984

© Wiley Heyden Ltd, 1984

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

HASH TREES VERSUS B-TREES

Key space

Hashing function F~

Directory

Pointers P

Address space

Figure 1. General model of external hashing schemes.

corresponding directory entry. Once this address is
known only 1 access is required to get the data associated
with the key.

Dynamic hashing (D-hash),' extendible hashing (X-
hash)® and trie hashing (T-hash)? allow graceful expan-
sion and contraction without the drastic reorganization
due to overflow problems. These all use a form of
‘splitting’ which involves some method such as the
following. When a leaf directory node points to an
overflowing data slot it migrates up a level in the directory
tree and points to two leaf nodes. The right node points
to a new data slot accommodating a share of the tuples
from the original data slot, which retains the rest of the
tuples itself. The reverse process is applied for dealing
with shrinkage of data. Table 1 summarizes the features
of these methods.

3. B-TREES

B-trees are fully described by Bayer and McCreight® who
present algorithms for retrieval, insertion and deletion
and give a precise analysis of the costs.

In B-trees the structure between nodes—assumed
initially to be placed on a page each—is that of a multi-
way tree, with a leaf page having the occupancy (1) level
set at $ <A <1 for all pages except possibly the root
node. Each index page contains keys and pointers, and if
there are 2t keys and 2t + 1 pointers on a page we say
that the B-tree is of order ¢. Within leaf pages the keys
are maintained in sequential order.

The basic method for searching proceeds as follows.
Choose one of 2t + 1 paths (pointers) at each node on the
basis of the relative position of the search key in the
sequence of 2¢ keys. This decision procedure is repeated
at each node until either a hit is made or the key is
discovered to be not present. This method clearly
eliminates the hashing function F in Fig. 1.

The number of keys n at each node can in fact vary,
but must be in the range ¢ to 2¢, with n + 1 pointers in all
cases. This implies that each node is at least half full,
which preserves the balance of the tree and avoids

catastrophic reorganization through this incremental
reorganization: when a node is assigned too many keys,
the contents of the node are split into two approximately
even groups, which are stored in two sibling pages. One
or more of the directory levels above this node then
receive an injection of a discriminator between the
contents of these nodes. The reverse process occurs when
a node’s occupancy is reduced to below one-half of its
capacity, and a concatenation with a sibling is dispatched.

Many nodes of the B-tree may therefore be considerably
underfilled, and thus the height of the tree may be greater
than is necessary. However, this excess may be assumed
to be only 1 level in practice, which represents the cost of
balancing.

B-trees do have a guaranteed worst case number of
accesses per retrieval. This number can be reduced
further by refinements of the basic method, and more
complex redistribution techniques.

In B*-trees all keys appear in the leaf nodes—the
superstructure of the higher nodes being a pure index.
This means that non-existent key values may appear in
the superstructure e.g. even after a key has been deleted
from the leaf nodes. Also since all keys are in the leaf
node deletion and insertion complexity is reduced. The
leaf nodes are linked together to enhance sequential
traversal of the leaves. Because real keys need not be
stored in the upper leaves of the tree, the discriminators
may be more compact than keys. Prefix B-trees allow the
shortest string which discriminates between lower nodes
to be stored in the higher index pages, so that space is
saved and more discriminators can fit on a node, reducing
the height of the tree, and with it the seek time. Most of
the analysis and comparison which follows refers to the
basic B-tree method, with comments on the effect of
refinements as appropriate. In implementations addi-
tional information is usually stored in the nodes to show
the number of keys residing in the node pages.

The assumption was made at the start of this section
that nodes and pages were synonymous. However in the
index itself clearly for trees of low order, many index
entries may be accommodated on reasonably sized pages.
However some embedded free space, in the form of slots
which can generally hold many index entries, should be
allocated on each page to accommodate splitting. A
‘global overflow’ area may also be required to supply new
slots for nodes which cannot be accommodated on ‘home’
pages or siblings. In this respect there is a similarity with
H-trees described in the next section.

A basic problem of B-trees, in common with many
other extendible hashing schemes, is that the splitting of
data pages required when more than 2¢ keys are assigned
to it, means either migration of records in the data pages,
or loss of sequentiality within pages. This problem is
overcome by H-trees by using ‘impure’ surrogates as
described in the next section.

4. HASH TREES

This method has been described in detail in Refs 4, 6 and
7. However in these documents only the implementation
of the method in the PRECI system® was discussed. The
H-trees method can be considered as an alternative to
other techniques such as B-trees as a method for accessing
data, both sequentially and directly, via indexes.

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 219

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

D. A. BELL AND S. M. DEEN

In its primary mode of use the method centres around
the allocation to each record in the file of a surrogate
composed of a file number concatenated with a relative
address called the effective key. This effective key is
determined by using a hashing function on the primary
key—the data attributes most frequently used for ac-
cess—and a compact directory called the SURROGATE
DIRECTORY, whose structure is fully described else-
where.” This hashing function is chosen so that records
are stored on the data pages in the same sequence as this
primary key. To minimize the standard deviation of the
page occupancy, g, the primary key space is compressed
during hashing, and this procedure is described and
evaluated in Ref. 4.

The surrogate is in fact ‘pseudo’ in the sense that it is
determined by primary key value and so is subject to
change if the primary keys change. This contravenes the
principle that the surrogate is fixed for the lifetime of a
record. However the frequency of change of primary
keys may be assumed to be low in most realistic cases for
simple practical reasons, and the pseudo surrogate retains
the basic character of a record identifier which has
permanency.

This permanency rules out the notion of splitting as
encountered in B-trees and other methods, where the
address may change. Thus overflowing techniques are
needed to accommodate file volatility.

In H-trees records are accessed using a combination of
hashing and indexing. For primary keys the hashing
usually gives direct access by surrogate, but an index
must be used for sequential access. The index entries are
of the form (key, surrogate) to allow storage independence
while allowing fast direct access. The index is organized
in a single level, and the position of the slot on an index
page to be accessed in order to determine the surrogate is
found by hashing. Thus the model of Fig. 1 describes this
method well.

Using the division method of hashing, but taking the
quotient rather than the remainder as the hash function,
F, the sequence of the keys is preserved as they are
allocated to slots on the index page. So sequential access
to the records by any key is achieved by chaining
consecutive index pages, because the pages partition the
key-ordered record set.

However while the quotient method is suitable for
sequence preservation, it is manifestly expensive in
storage for sparse key spaces. Hence a compression
technique is employed to concertina the index-address
space. A technique for this is to use as the divisor in
hashing, a constant number reflecting the density of the
key-space occupancy. Then expand the address space for
the over-populated areas, and contract it for the under-
populated areas. This expansion and contraction is
shown in Fig. 2 where (a) shows the occupancy
distribution of the key space for a slot size w. The empty
areas are removed in Fig. 2(b) and the dense areas
thinned in Fig. 2(c). Doing this necessitates an overhead
to keep track of the extent of expansion and contraction
so that the address produced by the hashing function F
can be reduced or increased. This overhead currently
takes the form of a table T with an entry for each hash
address which is preceded by an under-occupied slot or
which is itself over-occupied. This is illustrated in Table
2. A simple look-up of this table, which can be stored
permanently in primary storage in many practical

220 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

(a) Ke'y spa'ce
Frequency |/ \U/ N\~ __NJ_/__ ___
w
(b) Kéy space
Frequency 4\ o\ A\
w
(c) Key space

Figure 2. Reducing variation in a key distribution.

situations,* allows calculation of the true index slot and
hence page for the key.

An alternative method of storing the table T has been
designed to trade (primary) storage space for table
inspection time. In the method just outlined the search is
carried out using some method such as binary search in
order to minimize the internal computer time. However
since processing time in primary storage is usually
deemed negligible in comparison to seek, transfer and
latency times for accessing data in secondary storage, it
is worthwhile to consider techniques for reducing the size

Table 2. Composition of table T

Table 7 Entries

Notation f, d e z
Meaning Hashed Number of Cumulative Addresses of
ofentry slot additional number of slots actually
number slotsneeded emptyslots holding
F(K) to hold all with tuples
tuples addresses assigned to
hashed less than f;
to this slot f;
(f)
Example 53 0 25 28
entries 59 2 30 29, 30, 31
62 0 30 32

Note: the example entries show two sparse areas in the primary key
distribution (namely slots 54-58, and 60-61 which had zero
occupancy), and a dense area (2 additional slots, or 3 slots
altogether, were needed to accommodate all tuples hashing to slot
59).

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

HASH TREES VERSUS B-TREES

of T so that it has a higher probability of fitting into the
available primary storage space—even if this may
adversely affect the performance of the algorithms to
handle it.

The basic idea of this alternative technique is to divide
the space taken by T into fixed zones, each subdivided
into a set of double-byte entries. Each entry has two
components, RS; showing a number of occupied slots and
ES; showing a following number of empty slots. For
example consider a series of entries as in Table 3. This
Table shows that there is no gap in the first 256 slots
(entry 1), then slot 257 is followed by 250 empty slots, 100
occupied slots and 150 empty slots.

If an entry lies in zone k of T, whose first slot number
is b, (information held in a header in 7)), then the siot
corresponding to entry j in k is

J
Xf=Y (RS;+ES) + b,
i=1
This indicates the method of stepwise sequential table
look-up of the pertinent zone in T, and the true slot can
be obtained by subtracting 3., ES;from X*. This
method is attractive if gaps are generally large and few.

An alternative method of key comparisons may be
possible when the key distribution is generally dense but
has forbidden character contributions. The Appendix to
this paper indicates an approach to this which removes
the need for Table T.

The key values are compressed and hashed to find an
index slot where each key value and its surrogate are
stored. Each index slot has a fixed hash width (HW) and
each index page has perhaps 30% of its space reserved
for local overflow slots to reduce probes. Global overflow
index pages may also be declared to accommodate page
overflows. Owing to the presence of local overflows, only
1 in 10 requests might be assumed to result in accessing
the global overflows. These may be reduced by the
periodic reorganization of the H-tree. Each slot contains
a header followed by a set of key values—surrogate pairs
(K, S;). Each of these pairs has associated an optional
number M; which shows the number of other records in
the database which have this X; value as a foreign key.
This allows an integrity check; M; must be equal to zero
before this associated record can be deleted. The header
is a triple (N, P, C) where N(P) is the next (prior) index
slot (home or overflow) in key sequence, and C is the
current number of values in this slot.

The entries are held in key sequence with insertions
being made in sequence. Overflow slots are allocated
dynamically and exclusively as required. Splitting (and
concatenation) of slots is allowed within the overflowing
and overflow slots within the index to promote balance.

S. COMPARISON OF H-TREES AND B-TREES

Direct access

It is easily shown that if there are between ¢ and 27 keys/
node in a B-tree the number of probes (levels of tree)
required is

1+ log,+, <n+

> !>fornkeys)

Table 3

Zonek = 1 2 3

256 O 1 250 100 150
RS, ES, RS, ES; RS, ES;

If the root level of the B-tree is held in primary storage
then a 2-level B-tree has superior access characteristics
to H-trees because only 1 probe is required to get the
address compared to up to 1.10 probes for H-trees.

However, owing to the above formula for B-trees, the
number of levels of the tree quickly increases with the
number of entries n, and for more than 2 levels the H-
tree performance, which remains at the 1.10 probe level
irrespective of the size of n, is attractive—i.e. for large
files. This is because the index super-structure is replaced
by a hash algorithm.

A special attraction of H-trees is that for one key,
namely the primary key, direct access can be optimized
in that the directory addresses are actually the surrogate
pages themselves. That is, no intermediate directory
access is needed to find surrogates—so that a probe is
eliminated.

Sequential access

B-trees. Processing the ‘get next’ operation is not really
catered for in the basic B-tree organization method. It
may require tracing a path through several nodes before
reaching the desired key. Assume there are ¢ keys/node;
let the number of tuples be n (= h + g) where A is the
number in home slots and g is the number in overflow
slots; let the average leaf node have / keys. Then a ‘level
traversal’, of 2 probes, is required every / tuples, as the
relation is scanned in sequence, i.e. there are 2n// such
probes needed in total. In addition there are another 2
probes every t + 1 of these 2n/l probes, i.e. 2n/(¢ + 1)/
more probes and another probe for every ¢ + 1 of these,
i.e. (2n/(t + 1)*I) probes and soon. . . .

Assume, for simplicity, that there is a k£ such that
(¢ + 1)* = n/l. Then total of probes is

1 1 1
2I(I"Lt+l (t+1)2+ (t+l)">
_ @+ 1 1)
T
Therefore
2n l
probes/tuple = —1?<t +1- ;) ?2)

Hash-trees. Assume that hash slots are placed in their own
sequence, that the page size is p, that the number of key
values on home pages is h and that the number of key
values on global overflow is g on s slots. We expect g <
h/10. Normal buffer replacement requires h/p probes
(assuming that all home pages are full). Overflow access

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 221

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

D. A. BELL AND S. M. DEEN

requires g/s probes. Therefore the total number of probes
required to get i + g tuples is (4/p) + (g/s). So

hs + pg
ps(h+g)

Comparison. Compared with the basic B-trees method the
H-tree method is much superior—especially if it is
possible to estimate the volatility (expansions and
contractions) of the file accurately at design time. This
will mean that g is small in formula (3) above and so will
minimize probing.

However the B* variant of B-trees allows direct
pointers between leaf nodes for sequential access, and so
no higher level probes are required when all the tuples
corresponding to a leaf node have been accessed in
sequence. This will give similar sequential access to that
of H-trees in most cases because the handling of irregular
overflows is balanced out in B*-trees.

probes/tuple = 3)

Insertion and Deletion

B-trees. These operations typically require access to
secondary storage in addition to the simple direct access
operation. The worst-case penalty incurred due to reverse
traversal of the tree is to double the access time so that

2<log,+1 <$) + 1) probes are needed (4)

Similarly for deletion.

H-trees. To insert a tuple in the H-trees method, the key
value is compressed and hashed to get the slot for the
index entry.

If the ‘home’ index slot is not full, the K, S;, M; values
must be rearranged to accommodate it. Even if it is full
the (half-sized) local overflows on the same page may still
accommodate it.

Only when a global overflow is necessitated is the
penalty of an additional probe incurred.

An approximate measure of this penalty is (using
notation introduced earlier) h/g for (h+ g) tuples.
Therefore

probes/tuple = 4)

_h
gh+g)
A similar penalty is incurred for deletion. There are also
overheads due to maintenance of the table T used in
hashing.

Comparison. The basic difference here is that related (in
key sequence) tuples are indexed in close proximity in H-
trees. They are on the same page unless ‘heavy’ overflow
causes a global overflow slot to be required. Housekeeping
within a page is cheap—several slots may be adjusted for
insertions and deletions without probing penalty.

B-trees vs. H-trees at leaf page level

A final comparison involves the average number of leaf
pages. Yao® has shown, using the Bernoulli model, that
if all n! orders of insertions are equally likely, the average
number of leaf pages in a B-tree is (n log e)/2¢
asymptotically. In an H-tree organization, if the average

222 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

occupancy of leaf pages (data pages) is p, then the
average number of leaf pages is n/wp where w is the total
capacity (in tuples) of a page.

6. SUMMARY AND CONCLUSIONS

It is a truism that, given current technology, there does
not exist a single storage and access strategy which will
be the best choice for all applications and environments.
The inescapable conclusion is that ‘horses for courses’
must be the rule for choosing between such methods for
a particular set of circumstances. Although the B-trees
method and its variants have been regarded for some
time as good safe choices for many systems, this should
not prevent additions to the physical database designer’s
repertoire being sought. A taxonomy of some of the
major current methods was given in Ref. 4, but in this
paper we have shown that the H-trees method has
advantages for certain purposes.

The major scenario in which H-trees provides signifi-
cant advantages over B-trees is when there is a high
traffic of insertions and/or deletions. In this case methods
which split data pages as described earlier are at a distinct
disadvantage compared to the H-trees method which
uses fixed surrogates, owing to the high level of secondary
index reorganization and maintenance required.

Also for direct access to data records H-trees outper-
form B-trees for realistic depths of B-trees. Although B-
trees have modest logarithmic cost in terms of probes as
a file grows, once the number of levels gets beyond 2 then
H-trees become advantageous. The number of levels
depends on the order of the tree as well as the file
cardinality, but for node cardinality up to about 50, the
depth exceeds 2 rapidly. It should be noted that the H-
trees method carries an overhead of the range—compres-
sion table which requires both storage and computation
time to consult. It was shown empirically in Ref. 4 that
for some real files its size was such that it could reasonably
be held in each memory during its usage. It was also
shown in the same study that for certain key distributions,
large numbers of records could be assigned to a single
hash slot by the hashing function F. In such cases, unless
there is available a simple secondary hashing function,
such as the displacement function used in the reported
study, to get to the unique data slot, additional probes
will be required. Hence there is no guaranteed (worst-
case) performance, unlike for B-trees. The key compres-
sion algorithm currently in use will, it is hoped, be
improved in the future, but was shown to be very useful
for key distributions which have long densely—almost
fully—occupied segments interspersed with relatively
few, but sizeable, empty segments. Such distributions
occur very frequently in many real applications—e.g.
student numbers allocated consecutively from a different
boundary figure—perhaps several thousand keys apart—
for different disciplines in a university.

Thus for many indexing applications, H-trees are a
worthy alternative to B-trees.

Acknowledgements
The authors thank the members of the PRECI collaboration who

commented on this study, which was funded by the Science and
Engineering Research Council.

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

HASH TREES VERSUS B-TREES

REFERENCES

1. P.A.Larson, Dynamic hashing. B/T 18, 184-201 (1970).

2. W.Litwin, Trie hashing. Proceedings of ACM-SIGMOD (1981).

3. R.Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, Extendible
hashing—a fast access method for dynamic files. ACM TODS 4
(3),315-344 (1979).

. D. A. Bell and S. M. Deen, Key space compression and hashing
in PRECI. The Computer Journal 25 (4), 486492 (1982).

5. R. Bayer and C. McCreight, Organisation and maintenance of

large ordered indexes. Acta Informatica 1 (3), 173-189 (1972).

H

6. S. M. Deen, D. Nikodem and A. Vashishta, The design of a
canonical database (PRECI). The Computer Journal 24 (3),
200-209 (1981).]

7. S.M.Deen, Animplementation of impure surrogates. Proceedings
VLDB (1982).

8. A. C-C. Yao, Random 3-2 trees. Acta Informatica 9, 159-170
(1978).

Received May 1983

APPENDIX

Key space compression using forbidden zones

An alternative method of key compression may be of
interest in applications where the key distribution is
dense enough not to warrant compression in the manner
of section 4 except for specific regions which can be
identified by a priori knowledge. The method described
and analysed in this section is aimed at such a situation
where the regions or gaps in the key sequence are derived
from the designer’s knowledge that particular character
combinations cannot occur. For example, the knowledge
that if a part number has a character E or F in character
position 1, then the part coding rules mean that there can
neither be a character 3, 4 or 5 in character position 7,
nor characters X, Y, Z in position 8 or 9, indicates that
there will be considerable gaps in the key sequence.

In such cases these rules may be represented in a
compact table, called the forbidden table (FT) and an
algorithm can replace the costly Table T in the previous
method. This section presents preliminary algorithms to
deal with this situation. Similar methods have been
devised for knowledge of more complex ‘null-areas’,
where (for example) triples rather than pairs of characters
in given positions are forbidden, but the more complex
algorithms for these more general key-coding rules are
not considered here.

We use the following notation when specifying the kth
rule in the ‘forbidden table’ as specified by the database
designer. Subscript / takes the values 1 and 2, and Fj,
shows the /th character in the forbidden pair; P, shows
the /th character position. Thus each entry in FT has four
components specifying the forbidden combination and
its positions. Throughout this Appendix we use the
following notation:

C Cardinality of character set
D Semi-compressed key as decimal—collapsed w.r.t.
F, ky.2

E Current surrogate (E’ developing)
Fi,, k=1,20are first, second characters, rule k
Fy,, k=1,20are first, second s-c digits, rule k
J Current semi-compressed key
K Current P-key
L,; jthcontender for ith character position
No. of forbidden character combinations (< 20)
N No. of characters in key
Py, , k=1,20first and second digit positions for rule k
O No. of contenders for ith character position (< 0)
R ith character in current P-key (R; ; for key j)
S; ith digit in current S-key (S; ; for key j)
T, Total forbidden S-keys < current S-key
U,; Decimal value of P digits to left of jth in S-key

Boolean variable
Decimal value of jth S-key
Total P-keys
» Increment between successive S-keys (V, p+; —
Va,b)
1if S, > F,; 0 otherwise
o 1if S, = F,; 0 otherwise
6" 1if S, > F; 0 otherwise

Definition 1. An S-key is a primary key expressed in ‘semi-
compressed’ form, i.e. with its ith character, R;, replaced
by the j subscript of the matching entry in the contender-
table L; ;, which shows the jth character contending for
the ith character position.

> SNXE

Narrative description of algorithm to collapse P-key K.

1. Read table of contenders for each character position
1<i<N.StoreasL;;:1 <j< Q.

2. Read table of illegal character combinations (F) and
their character positions (P,):/=1,2;k=1,2,...,
20.

3. Use j-subscript of L; ; entry matching the ith character
in K, namely R;, as character i in semi-compressed key
J.

4. Calculate corresponding semi-compressed key values
of the Fi, k = 1, and store as F), (as in step 3 above).

5. Calculate corresponding total number T, of semi-
compressed keys which are less than the current semi-
compressed key (see below).

6. Subtract T, reduced by portions previously encoun-
tered in an F-rule from the current semi-compressed
key, J (expressed in decimal form as D), thereby
collapsing it further. -

7. Repeat steps 3—6 increasing k£ by 1 until k= M. In
each case discard those portions of 7, which have
previously been taken into account (i.e. as a result of
applying a previous F-rule).

8. Use the final value of D as surrogate E, for allocation
to slots. '

Formula used to calculate T, in steps 5, 6 above
Letx=Pkl;y=Pk2

Definition. The upper of p and j (U,; for a semi-
compressed key J is defined as the decimal value of the
semi-compressed number represented by the digits from
the pth digit of J to the jth digit of J, i.e.

Jj-1
Upj= Y (5 Qiv1 Qiv2--- Q)+ §

i=p

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 223

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

D. A. BELL AND S. M. DEEN

Definition. A cycle for the kth forbidden-rule table entry
is (intuitively) defined as an iteration which increases the
decimal value corresponding to the the high-order digits
of J (i.e. those digits to the left of P,) by 1.

Such an incrementation occurs as the result of each
complete enumeration of all semi-compressed keys which
are less than a value of J with a ‘1’ in character position
P,, — 1,and zerosin all the remaining character positions.

More concisely : a cycle for rule k is any complete iteration
through consecutive semi-compressed keys which causes
the value of U, , _, to increase by unity.

Theorem 1.
T,=0, ifF,>U,, (©)

N .
T, =[Uy x-1 + 15]M

9,
+ 5’[Ux+l.y~—li + 5”:|H£I+1 Q0

ifF, <U,, (1)

where 6 = 1if S, > F; ; 0 otherwise
0’ = 1if S, = F, ; 0 otherwise

0" = 1if §, > F, ; 0 otherwise

Proof. The truth of equation (6) is easily established. If
Fy, > U, then, by definition, there have not previously
occurred any cycles. Therefore T, = 0.

Equation (7) is proved as follows: if Fy, < U, then

there have been U, ,_, previous cycles, and possibly a
partially completed (current) cycle. Then T, is composed
of the sum of two subtotals: (i) the number of occurrences
of combinations in previous cycles; and (ii) the number
of occurrences of combinations in the current cycle if
Sx = F kye

(i) Assume ¢ is as defined as above. Then subtotal (i) is
represented by:

[Uy,x-1 + 6] [the number of times Fy, occurs for each
Fy, occurrence]

=[Uy,x-1 + 5][Q_x+1 Oc+2---Qy_1Qys1...0n0
I_I:,+l Q

9
(ii) Assume &', " are as defined above. Then subtotal (ii)
is represented by:

= [Ul,x—l + 6]

&’ (the number of occurrences of combination this cycle)

=6 [Uss1,y-1Qy+1 Qys2- .- Qv + "I, Qi

because the combination has occurred IT), ; Q; times in
the current cycle, only if S, > F,,

Note. The values of J, &' and " can be conveniently
calculated within a computer implementation of this
algorithm by evaluating the following expressions:

[S, + 10000 |

o=INT | Fy, + 10001 |

, [S, + 10000 |
=INT| £, +10000] ~°

, [S, + 10000 |

o= INT | Fy, + 10001 |

To reduce current T, value in the light of overlap with previous 7}
rules. For convenience we consider F-rules k" and k” to be
ordered in accordance with the following precedence
rule: if (P, < P) or (P, = P, and Fi. > Fy) or
(Pk"I = Pk'l’ Fk", = Fk‘l and [(Pk": < kaz) or (Pk"2 = Pk'3
and Fy., > Fy.,)]) then F-rule k" precedes F-rule k” in the
table, i.e. the least ‘significant’ rules come first, e.g. the
rule with E in position 3, F in position 5, precedes the
rule with E in position 2, F in position 5, but succeeds
the rule with E in position 3, F in position 6.

In order to determine how many of the forbidden keys
for this F-rule, T,, have already been encountered in
previous F-rules, the subscripts and characters for each
of the preceding rules must be compared in turn with
those for the current rule, taking account of overlaps
between sets of rules.

During each comparison there are four possible cases
to be considered.

Case 1. Subscripts identical (P, = P;», and Py, = Py.).
No overlap:

Case 2. First subscripts identical, second not (P, =
P.., and Py., # P,.,). There are 2 subcases:

Subcase (a) First digits not identical (Fy, # Fy»)). No
overlap.
Subcase (b) First digits identical (F,., = F.). There

are N
HP,I +1 Qi
Qr, Op,,
duplicates per cycle.

Case 3. Second subscripts identical, first not (P, #
Py. and P,., = P,.,) Again there are 2 subcases:

Subcase (a) Second digits not identical (F,, # Fy.).
No overlap.
Subcase (b) Second digits identical (Fy., = Fy.,). There

are N
I, 1 O
Or, O,
duplicates per cycle.

Case 4. Neither subscripts identical (P, # Py,
and Py, # P;.,). There are

[T, +1 O,
Op,. Op,., Or,.
duplicates per cycle.

(Overlap with gaps encountered in groups of previous
rules must also be identified and accounted for.)

224 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

202 udy 60 U0 189n6 AQ 12/ /9€/81.2/€/LZ/31014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

