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The development of problem-oriented hardware has become a possibility as a result of current technological advances.
New machine architectures can now be defined, reflecting the high performance requirements which are set by specific
application areas. Large-scale discrete time simulation is a problem area which demands high-speed processing,
especially within the realm of real-time applications. The natural parallelism which characterizes many real-life
dynamic systems and remains unexploited in the environment of uniprocessor machines, points decisively towards
multiprocessor structures. Although the process-oriented simulation languages have proved very effective in
accommodating this kind of parallelism in the corresponding simulation programs, their execution in the uniprocessor
machines reverts the situation back to the unhappy reality of serial execution of otherwise independent tasks.
SIMULA-67 is a process-oriented language specifically designed for advanced and complex software simulation
products. The process structure of SIMULA allows for the definition of concurrent tasks within a SIMULA program
which can be executed in parallel within the environment of a multiprocessor system. The analysis and the basic
software architectural scheme for a parallel SIMULA machine (PSM) have already been reported by the authors in a
previous paper. In the present paper a hardware organization of a PSM is presented. A system architecture is explored
which is conceived so as to implement efficiently the execution algorithm (process co-ordination and synchronization
algorithm) which has been outlined by the authors in previous papers. The architecture is based upon the master/slave
system topology. It incorporates a central controller microprocessor and a number of satellite microprocessors. The
interconnection circuitry between the microprocessor modules involves a time-sharing system bus and various
programmable interrupt control units. Common and private memory modules reside in the system, and DMA transfers
are employed to alleviate the controller’s workload. The time operational features of the parallel SIMULA machine

are also described.

INTRODUCTION

The development of problem-oriented hardware has
become a possibility as a result of current technological
advances. Much of the research in this area has focused
around the development of high-level language architec-
ture, the computer architecture that has been designed to
facilitate the implementation of specific high-level pro-
gramming languages. Apparently, new machine architec-
tures can now be defined, reflecting the high performance
requirements imposed by specific application areas.

A problem area that demands high-speed processing
is large-scale discrete time simulation. SIMULA-67"2 is
a general purpose programming language particularly
offered for describing and efficiently simulating large-
scale systems. The process structure of SIMULA-67
allows for the definition of concurrent activities decisively
pointing towards parallel execution within a multi-
processing environment.

In this paper we analyse the basic architectural
considerations of a parallel SIMULA machine (PSM)
aiming to achieve fast processing rates.

The software architectural mechanisms for the PSM
have already been covered in previous papers.* For
clarity we briefly introduce here the main notions of this
concept.

* Present address: University of Patras, Department of Computer
Sciences, Patras, Greece.

The PSM uses a particular information structure
containing a detailed record of SIMULA process activi-
ties. This information structure caters for the parallel
evolution of SIMULA processes by providing suitable
information obtained both at compile and run-time
levels.

This information structure also denotes the identifica-
tion of SIMULA processes on a producer (P)/consumer
(C) basis. This distinction results from an individual
syntax rule of the SIMULA language. The P/C process
classification is fundamental to establishing parallelism
in the PSM.

In order to ensure the correct evolution of SIMULA
processes within the PSM an executive algorithm has
been developed. This executive algorithm constitutes the
kernel of the PSM operating system and has as main
functions to:

(i) dispatch SIMULA processes to processors according
to certain dispatching rules elaborated in Ref. 3

(ii) deal with synchronization phenomena either im-
posed exclusively by critical sections, or related to
the synchronization imposed by specific SIMULA
commands appearing within the critical sections.
These two synchronizing modes have been exhaus-
tively presented in Ref. 4.

In the following sections we propose the PSM architecture
that is based upon the master/slave topology. This
architecture incorporates a central microprocessor (mas-
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ter) and a number of satellite microprocessors. The
interconnection circuitry between the microprocessors
involves a time-sharing system bus and various pro-
grammable interrupt control units. Common and private
memory modules reside in the PSM, and DMA transfers
are employed to alleviate the master’s workload. Finally,
the operational features of the PSM are also described.

PARALLELISM IN SIMULA

An attempt to achieve parallelism within the SIMULA
environment must be oriented towards a successful co-
ordination of control among the various processes
comprising a SIMULA program. Parallelism between
processes can be first investigated in the structure
exhibited by the program text which can be thought of
as comprising the program’s static portrayal or its static
level. A SIMULA program’s static portrayal is composed
of the program’s definition structure including the various
class declarations, the program statements and finally all
the variables entitled to be accessed by any class declared
within the simulation program. Such variables are
referred to as ‘system variables’. This means that
parallelism detection can be initiated at program static
level and prior to the actual execution of the SIMULA
processes. This is due to the fact the program text reflects
the structure of the computation.

The PSM environment should not only cater for the
detection of disjointness but should also recognize the
various interaction points contained within the class
contexts of the program at declaration level. Process
interaction is affected :

(1) Through the interruption of processes in the midst of
their execution in order to issue certain SIMULA
commands, possibly affecting their status or the status
of some other process participating in the simulation
program. Such commands are named ‘communica-
tion commands’ and include all the conventional
SIMULA commands such as ‘(Re)activate’, ‘passi-
vate’, ‘hold’, ‘cancel’, ‘wait’ and the two primitive
procedure calls ‘detatch’ and ‘resume’.

(2) By the fact that a certain process is about to generate
a new process via a call to procedure ‘new’.

(3) Because the processes participating in the simulation
program use system variables. System variables
include all simple variables, procedures, arrays and
references global to the environment of every SIM-
ULA process participating in the parallely executed
program.

The software tool that will detect potential parallelism
at static level is a recognition mechanism. The SIMULA
parallel process recognizer (SPPR) is a program that
accepts SIMULA source programs as input, scans them
on a line by line basis and generates tables containing all
static level information, i.e. the system variables table or
SV-table, and the class templates (CTs).

In particular, the SV-table shows the classes and
therefore, the potential processes that refer to a specific
system variable. On the other hand, the CTs provide the
lifetime record of actions of a particular class, tabulating
all communication commands issued on behalf of this
class; they also show the chains of classes related on a
producer/consumer basis.

As the program progresses through its various execu-
tion stages its behaviour starts becoming dynamic in the
sense that processes start being generated and interacting
asynchronously at unpredictable rates. It is a generally
acceptable fact that the majority of SIMULA programs
consist of a number of interacting rather than of disjoint
processes.

Information that can be collected at static level is
necessary but not sufficient in order to establish parallel-
ism at execution level. Indeed, precedence relations
dynamically evolving among the various processes, as
well as the finite number of processors in a multiprocessor
system, establish requirements imposing run-time action.
Precedencerelations accrue from the event- time attribute
inherent in each SIMULA process. It is exactly the
combination of information collected both at compilation
and run-time levels that enables the parallel executable
processes (or groups of process statements) to be
efficiently determined at any time.

To accommodate run-time information the two-way
circular list (SQS) of the uniprocessor SIMULA system
is appropriately extended. This extended SQS (ESQS)
along with the SPPR output tables compose the ‘SIM-
ULA process interaction structure’ (SPIS) (Fig. 1). In
addition to the SPIS there must be introduced a
mechanism for efficient interprocess communication, so
that the various SIMULA processes constituting a
simulation model can transmit requests and wait for
completions of results. There must also be a mechanism
acting as a processor manager to start up any processor
in the system and interrupt it when requested, and an
additional mechanism to synchronize and share proces-
sors’ time among the SIMULA processes. All these
responsibilities in the PSM are absorbed by a fundamen-
tal system software module called the ‘executive algo-
rithm’. In reality the executive constitutes the kernel of
the PSM operating system and is responsible for the
process flow management in the PSM.

PROCESS FLOW MANAGEMENT

The executive algorithm is needed to guarantee the
correct flow of SIMULA processes in their parallel
environment. The main function of the executive
algorithm is to control the evolution of the system in
terms of co-operation of processors with processes so that
determinacy is not violated.

The executive algorithm provides mechanisms for:

(a) interprocess communication, so that the various
processes can transmit requests (commands) and
wait for completions

(b) management of processors by starting up the various
processors in the multiprocessor system and by
handling their interrupts

(c) sharing CPUs’ time among the processes by allocat-
ing—deallocating processors to them when appropri-
ate.

The executive algorithm incorporates specific procedures
which overcome issues arising during parallel operation
of processors, synchronization problems and deadlock
embracements. In the following we discuss briefly the
three procedures embedded in the executive algorithm,
i.e. the initializer, the dispatcher and the synchronizer.
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Figure 1. SIMULA process interaction structure (SPIS).

The SIMULA uniprocessor system orders the various tion points among processes to be executed in parallel

processes within the SQS, during the initial phase of must be gathered from the SPIS.
SIMULA programs, according to the user program
statements so that the program execution can commence.
The same approach is retained within the PSM; the only
difference is that the process ordering is now taking place
in and affects the ESQS, while the initializer undertakes
the task of allocating processes to processors.

After the initial dispatching of processes among the THE PSM HARDWARE STRUCTURE
various system processors, and as the simulated system
progresses, its behaviour becomes dynamic, as frequent
activation, removal and suspension of processes occur.
As a result, a continuous rearrangement of processes
inside the ESQS is effected; thus more sophisticated
dispatching rules are now required. The application of
these dispatching rules has two main objectives:

All of the above mentioned principles appear in the
hardware and functional analysis of the PSM which will
be covered in the following sections.

The PSM comprises a number of microprocessors
connected on a master/slave topology basis. The slave
(satellite) microprocessors communicate asynchronously
with the master processor by means of interrupt signals
resolved by the PSM interrupt circuitry. For the PSM
purposes the satellite CPUs contain their own private

1. To maximize the number of processors that are used memory modules, while using the system common
at any given time. memory. A communication path is also provided to

2. To minimize the system reconfiguration overheads. It guarantee efficient interfacing between the master and
is the responsibility of the dispatcher to apply the the satellite processors. This interface circuitry consists
dispatching rules, described in Ref. 3, and fulfil the of the various PIA devices attached to the master and
above objectives. Finally, the synchronizer caters for satellite processors as shown in Fig. 2. In essence, each
implementing proper sharing relationships on system individual PIA provides all necessary communication
variables accessed by these SIMULA processes. This and hand-shaking operations. The interface circuitry also
approach should be implemented in a well-defined comprises the system interrupt controllers and the various
manner so as to allow deterministic behaviour on DMA devices.
behalf of the program and preserve integrity of the The PSM is an interrupt driven system. Therefore
system variables, as well as to design this synchronizer there exists a need for the resolution of multiple interrupts.
mechanism efficiently. Thus time-dependent interac- The PSM interrupt circuitry contains a single PICU

256  THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

20z udy 01 U0 188nB Aq $08.9€/4SZ/E/LZ/10M4e/|ufL00/W0d"dNO" oIS PEDE//:SARY WO.) PAPEOUMOQ



ARCHITECTURAL CONSIDERATIONS OF THE PARALLEL SIMULA MACHINE

Diskette drive
Printer

Diskette Line
System System 170 drive printer
memory memory DMA controller interface
(RAM) (EPROM)
Address bus
N
Master |-Control bus | il Il 1 [l 11| I | ]]i
CPU  Data bus | RV T U T T T 0 1 il
LN
I gL ff ol 40 Jil
pMa  [HIS Input CRT USART 1/0
f:‘.) Master controller port controller : PICU
N :
PICU ﬁ " = ) ﬂ f C
ASCII Inter4
nﬁﬂ Master CRT Host
i T || PIA keyboard d.eco‘.jt‘“g — VDU gf,‘";fp. computer
Wl Stave DMA character tor
=] PICU ¥5| |Pcontrolleri= generator
No.1 (2)
Slave DMA =]
b ricu kI controller k=]
No.N M)
} —l
& [ ‘“
PIA (K)
. PIA (1 . PIA (2)
Satellite @ Private | Satellite Private Satellite Private
CPU (1) b system | CPU(2) g system CPU (K) H system
b Y = BEEETEE B O N
g bus 0 bus 0 bus
Private No.1 Private No.2 Private No.3
memot (1) memory (2), ﬂ memory( K)|
N

Figure 2. The PSM hardware structure.

(programmable interrupt control unit) termed the master
PICU which controls a specific number of slave PICUs
in cascade. The DMA control circuitry relieves the
master CPU of the burden of large data transfers towards
the satellite circuitries.

The satellite circuitries comprise the satellite proces-
sors, their private PIAs, their private buses and private
RAM memory modules.

The private memories are dual port memory devices
and obviously communicate with their associated proces-
sor by means of their private bus, although they can use
the system bus when necessary.

It is apparent that there exists a continuous communi-
cation path between the various memory modules and
the system shared memory. On the other hand, private
memory modules are prohibited from exchanging mes-
sages with each other, since all memory intercommuni-
cations are accomplished via the PSM shared memory.
The system memory (shared memory) consists of RAM
and EPROM modules. The RAM modules contain the
SIMULA executable code and the information struc-
tures.

The PSM uses a time-shared bus topology. Although,
time-shared bus configurations suffer from throughput
limitations the design objective of the PSM was such that
all potential bottlenecks were diminished.

The outline of the PSM functions does not take into
account the i/o facilities of the PSM which appear in Fig.

2. This is due to the fact that the i/o techniques followed
are standard and have been extensively covered in the
relevant literature.

THE PSM FUNCTIONALITY

The PSM is a tightly coupled multi-microprocessor
system® and accepts SIMULA executable code as
compiled by a supporting host mainframe device. The
host machine system could be any general purpose
computing system supporting the SIMULA compiler, or
even the S-PORT system® which aims at SIMULA
portability, thus simplifying the choice of the host
machine. Along with the SIMULA code the PSM accepts
the appropriate information structures.

These structures are constructed by a software prepro-
cessor module (SPPR) resident on the host machine,
scanning source SIMULA programs only.

Figure 2 depicts the PSM architecture which could be
classified as a master/slave multiprocessor configuration.
The PSM can communicate with the external world (host
computer) by means of a USART module. This device
accepts the code from the host machine in a serial fashion
and converts it into parallel format for the PSM
requirements. The PSM shared memory (RAM) receives
the SIMULA executable code, and the information
supporting software modules. The system memory also
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consists of the EPROM memory modules containing the
executive algorithms. These algorithms support and
guide the various PSM functions.

SIMULA processes that can be executed in parallel
must be distributed to the private memory modules by
means of DMA techniques. It is evident then that the
process executable codes are loaded within the private
RAM modules with no processor involvement, since the
master uCPU is electrically isolated from the system bus
during DMA cycles. It must be mentioned that process
executable codes are placed within the private circuitry
RAMs according to their priorities. Private satellite
modules that have already been loaded with process
executable codes can commence execution while the code
transfer technique is in progress.

In the case that the transfer tasks of the process
executable codes into the private satellite modules has
notterminated, and a particular process already executing
reaches a point where there arises a necessity for a
synchronization or co-operation activity, then this proc-
ess must be suspended. The process must remain
suspended until the transfer task of the process executable
codes has been terminated. The flow chart of Fig. 3
shows clearly the details of the transfer-code task.

SIMULA processes during their parallel evolution are
normally highly interactive. This interaction results in
process co-operation and synchronization activities.
Process co-operation activities are the outcome of the
execution of certain SIMULA commands called com-
munication commands,® e.g. hold (t), passivate, re-
activate, etc. Process synchronization activities are due
to the sharing relationships imposed on common varia-
bles accessed by SIMULA processes. We distinguish two
synchronization modes:*

(i) the V-mode specifically related to the synchronization
imposed by the critical sections within the various
processes

(ii) the C-mode related to the synchronization imposed
by the SIMULA communication commands within
the critical sections.

Whenever a satellite processor attempts to execute a co-
operation or synchronization activity itissues an interrupt
signal. This interrupt signal is finally received by the
master PICU which forces the system to suspend its
executional progress. In the case that several interrupts
occur concurrently the master PICU must determine
which request must be serviced first, based upon the
priority of the events causing the interrupts. The priority
of the events causing the interrupts is determined from
the event time attributes of each executable SIMULA
process.! The interrupt mechanism is implemented in
such a way as to preserve the volatile environment of the
satellite processors and to direct the master CPU to
resume execution of the appropriate interrupt service
routine. The PSM employs a non-pre-emptive policy’ in
the case of simultaneous interrupt requests.

Dispatching of processes to satellite processors is
achieved by a procedure of the executive algorithm
running on the master CPU and is based on a pre-
emptive strategy. The dispatching function is affected by
the execution of certain co-operation activities, such as
the execution of some specific communication commands
that take as parameters references to processes. A set of
dispatching rules have been formulated in Ref. 3 in order

258 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

Deduce the
number of
processes

to run in parallel

Load process
code with 1st |
priority

1

Notify its
private PIA

{

PIA Generates
interrupt

Interrupt has

been processed
place P1As address
on address bus

Load private
memory (DMA)
associated with
above PIA

Has
process-code

been
exhausted?
no
yes
Execute
process-code
Co-
operation
"% synchronize
activity
needed?
yes
Freeze no As"codes yes ?i::aot'iv:n Exit to
process proces A according to despatcher
loaded? rules

Figure 3. The process code transfer function.

to implement the proper process distribution within the
PSM.

Hence the PSM resolves all problems emerging during
the parallel evolution of SIMULA processes in a strictly
deterministic fashion, so as to ensure program consistency
and data integrity while achieving fast processing rates.

SYSTEM SIMULATION

To study the system process load variations and its overall
behaviour under the direction of the executive, the PSM
has been simulated by using a slightly modified version
of the OASIS software prototyping system.®® OASIS is
an extension of the SIMULA programming language
which supports the development of prototype software
for multiprocessor architectural configurations. OASIS
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has been designed for developing prototypes of distrib-
uted software and simulating the execution of these
software prototypes on modelled hardware. The OASIS
implementation provides both a specification of network
software and a prototype which can be simulated to
verify design adequacy and predict network performance.
It defines abstract types in the form of prefixed SIMULA
classes for characterizing the device, memory and
processor hardware of a given multiprocessor system for
implementing distributed tasks, and for simulating the
execution of these tasks on the modelled hardware. These
abstract types are DEVICE, PROCESSOR, MEMORY,
SEGMENT and MODULE; they respectively represent
arbitrary computer system ‘peripheral devices’, ‘CPUs’,
‘information storage devices’, ‘units of information’ and
‘chunks of executable code’. Moreover, each of these five
abstract types defines attributes in the form of SIMULA
variables or procedures representing state information or
actions performed by objects of that type.

The PSM hardware and software sections have been
implemented either as instances or as instances of
extensions of the above abstract types; thus specific
features of the PSM design have been efficiently
described. Hence the PSM computer model structure has
been accurately described in terms of both software and
hardware, and some useful conclusions have been
reached. The structure of the PSM simulator along with

the results obtained and the deductions drawn will be
reported analytically in a future publication.

CONCLUSIONS AND FUTURE DIRECTIONS

The main issues involved in both the hardware and
software design of a multiprocessor system for parallel
execution of SIMULA programs have been presented.

An efficient hardware structure has been shown to
execute SIMULA programs in parallel under the direc-
tions of a versatile system executive whose design was
strongly influenced by the language features.

This research project is now in progress and certain
simulation programs have been developed in both the
directions of the hardware and software areas of the
PSM. This simulation study intends to draw deductions
concerning the statistical analysis of evolution of SIM-
ULA processes within the PSM structure and also
estimate the percentage amount of involvement of each
satellite CPU in the various computations of SIMULA
programs. This simulation project will, eventually, draw
up guidelines concerning the performance of the PSM
structure. It will also finally determine the optimal
number of satellite processors in conjunction with a wide
range of sample SIMULA programs related to the field
of large-scale advanced simulations.
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