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This paper is basically a tutorial on error detection and correction. The presentation though is via a new approach.
This approach has an inherent characteristic leading to parallel hardware implementation and is thus better suited for
computer and parallel processing applications. Codes with the desired specifications are constructed by the computer.
The design of the codes is within the geometric framework of the Karnaugh map. The mathematics involved is simpler
and more intuitive than the traditionally highly mathematical approach. Original results on error detection and
conditions for optimal codes are obtained, optimal in the sense of leading to minimum hardware time delays.

1. INTRODUCTION

Error detection and correction is traditionally a highly
mathematical subject. The elegant and comprehensive
literature on the subject, though, usually overwhelms
many engineers and computer scientists who want to use
the subject for the design of their specific applications.
Luckily for parallel processing, the main applications in
computer systems, this subject could be introduced in an
intuitive geometrical fashion. The main tool is the
Karnaugh map, instead of polynomial rings and Galois
fields.

In this paper most of the basic and relevant theory will
be reintroduced via this new approach. Reintroduction
of the subject as such will also lead into further novel
results. Results known for SEC-DED (single-error
correcting double-error detecting) codes are found to
be easily generalized to higher order #-error correcting
(¢ + 1)-error detecting codes. Also conditions which these
higher order codes must satisfy, so that they result in
minimum time delay, in hardware implementation, are
obtained.

Error codes in use at present in computer systems have
been adapted from codes developed in the past for
communication systems. The constraints in many com-
puter applications though, differ from those in commu-
nications. Generally, information processing should be
handled in parallel instead of serially (as is done in
communication systems), because the time allowed for
coding and decoding is more crucial. A new approach
which constructs codes with the above constraints as part
of the design uses the Karnaugh map. This novel and
simple approach extends to r-error correcting and
detecting codes for all 7. Results comparable in size to the
best binary linear known codes are obtainable.

This approach has the following merits: first, the
theory does not involve more than the knowledge of the
simple Karnaugh maps and binary sums, yet it extends
to any t-error correcting and detecting codes. Secondly,
all the coding is done in parallel, i.e. each parity check
bit is a function of the data bits only and not of any other
check bit. This means that the hardware implementation
of parallel coding is faster than that of serial coding.!*?
Speed might not be a crucial matter in the communica-

tions area but it is of vital importance in computer
applications.®

Thirdly, every code is represented in a Karnaugh map.
This constitutes a further merit for the hardware engineer
who can use the Karnaugh map as a direct implementa-
tion tool. Codes are traditionally represented via the
parity-check matrix. The latter could be mapped on a
Karnaugh map or vice versa. However, working with the
Karnaugh map is easier since it is visual and one can use
human intuition. The following section illustrates this
point via an example of Hamming code represented in a
Karnaugh map.

2. THE KARNAUGH MAP OF THE HAMMING
CODE

Assume as an example a string of 8 bits (x1, x2, . . . x8)
which is to be transmitted or stored in a medium where
errors could occur, i.e. xi could become 0 or vice versa.
Before transmission or storage, one parity check bit p is
appended to the word so that the value of p is the binary
sum of x1 + x2 +---+ x8. Upon retrieval the same
binary sum is performed and the value of the sum is
compared to p. If the two values differ then an odd
number of bits (including p) are wrong. In this example
one is only ‘detecting’ whether an odd number of errors
have occurred. If error correction is also desired then one
has to add more parity check bits. The question is how
many more bits should be added and what should their
values be.

For the above string assume that 4 parity check bits
are appended to form the codeword (x1, x2, . .. x8, pl,
p2, p3, p4) so that each pi is the binary sum of a subset of
the xs. Thus there will be 4 sets S1, S2, S3, S4. Each set
Si contains the parity bit pi and subset of the xs.

Let us deal first with the case where it is assumed that
only ‘one single error’ could occur in the codeword. The
question is which of the xs should belong to each set Si
so that if one single error occurred, say, in one of the xs
or the ps, then the code could point to the erroneous bit.
This pointer in the literature is called the ‘syndrome’.
Each of the bits which could go wrong should be marked
by a unique marker or pointer.
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Before storage, the value of each pi is made equal to
the sum (mod 2) of the xs in the set Si. Upon retrieval the
same sums are performed again and compared to the
retrieved pl, p2, p3, p4. If they differ in say pl and p4
then the syndrome is 1001. Since it is assumed that one
error only could occur, this syndrome tells us that the bit
which belongs to sets S1 and S4 (and which does not
belong to S2 and S3) went wrong. Now the erroneous bit
must be found and corrected. On the other hand, if the
syndrome was 0100 then the bit which belongs to
S1, S2, §3, $4 is erroneous. This is bit p2; therefore, the
value of p2 must be negated.

To find unique syndromes for each bit, the Karnaugh
map is used. The 4 sets Si could be represented as an
‘empty’ Karnaugh map. For example in Fig. 1(a), the set
S1 consists of a total 8 squares, those in the second and
3rd rows. The set S4 contains all the squares in the 3rd
and 4th columns, etc.

Since p1 is to belong to set S1 only, it will be placed in
the corresponding square S1, S2, S3, S4. Similarly, so
will p2, p3 and p4. The null square which does not belong
to any set is named N.

The data bits, the xs, are then placed in any fashion in
the squares of the map so that each bit uniquely occupies
one square, as in Fig. 1(a), which now represents a ‘single
error correcting’ code. This code has pl1, x8, x5, x7, x1
and x3 in set S1 and p2, x6, x8, x5, x1 and x2 in S2, and
so on.

If x5 went wrong, then since x5 belongs to S1, $2, S3,
S4, upon decoding at the receiver end the syndrome
formed will be 1101. This syndrome points to x5,
therefore x5 has to be negated. If the syndrome is
0,0,0,0 then no error has occurred. This is the null
square N.

The code of Fig. 1(a) is represented in the literature by
the following Hamming parity-check matrix:

101010111000

11 100

H= 11 10

11 01

Notice that each column
syndrome or a square.

Figure 1(a) shows that, with 4 parity bits, up to 11 data
bits could be corrected. The three empty squares could
be filled with x9, x10 and x11 as shown in Fig. 1(b). Thus
the maximum number of data bits that a code with 4
parity check bits can have is 11; For n parity bits it would
be2"—1—n.

The code of Fig. 1 is a ‘single-error’ correcting code.
For higher order error correction and detection more
parity check bits will be needed. It is easily seen that if ¢
is a codeword generated as explained above then Hc = 0.

The ideas from the above example for single-error
correction could be extended to higher order error
correction and detection. For a binary word, if certain
occurrences of errors are possible, say, in only (x1 x5)
and (x2 x3), then to be able to correct these errors, each
of these possible error occurrences should have its own
unique syndrome or its own unique square in the map.
This is for error correction. For error detection more than
one possible error combination could -share the same
square. Thus the problem is that of finding or allocating
the right square for each error possibility so that these
errors are detected and or corrected.
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Figure 1. Karnaugh map of a Hamming code.

If two bits B, and B, are allocated to the squares whose
addresses are u and v, respectively, then the square for
the double error occurrence of B, and B, will have the
address (4 + v). This will be formulated as Theorem 1
and it will be needed for the extension of earlier results
on single error correction to results on higher order error
detection and correction.

Theorem 1

Assume two bits each having its own single error
syndrome. The syndrome of the double error occurrence
of the two bits is the sum (mod 2) of their single
syndromes.

Proof. Assume two bits Bl and B2. B could be x or p. Bl
belongs to the sets (Si,, Si,, . . ., Siy) and B2 belongs to
the sets (Sj;, Sja, . . ., Sju). If Bl is the only wrong bit
then at the decoder (the receiving end) the calculated
value for (pi, , pi,, . . ., piy) would be changed. Similarly,
if only B2 went wrong, then (pj,, pjs, - . ., Pjy) would be
changed. If both Bl and B2 went wrong then (pi,,
Play . . .y Pin, P15 Pi2s - - - Pin) Would be changed if the pi
and the pj subsets do not overlap. If these subsets overlap
then for those ps occurring in both subset the 2 changes
would cancel out. The result would be the (mod 2) sum of
both subsets which is the (mod 2) sum of the single
syndromes. Q.E.D.

Definition

The (Hamming) distance between any two words of
equal length is defined as the number of bits by which
they differ.
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Definition

The (Hamming) weight of a binary word is the number
of Is in the word.

Definition

If two sqaures differ by only the one set Si then one
square is said to be the image of the other with respect to
the Si axis.

Notice that in the single error correcting map of Fig. 1
the squares of any two bits have a minimum distance of
one.

The following Sections 3 and 4 are independent, i.e.
the reader could choose to read either first.

3. ERROR DETECTION

Hsiao* has introduced a class of optimal single-error
correcting double-error detecting codes which provide
faster and simpler hardware implementation. In what
follows these codes will first be deduced via the Karnaugh
map. These then will be generalized for t-error correction
(t + 1)-error detection. Conditions for fast hardware
implementation are discussed in Section 4.
Consider any single error correcting code, e.g. that of
Fig. 1. By adding another parity bit, p5, s.t. p5 = x1 +
-+ x11 4+ p1 + - - - + p4 the code becomes SEC-DED
(smgle-error correctmg and double-error detecting). In
the Hamming matrix> ¢ another row of 1s is added and
also another column [00001]". Now the set S5 contains
all the xs and all the ps. Since the newly added p5 is a
function of the other parity-check bits, this is serial
coding, and the circuit has to wait for p1, p2, p3, p4 to be
computed before it computes p5. It is desired that each
parity bit, including pS, be a function of the data bits
only so as to minimize encoding and decoding time. It is
also desired that the maximum time taken to obtain the
pis is minimal.
The Karnaugh map of the extended Hamming code
with the five parity check bits is represented in Fig. 2.
This is the image of Fig. 1(b) with respect to the S5 axis.
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If the syndrome lies in S5, the single bit corresponding to
that square is corrected; and if it lies in S5 there is a
double error somewhere, unless it lies in the N square,
then no error is present.

If each of the parity bits is to be a function of the data
bits only, then one could see that p1, p2, p3 and p4 should
be placed back in their positions as in Fig. 1, that is, pi
lies in the intersection of Si and Sk for all k # i.

A method obtained for correcting z-errors and detecting
any (t + 1) errors from a r-error correcting code that will
minimize circuit time delay is presented below. Here (by
adding one extra parity check bit), any given r-error
correcting code will become a r-error correcting and a
(t + 1)-error detecting code while keeping the property
that each parity bit is a sum of data bits only. Before
proving the general theorem some definitions and
preliminary theorems are due.

Definition

A binary word will be defined as even if its Hamming
weight (the sum of the non-zero bits) is even, and odd if
the Hamming weight is odd.

All sums in this paper refer to exclusive-or operations
or (mod 2) sums.

Theorem 2

The sum of any two odd words is an even word.

Proof. Suppose the two odd words are a and b, where a
has the odd weight r and b has the odd weight s. b is the
sum of canonical vectors, b;s(j = 1, 5), where each vector
b; has only one non-zero entry (and the sum of all the bs
is b). From this we get the following:

a+b=a+b +by+---+b

a + b, is an even vector, since a has an odd number of 1s
and b, has only 1. The even vector a + b, added to the
odd vector b, results in an odd vector, etc. Since s is an
odd number, the resulting vector a + biseven. Q.E.D.

Corollary 1

The sum of an odd word and an even word is an odd
word.

Corollary 2

The sum of any two even words is an even word.

The proofs for corollaries 1 and 2 are very similar to
that of Theorem 2 and thus will be omitted.

In a Karnaugh map each square is represented by a
binary vector. The square is defined as even if its binary
word representation (addresses) is even, and odd other-
wise. For example, in Fig. 1(b), the square where x7 lies
is[1, 0, 0, 1] corresponding to {S1, S2, $3, S4}; thus this
square is an even square. In any Karnaugh map exactly
half the squares are even and the other half are odd.
Figure 3 shows the odd and even squares in a Karnaugh
map of order 5, the shaded squares being the even ones.
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Figure 3. Shaded squares are the even squares.

Now, assuming that one starts with any single-error
correcting code, e.g. the Hamming code shown in Fig. 1,
and adds one more parity bit, the number of squares in
the map becomes twice its original size. To make the
above code double-error detecting as well, one proceeds
as follows. Move bit positions which originally lay in an
even square to their images around the S5 axis. That is,
such bits will belong to S5 as well as to their original sets.
Thus all bits now lie in odd squares. Since every bit still
lies in a square not shared by any other bit, the code is
still single-error correcting. If two errors occurred, then
the syndrome would be even, since from Theorems 1 and
2 the sum of any two odd syndromes is even. Thus, if the
syndrome corresponds to an even square, a double error
has occurred.

The parity-check matrix of Fig. 4 is as follows:

(=== )
(=R )
-0 O O

in terms of time; i.e. it results in minimum encoding and
decoding time. Observe that the single-error correcting
code has been extended to an SEC-DED code with no
addition in delay execution time. That is, the delay time

S45S2
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Figure 4. Single-error correction double-error detection with-
independent parity bits.

taken in encoding or decoding the new code (of Fig. 4) is
exactly the same as that of the original single-error
correcting code from which the new code has been
obtained. The delay time is governed by the time taken
to add (exclusive-or) the maximum number of bits in any
set. In both cases (Figs 1 and 4) it is 8 bits. The maximum
number of bits belonging to any set is the same as the
maximum number of 1s in any row in the matrix.

For the general case, it could be shown (Theorem 5)
that to extend a t-error correcting code to a t-error
correcting and (¢ + 1)-error detecting code with no
additions in delay time the following sufficient condition
should be satisfied: for the original t-error correcting
code the total number of even data bits should be less
than the maximum number of bits in any set of the code.

The above extension of the code to double error
detection could be reversed. That is, given an (SEC-
DED) code, constructed by adding another parity bit as
explained above, then by eliminating the last parity bit,
one gets back again a single-error correcting code.
Actually, this case is of a more general nature, for it could
be shown that by discarding any of the parity bits (not
necessarily the last one), the resulting code becomes
single-error correcting. This is generalized in Theorem 4.
One can see this fact directly from Fig. 4. For example,
assume that S2 is removed, then p2 is discarded: x5 will
fall in the square between p4 and x3, which is the image
of x5 with respect to the S2 axis, similarly, x9 will fall on
its S2 image, which is the square between pl and p3, and
x2 will fall on its S2 image, which is between x3 and x4,
etc. The resulting map will be single-error correcting
since each square is occupied by only one position for
each syndrome. In the corresponding parity-check ma-
trix, this means discarding any one of the rows and the
remaining zero column.

The reversal of the above extension of the single-error
correcting to SEC-DED could be generalized to any ¢-
error correcting codes.

The general theorems for error detecting are as follows.

Theorem 3

With any r-error correcting code, by adding one extra
parity bit and moving the positions of all single errors
originally occupying an even square in the Karnaugh
map to their image squares around the last added axis,
the code resulting is a r-error correcting (¢ + 1)-error
detecting code.

In matrix notation, this means adding another row to
the parity-check matrix and another column. The entries
of the row to be added would be 1 if the column above it
is even and 0 otherwise. The column would have 1 in the
(t + Dthrow, and 0 otherwise.

Corollary

For a r-error correcting code, if all the data bits occupy
odd squares, then the code is r-error correcting and
(t + 1)-error detecting as well.

Theorem 4

With any t-error correcting (¢ + 1)-error detecting parallel
code, whose single error syndromes are odd, by discarding
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any of its parity bits, the resulting code is a r-error
correcting one.

In matrix notation this means that in the parity-check
matrix, if any row is discarded (plus the remaining zero
column), then the resulting matrix is a parity check
matrix for a t-error correcting code.

4. -ERROR CORRECTION

In Section 2, it is assumed that only a single error could
occur in a codeword. If single as well as double errors
could occur and are to be corrected, then we need a
double-error correcting code. If a code is to correct double
errors as well as single errors then every data bit x, -,
every parity-check bit pi, and every double-error xi xj,
xk pl and pmpn should have a unique square location in
the map. Figure 5 is such a map. The code of Fig. 5
corrects 11 bits of which only 4 are data bits and 7 are
parity-check bits.

Unfortunately, there are many empty squares in the

S65452
S7S553S1\_ 000 001 011 010 110 111 101 100
0000 N P2 | P2P4a| P4 | PaP6| xap7|P2P6| P6
0001| P1 | PIP2|X1P3 | P1P4 | X2X3 P1P6
0011 | P1P3 | X1P4 @ X1P2 X1P6
0010| P3 | P2P3| X1P1 | P3P4 P3P6
0110 | P3PS X3X4 X3P7
0111 X1P5 | X2P7 X2X4
0101| P1P5
0100| P5 | P2P5 P4PS P5P6
1100 | PSP7| X1X2 X4PS X3P3
1101 X2P3 X1X3
11| X2P4 X2P2 @ X2P6 X3P1
1110 | X3P6 X2P1] X3P4 X3P2 @
1010 | P3P7 X4P3 X3P5
1011 X1P7 | X2PS X1X4
1001 | P1P7 X4P1
1000 P7 | P2P7|X4P6 | P4P7] X4P2 X4P4 | P6P7

Figure 5. Karnaugh map for a double-error correcting code.
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map. If another data bit x5 is to be placed, for the code
to be double-error correcting, eleven empty squares for
xSxii=1,...,4andx5pj(j =1, ..., 7) must be found.
This is not possible. Much research could still be
conducted in determining the maximum efficiencies of
codes, and in finding such codes. The following is an
algorithm for the construction of double-error codes.
This algorithm is easily extended to construct higher
order error correcting codes.

Starting from an empty map, first place all the check
bits pis in their squares, remembering that for parallel
encoding each pi lies in the corresponding Si only. Then
place all the double occurrences of pipj, Vi, j. The map is
now as shown in Fig. 6. Manually, to place double
occurrences e.g. pipj (which is, from Theorrem 1, equal
to pi + pj), one would check the sets that pi lies in and
change pj by those sets. For example, in Fig. 6, p1 lies in
S1 only, so to get plp2 one would change p2 by S1 only
(i.e. take the image of p2 around the S1 axis thus resulting
in plp2 as shown in Fig. 6).

Now the map is ready for placing data bits in squares.
To do so, search for an empty square for the first data bit

S6 5452
S§75553S1 \ 000 001 on 010 110 m 101 100
0000 N P2 |P2P4| P4 || P4P6 _ P2P6| P6
0001} P1 | PIP2 _ P1P4 _ _ P1P6
0011 |P1P3
0010 P3 | P2P3 P3P4 P3P6
0110 | P3PS _ _ ~
0111 _
0101 | P1PS
0100 | PS5 | P2PS P4P5 PSP6
1100 | pP5P7
1101
1
110
1010 | P3P7
101
1001 | P1P7
1000| P7 | P2P7 P4P7 _ P6P7

Figure 6. Starting map for any double-error correcting code. Map
is ready for placing data bits.
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x1 such that all its images with respect to all the set axes
(i.e. all occurrences of x1 pi, Vi) are empty. Once such a
square is found, assign x1 to that square and place all
x1 pi, Vi in their respective squares. For example, in Fig.
5, x1 and the images x1pl, x1p2, x1p3, x1p4, x1p5,
x1p6, x1 p7 are placed, the first four images happen to be
surrounding x1 in this case. Now it is seen that the
minimum distance of x1 from any other single (data or
check) bits should be three sets on the map (corresponds
to distance S in code words) or it is at least two sets from
the double-error squares. Thus it is time saving to mark
all squares whose distances from every placed (check or
data) bit are less than three sets. These marked squares
will never qualify to become a square for any other bit to
be placed. The marking is more easily done from double-
error squares since these marked to be squares are of
distance one from the already existing double-error
squares. These marks are shown as dashes in the lower
right-hand corner of some squares in Fig. 6.

After placing any data bit, repeat the following: search
for an eligible empty square for the next data bit xj such
that the corresponding squares for xj and all the xj xi for
all previously assigned xis are empty. If dashing as
explained above has not been done, then one should as
well search for empty squares for xj pi, Vi. If such a square
is not found, stop. Otherwise place xj and all its
corresponding double errors xjpi and xjxi in their
respective squares and repeat.

The above algorithm finds a solution but not the best.
That is, it does not place the maximum number of data
bits in the map. However, the computer time used to
reach and find such best known solutions (as in Ref. 7)
for the double-error correction case was comparatively
small. If one assumes that the code is A(/, x) where / is the
total number of bits and x is the number of data bits
placed, then for A(11, 4) the total time was 0.402 s, for
A(17,9) it was 1.013 s and for 4(22, 13) it was 2.035s.
These were run on The University of British Columbia
computer, the Amdahl 470 v6, Model II, using the time
consuming, but convenient, WATFIV compiler.

Codes correcting burst-errors of specific length could
also be obtained by modifying the basic algorithm. For
example, for burst-errors of length 2, each data and
parity-check bit and each consecutive error occurrence
of all the x(i — 1) xi, Vi, all the p(j — 1) pj, Vj, and the last
x with pl, should be allocated its own square. With an
almost exhaustive computer search it was found that
with six parity check bits, up to six data bits could be
coded; and with seven parity check bits, up to eleven
data bits were possible.

For higher order r-error correcting codes, the size of
the problem and computations become high. However,
there are methods to construct such codes where one
would work with smaller maps ; these will not be discussed
in this paper.

S. MINIMUM TIME DELAY

Here it is assumed that data arrive in parallel in a data
bus; all bits are accessed simultaneously and processed
simultaneously so as to minimize time delays.

At the encoder, the value of each pi is obtained by

exclusive-oring all the data bits lying in set Si. The values
of the pis are obtained simultaneously (in parallel). Data
bits are passed through inverted trees of exclusive-or
gates simultaneously. The resulting outputs are the values
of the pis. Assume that the parity check bit pj is the
exclusive-or sum of the largest number of data bits, let
this number be X. X could be written as 2" + R if the
exclusive-or gates have 2 inputs. For v-input exclusive-or
gates X = ¢" + R. Then the time delay is n(=log, X)
successive exclusive-or gates,if R=0andn + 1if R # 0.
Among codes of the same length it is desired to find those
which result in minimum ». This will be discussed later.

The decoder is basically composed of two stages. The
first stage obtains the syndrome S in the same fashion as
the encoder, i.e. binary trees of exclusive-or gates.
Exclusive-Nor could also be used, e.g. Motorola parity
trees MC40008, MC4008.2 The inputs to this stage
include the parity bits as well as the data bits. Assume
that the set Sj contains the largest number (X) of data
bits, and if X+ 1 =¢"+ R, then the time delay is
n(=log, (X + 1)),if R=0;andisn + 1 if R # 0.

Once the syndrome is obtained it becomes the input to
the second part of the decoder which eventually inverts
the erroneous data bits. The implementation of such a
stage could be done simply by programming the Kar-
naugh map code in a ROM or by having binary trees of
AND gates in parallel. For the latter each binary tree
corresponds to a syndrome Si and has as its first stage
some corresponding inverting gates. Now, if the incom-
ing signal is, say, 1001 then the only AND tree having
inverting gates at its first and fourth inputs will show a 1
as output. The time delay of this part is governed by the
number of parity check bits. If the code has p parity bits
such that p = v™ + R, then the time delay is m(=log, p)
successive AND gates,if R=0;andm=1if R #0.

Using a ROM for this stage is more convenient but
might be slower than using the parallel AND binary
trees. The code, as it is in the Karnaugh map, is
programmed in the ROM ; thus a syndrome becomes the
address of the memory location. So if the address points
to the memory location whose content is say xixj, then
the corresponding wires to these data bits are made high
and thus inverted.

For codes with a certain number of parity bits (and a
certain minimum distance) one would like to find those
codes which minimize the time delay of the first stage of
the decoder (or encoder). The second stage is governed
by the given number of parity bits. The rest of this section
is devoted to the first stage.

In Section 3 the sufficient condition for a t-error
correcting code to have the same delay execution time as
a t-error correcting (¢ + 1)-error detecting code was
stated. The delay time is determined by the number of
binary bits to be exclusive-ored.

This will be stated as the following theorem.

Theorem 5

It is possible, by adding one extra parity bit, to extend a
t-error correcting code to a t-error correcting (¢ + 1)-error
detecting code, with no addition in the maximum number
of bits to be summed (exclusive-ored), if the total number
of even data bits in the ¢-error correcting code is less than
the maximum number of bits in any of its sets.
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As an example, consider the double error correcting
code shown in Fig. 5 whose parity check matrix is

1100 ]

1
1
1 1
0
0

0
1
0
1
1
1

001
110
101
110
011
111

L0

There are three even data bits x1, x3 and x4 (correspond-
ing to the first, third and fourth columns). This is less
than the maximum number of bits in sets 3, 4 and 7
which is 4. By extending this code to triple error detecting,
the eighth row to be added will be [1011, 00000001] which
contains four 1s and thus the delay time will not be
increased. If v = 2, this code will have a delay time of 2
(since there are three exclusive-ors for encoding and four
for decoding).

But if one considers the following double error
correcting code which has the same length as the one
above

1
0
0
H, 1
1
1

Il
O O = = e
—_—— O = OO

0
1
0
1 1
0
1
1

L0001 ]

and extends this code to a double-error correcting triple-
error detecting code, the time lag will be increased from
two to three successive exclusive-or gates (509 increase).
For t-error correcting codes a lower bound for the
maximum number of bits to be exclusive-ored could be
obtained. This is stated in the following theorem.

Theorem 6

For a t-error correcting code with n data bits and p parity
check bits, the lower bound on the maximum number of
bits to be decoded in obtaining any one bit of the
syndrome is

2t

= (n : ) +1, if nx 2 has no remainder
2t

X +2, if nx2 has a remainder

Proof. For a t-error correction code the syndrome of any
data bit should contain at least 2¢ non-zero elements.
This is because the square for xipl p2 . . . p(t — 1) should
be distinct from the square for ptp(t +1)...p(2t — 1)
(e.g. for a double error correcting code the syndrome for
the xipl error should be different from the syndrome for
the p2 p3 error). And since there are n data bits altogether,
the number of 1s in all the syndromes of the data bits
must be at least (n x 2¢). That is if the parity check
matrix H is written as H = [hl:7], then A1 must contain
at least n x 2t non-zero elements. The A1 submatrix is a
[p x n] matrix. Therefore, at most, (n x 2t)/p columns
could be completely filled by 1s if (n x 27) is divisible by
p;or(n x 20)/p + 1 otherwise.
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Now to minimize the maximum number of 1s in any
row of hl, the best that can be done is to fill (n x 21)/p
( + 1 if remainder # 0) columns of 41 by 1s. Thus (n x
2t)/p + 1 (+1) is the minimal largest number of 1s any
row of H could possibly have. Q.E.D.

Corollary

For a t-error correcting (¢ + 1)-error detecting code with
n data bits and p parity check bits, the lower bound on
the maximum number of bits to be decoded in obtaining
any bit of the syndrome is

1
2D L a2 + 1)is divisible by p

= n(_2t__+_1) + 2 otherwise

As an application example to the above corollary one
could see that the code of the single-error correcting
double-error detecting code of Fig. 4 (with 11 data bits
and five parity check bits), would lead to a minimum
delay time execution. This is because there are eight bits
to be exclusive-ored in every one of the five binary trees,

S65452

$75553ST\__000 001 011 010 110 111101 100
0000| N | P2 | P2P4| P4 |PaPs P2P6| P6
0001| P1 | P1P2|X3P5 |P1P4 | X2P3 P1P6
0011 | P1P3 | X1P7 X2P6 @ X2P2 X2P4
0010| P3 | P2P3 P3P4 | X2P1 P3P6
0110 P3PS X2X3
011 X3P3 X2P5| X4P7
0101 | P1PS | X3P4 @ X3P2 X3P6
0100| PS5 | P2PS | X3P1| P4PS| X1x4 P5P6

1100 | PSP7 | X2X4

1101 X3P7 X4P3

mm X1PS | X4P6 X4P2 X4P4

110 X1X3 X4P1

1010{ P3P7| X1P1 X3X4

1011 | x1P2 @ X1P4 X2P7| X4PS| X1P6

1001| P1P7| X1P3

1000 | P7 P2P7 P4P7 X1X2 P6P7

Figure7
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and this coincides with the lower bound which is 8 (the
integer part of [(11 x 3)/5] + 2).

As an application example of Theorem 6 it will be seen
that for a double-error correcting code with n = 4 and
p = T the lower bound on the delay time is the time taken
to exclusive-or [(4 x 4)/7 + 2] = 4 bits. The codes written
above with the parity check matrices H and H, each
have a delay time of 4 exclusive-ors at the decoder and as
such are optimal codes. But the equivalent double-error
correcting code of Fig. 7 has a delay time of five exclusive-
ors and, as such is non-optimal. The parity check bit
matrix of Fig. 7 is

H2=

-

O O = O

SO = O =

p— ek et ekt
~

As mentioned in Section 4 the computer program
generates many different possibilities of codes with a
certain number of parity check bits. When choosing
among the different largest codes of a given length and
minimum distance, the computer chooses the ones with
the minimum delay time.

6. CONCLUSION

The above represents an approach to error detection and
error correction using the Karnaugh map. This approach
is basically a geometrical extension of the Hamming code
(most of the other existing methods are basically algebraic
extensions).’ The main advantage of this approach is its
simplicity. Knowledge of advanced mathematics is not
needed for constructing codes or for using them. The
theory involved, though simple, extends to t-error
correction and detection for all z.

Coding is done simply by placing data bits in a
Karnaugh map of S variable sets, S being the number of
parity-check bits. Then bits representing parity check
bits and data bits are placed in the map so that they vary
by a certain number of map sets depending on ¢, ¢ being
the order of error correction or detection. The codes
obtained (or obtainable) are comparable to those best
known.

For computer systems speed is a crucial factor.
Therefore, encoding and decoding should be processed
in parallel where possible. The codes produced with this
approach are directly designed for parallel processing.
Error correction and or detection have been introduced.
Original results on detection were also found. It was also
shown that burst codes for parallel processing could be
constructed. (However, this approach is more suited to
design codes dealing with certain specific bursts.)
Conditions and lower bounds on time delays in the
hardware implementation were found. These help find
optimal codes which lead to minimum time delay
implementation.
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