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In this paper, we present a re-circulating systolic sorting array and two sorting algorithms. The correctness of these
algorithms is proved and general operational constraints are examined. These algorithms are amenable to VLSI
implementation owing to the following attributes: (1) the simple control patterns of the algorithms, (2) the regular,
repetitive and near-neighbour type of interconnection among the comparators, and (3) the systolic data movement.
The sorting array is also well-suited for fabrication on shift-register type of storage and logic devices—such as
magnetic bubble memories (MBMs) and charge-coupled devices (CCDs)—because of its closed-loop structure. The
number of comparators and sorting time are both in O(/V) where N is the number of items to be sorted. A hardware
termination method is incorporated into the control unit of the sorter, so that the sorting process can be terminated
within a bounded time after the input list is in the desired order.

ABBREVIATIONS

N: Number of input items
C, Column # : Number of columns
R, Row # : Number of rows
P, Comparator # : Number of comparators
i: Loop index
J: Moving position index
J: Fixed position index
M;: Initial marker’s position in loop i
t: Comparison cycle time
«“*». A marker

1. INTRODUCTION

Sorting is an important operation in business and
computer engineering applications.' Many standard and
novel sorting algorithms can be found in the litera-
ture,’~® some of them are optimal in time complexities,
some in the number of comparators, whereas others lay
emphasis on architectural designs—processor intercon-
nections, data flow, control strategies and implementa-
tion technologies.

In this paper, we present a parallel sorting network
which embodies the concept of systolic architectures.?
Systolic systems are characterized by their data flow
pattern: once data are loaded from the memories, they,
and/or their intermediate results, circulate within the
systems along predetermined paths provided among the
processors, and every processor accepts and distributes
data from and to its neighbours in a rhythmic fashion,

analogous to the pulsations in the arteries caused by the.

recurrent contractions of the heart.

A major advantage of such systems lies in the fact that
processor-memory communications are involved only
during the loading of the input data and unloading of the
final results. Therefore, there is no delay due to bus
contention and memory fetch conflict during computa-
tion time.

A description of the systolic sorter and two examples
are given in Section 2, and then two algorithms, two
marking schemes and the constraints of the sorter are

presented in Section 3. In Section 4, the algorithms are
analysed and their timing complexities are discussed.

2. THE RE-CIRCULATING SYSTOLIC SORTER
(RSS)

2.1 Network description

A schematic diagram of the proposed re-circulating
systolic sorter (RSS) is given in Fig. 1.

The RSS network consists of an array of ‘quadruple’
comparators which are arranged into R rows and C
columns. The whole array is articulated by 2R circular
loops as shown. Each of the quadruple comparators holds
and sorts four items during a comparison cycle, except
those situated at the top and bottom of the array and
located in the odd-numbered columns. Only the upper or
lower portion of these comparators is used.

During the initial loading phase, all the loops are
opened at the Input/Output switch and are connected to
the input lines. Data items enter the network through the
loops in a serial manner, with neighbouring loops shifted
in opposite directions. When the network has been
loaded, the input lines are disconnected and all the loops
are closed. Before sorting commences, the comparator
array has to be ‘marked’. The purpose of the marking
process is to place a marker in a certain position within
each loop, to indicate the beginning and the end of that
loop. The convention adopted here is that the markers
are associated with the ‘heads’ of the loops, and the
positions on the right-hand sides of the markers are the
‘tails’. The readers may refer to the examples given in
Figs 2(a) and 2(b), in which the markers are represented
by asterisks. Note that the marking schemes—i.e. the
ways to place the markers on the array prior to sorting—
used in Figs 2(a) and 2(b) are different; they will be
referred to as Scheme A and Scheme B, respectively.

After the marking procedure, one of the RSS algo-
rithms will be applied to the array. During a comparison
cycle, data items are compared and exchanged within
the quadruple comparators; if a pair of items has to be
exchanged, their associated markers, if there are any, do
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Figure 1. The re-circulating systolic sorter with its control unit.
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not move with them; instead they will remain where thay
are. However, between successive comparison cycles,
when the items are shifted, the markers will be shifted
along with the items.

A schematic diagram of the control unit used is also
presented in Fig. 1. This unit generates the control signals
(‘Opcode’ in Fig. 1) to indicate one of the operations to
be performed by the comparators: (1) vertical compari-
son, (2) horizontal comparison, (3) diagonal comparison
and (4) shift operation. At the end of each comparison
cycle, the control unit also tests the status of the array
(‘exchange/no exchange’) to see whether any exchange
has taken place during that cycle. It also has a cycle
counter, which keeps track of the current number of
consecutive ‘no exchange’ cycles. In other words, the
content of the counter is incremented upon entering a
new cycle, and is reset whenever there is at least one
exchange in that cycle. When the count reaches twice the
number of columns (i.e. count=2C), a termination
signal will be generated. At this stage, the input items
have been sorted into a linear list. As demonstrated in
Figs 2(a) and 2(b), the first item of the sorted list is
accompanied by an asterisk in the uppermost loop, and
the last item is on the right-hand side of the asterisk in
the lowest loop.

2.2 The quadruple comparator

The quadruple comparators have a higher logic density
than the binary comparators used in other sorting
networks, but the number of input/output lines per
comparator of the former is only slightly more than that
of the latter. Figure 3 gives a sketch of the input/output
configuration of a quadruple comparator.

In addition to the two sets of input and two sets of
output data lines, there are four single-bit lines used for
shifting of markers along the two loops connected to the
comparator, one line for clock signal, one line to indicate
whether any exchange has taken place during the current
comparison cycle, and two lines for the opcodes.

Essentially what a comparator unit accomplishes is the
following. If it is located in an odd column, it pushes the
smallest of the four items which it holds to its upper right
neighbour, and the largest to its lower left neighbour. If
it is in an even column, it retains the smallest and the
largest items in its upper right and lower left positions,
respectively. However, when markers are present inside
the comparator, the situation becomes somewhat differ-
ent and will be described in Section 3.1.

2.3 Examples

Two examples with three columns (C = 3), three rows
(R = 3) and eight comparators (P = 8) are presented in
Figs 2(a) and 2(b). After the initial loading and marking
procedures, Algorithms I and II are applied to the
examples in Figs 2(a) and 2(b), respectively. The contents
of the comparator array are shown for the first and the
last two cycles. Both input lists are sorted into ascending
order. At the end of the last cycle, the minimum of each
loop is indicated by the marker, and the direction of
increasing values is from right to left. All the numbers in
a given loop are more positive than or equal to those in
the next loop above.

3. THE RSS ALGORITHMS

For the convenience of illustration, the symbols shown
in Fig. 4 will be used throughout this paper.

The direction of comparison is used to show the
ordering of items after each comparison. In Fig. 4(a), the
solid arrow head indicates the position of the larger item
for ascending order. If, on the other hand, descending
order is desired, then the arrow head indicates the smaller
item. Without loss of generality, ascending order will be
assumed in this paper. The open arrow of Fig. 4(b) is
used to indicate the direction of movement for both the
items and the markers during the shift operations.

3.1 The comparison/exchange/shift operations

The four operations performed by a comparator are
depicted in Fig. 5 and are described below:

1. Vertical comparison: the two items on the upper
portion of the comparator are compared to the two at
the bottom in parallel, with the directions of compar-
ison pointing downward. The presence of the marker
is ignored.
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Figure 2. (a) An example to illustrate RSS Algorithm I, (b) Anexample to illustrate RSS Algorithm II.
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Figure 3. The schematic diagram of a quadruple comparator unit.

2. Horizontal comparison:

Case (i). No marker is inside the comparator: the
two items on the right portion of the comparator
are compared to the two on the left in parallel, with
the directions of comparison pointing to the left.
Case (ii). One or two markers are inside the
comparator: when a marker appears on the left
portion of the comparator, the corresponding
direction of comparison points to the right; other-
wise it points to the left.

Note that in the horizontal comparisons, the direction
of comparison always points from right to left, unless
both the head and tail of a loop are involved in the
comparison—i.e. when the marker appears on the left
portion of the comparator, then the direction is reversed.
This reversal prevents the minimum and maximum items
in a loop from crossing over each other, and it is achieved
by the actions taken in Case (ii) above.

3. Diagonal comparison: the two items on the upper
portion of the comparator are compared to the two at
the bottom in parallel, with the directions of compar-
ison pointing downward and crossing each other.

At first glance, the diagonal comparison involving
the top right and lower left items seems redundant,
because these two items are already in order after the
vertical and the horizontal comparisons. However, it
is useful when two markers appear on the left portion
of the comparator simultaneously. Furthermore, the
top-left and bottom-right comparison provides an
exchange not provided by the combination of the
vertical and the horizontal comparisons.

4. Shift:

Case (i). If a comparator is located in an even
column, its top two items are shifted to the left, and
its lower two items are shifted to the right.

Case (ii). If a comparator is located in an odd
column, its top two items are shifted to the right
and its lower two items to the left.

Head
(a) I or l b ———

Tail

Figure 4. The symbols used. (a) Direction of comparison. (b)
Direction of shift.

Operation Actions
1. Vertical
comparison
time = ’C
2 Horizontal  |Case(i) no marker Case (ii) markers are
comparison is involved involved
time =’C I l ol I -l l
3. Diagonal
comparison
time = lc
4 Shift Case (i) for comparators |Case (ii) for comparators
| inevencolumns | j n
——— H —>—
time = £,
me=ls > L—J fo— | —A l—l ——

Figure 5. The 4 operations performed by the quadruple compara-
tors.

3.2 Algorithm I

This algorithm involves only operations 1, 2 and 4, and
is described in the following program fragment written
in Pascal:

Program Systolic_Sorter:
Var
Terminate : boolean;
Column # : integer ;
Row # : integer;
Comparator # : integer,
Exchange : boolean;

(*to indicate whether any exchange has taken place
during a comparison cycle*)

Count_no_Exchange : integer,

(*to count number of consecutive cycles with no
exchange*)

("Initialization‘)
Wllile NOT Terminate do
(*enter next cycle of comparison*)

for C =1 to Comparator # do

Vertical_Comparison;,
Horizontal_Comparison;
End;
Check_Terminate;
Shift;
End;

The procedure Check_Terminate manipulates the fol-
lowing global variables:
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1. Exchange—This Boolean variable is always reset to
be False before the next comparison cycle commences,
and is set to be True if any exchange takes place
during that cycle.

2. Count_No_Exchange—This variable counts the num-
ber of consecutive cycles which have no exchange and
is reset to zero whenever Exchange = True.

3. Terminate—This Boolean variable controls the while-
do loop, and it is set to be ‘True’ if the following
condition is satisfied :

Condition 1 (for termination).
Count_No_Exchange > 2 x Column #

3.3 Algorithm II

This algorithm is similar to Algorithm I except that the
Diagonal Comparison operation is included in its while-do
loop:

Program Systolic_Sorter;

While NOT Terminate do
(*enter next cycle of comparison*)
Begin
for I =1 to Comparator # do
Begin
Vertical_Comparison;
Horizontal_Comparison;
Diagonal_Comparison;
(*for Algorithm II only*)
End;
Check_Terminate;
Shift;
End;

3.4 Constraints on the dimension of the RSS

Most sorting networks impose certain constraints on the
dimension of the networks. For examples, the Batcher’s
bitonic sorter’ requires that the number of its input lines
be a power of two, and some mesh sorters®® work on
square arrays only. The basic constraint of the RSS array
appears to be less stringent

Requirement (1).

Column # > 2
Row # >1

Further constraints may or may not be required
depending on the marking schemes used. In Schemes A
and B described below, Requirement (1) is sufficient to
guarantee correct operation of both RSS algorithms when
Scheme A is used, but an additional constraint on the
dimension of the RSS array is imposed when Scheme B
is used.

3.5 Marking scheme A

It is observed that only certain ways of making the array
can guarantee correct results, and one such way is as
follows:

264 THE COMPUTER JOURNAL, VOL. 27, NO. 3, 1984

The initial marker position, M;, of loop i is given as
M=f()—M,_,,fori=1,2,...,2%Row # —1
when i = odd,
S()) =4*(An odd integer) —2 + 1
€{3,9,11,17,.. .}
when i = even,
f(@) =4x(Aneveninteger) —2 + 1
€{5,7,13,15,...}
where 1 < M; < 2xColumn #, and M,_, can be any
value in the range of M;.

Scheme A is adopted in the example given in
Fig. 2(a), where My =1, M, =f(1) - My=3—-1=2,
M,=fQ)—-M =5-2=3,
3=6, M4=f(4)—M3=7—6=1, M5=f(5)—
M,=3—1=2 and the pattern repeats. If there are
only two columns, then M; =6 MOD 2xColumn # =

6 MOD 4 = 2. The rationale behind this scheme will be
given in Section 4.2.

3.6 Marking scheme B

In this second scheme, the markers are placed along the
two sides of the comparator array, as demonstrated in
Fig. 2(b). This method is simpler and we can use the 1/O
lines to insert the markers, and also the retrieval of the
final sorted list is easier than that of Scheme A.

This scheme requires that the number of columns of
the RSS array be twice an odd integer, or the next higher
integer to that value.

Mo=d1 , fori = even
£ ) 2% Column # , for i = odd

Requirement (2). (For Scheme B only)

2+ An odd integer, or
2% An odd integer + 1

€{2,3,6,7,...}

Column # = {

4. ANALYSIS OF THE RSS ALGORITHMS

4.1 Analogy with the odd—-even transposition sort

The RSS algorithms bear some resemblance to the odd—
even transposition sort,* therefore, a simple explanation
of the odd—even sorter would be helpful in analysing the
RSS network.

In Fig. 6, the appearance of an arrow indicates the
presence of a binary comparator located at that position.

Stage $=0 1 2 3 . . < N

T Sorted output

N-1

Figure 6. The odd-even sorter.

M;=f3)-M,=9—
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An item g; is compared to another item a;, at stage s if,

J =i+ (=1 (1)
where 0 < j, j', s < N — 1, and N is the size of the input
list.

The value of j’ alternates between (j + 1) and (j — 1)
when s is incremented. This sorter guarantees sorting of

N items in N cycles, but it requires a total of N(N — 1)/2
comparators;* it is therefore impractical if N is too large.

4.2 Correctness of the RSS algorithms and the marking
schemes

This section will prove that the RSS algorithms are
correct by showing that the odd-even sort is actually
performed on the RSS array. Let us consider three
indices, i, j and J on the systolic array. As demonstrated
in Fig. 7, i(=0, 1, . . ., 2R — 1) indexes the loops, J(=1,
2, ..., 2C) indexes the fixed positions of the array, and
for each loop i, M; indicates the initial position of the
marker of the loop, and j(=0, 1, ..., 2R — 1) indicates
the distance of a position away from the marker. Because
the markers are shifted with time, j is a function of time
and it is related to other indices as follows:

j=lM+2C-J)
+ (2C + (= 1Yt MOD 2C)]| MOD 2C 2)
=[4C + M; — J + (- 1)t MOD 2C]MOD 2C Q)

The first composite term in (2') shows the effect of the
initial marker’s position on j, and the second term is due
to the effect of time indexed by ¢. The Modulo function is
used to trim the values of ¢ and j because both of them
are repetitive with period 2C. The readers can verify that
expression (2) is correct for the example given in Fig. 7.
Having established the relationship among the indices,
we will now derive several expressions to relate a pair of

Fixed position index

items (a; ; — a;, ;) involved in a comparison. First, let us
consider the horizontal comparison.
In Fig. 7, a; , is always compared to g; ; where
J=J—(-1y 3)
Converting J and J' into j and j' using (2) and (3), we
have

j =[4C + M; — J + (- 1)t MOD 2CIMOD 2C
j’'=[4C+ M, —J + (-1t MOD 2C]MOD 2C

=[4C+ M, — J + (1)’ +(-1)tMOD2C]MOD 2C
In a horizontal comparison, i = i’; therefore

i=j+(=1 (3)

Again from (2),
J=j+4C+ M, + (-1t MOD 2C + K*2C

where K is any positive integer.
Substituting J into (3'), we obtain the expression for j’,
where a; ; is compared to g; ; horizontally,

j/ =j+ (_l)j+M,»+ZC+(—1)": MOD 2C (4)
Within loop i, M; and (—1) are constants, therefore j’
will alternate between (j + 1) and (j — 1) as ¢ increases.
By comparing (4) and (1), we can see that the horizontal
comparisons coupled with the shifting actions are
equivalent to the odd-even sort as far as loop i is
concerned, and the items within a loop can be sorted
with 2C cycles. Figure 8 further demonstrates this point.

In addition to the near-neighbour comparisons as in
the odd—even sort, the RSS also compares the head and
tail of every loop, i.e. (a; o — @;, 2¢-,). These comparisons
do not upset the sorting process because they are taken
care by case (ii) of horizontal comparison described in
Section 3.1. The whole input list (ao, do,; - - - @o, 2c-1)
(@y,0a1,1 ... @y, 2c-1) - .. (@2r-1, 0 azr-1,1 -+ 2R,
2c-1) can be sorted using the same principle provided

Moving position index /

J =1 2 3 4 5 6 7 8 9 10 1" 12
* |
Loop /=0 | o] 1) pof [9of | 8] L7f Lells| [4a] [3] (2 1 M =1
i1 1l jof |nj o] [of [8] |7 [e] |s||af 3] |2 #=2
% | — 1 1 [ 1 [
/=2 2] L1 ] 11 [10] | 9] 8 7 6 5 4 3 M, =3
] [ 4 ] [3 o] [
i=3 5 4] | 3] 2] 1 o] {1 [10] 9 8 7] L6 M, =6
* — — — —
/=4 _0_ (11| 1o 9| [ 8] 7 6 5 ] [ 3] 2 1 M, =1
/=5 1 o} [1] & 9 8 r—7— | 6 5 4 3] L2 My=2
8 [ [l 1o Gl A
i=6 2] 1] o] 1] |10] 9 8 7 6] LS] 4 3 My =3
- — I - I
/=7 5 4 3 2 1 [_C? 1 10 9 8 7 6 M, =6
Figure 7. The three indices /, jand J, and the initial marker position M;.
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"
%2p-1,0 T 7
T2t 1 ; ;
Loop 2R-1{ 2R-1,27 !
1 T
: ¥ Y
aZﬁ-1 ,2C-1 + A ‘

Figure 8. The horizontal comparisons carried out on the RSS array.

that the tail of each loop is compared to the head of the
next lower loop, i.e.

(ai,j=20—l - ai'=i+1,j’?0), where
i=0,1,2,..,2R—1 (5

These comparisons are carried out by either the vertical
comparison or the diagonal comparison operations. Let
us consider the vertical comparisons between a pair of
items (a; ; — a;, ;). From Fig. 7, note that q; ; is always
compared to a; ; if,

i'=i— (=1 (6)

From (5), (6) and (2), we can obtain the position J where
the heads and tails of the loops meet:

j=2C—-1,=4C+ M, -J
+(=1YtMOD2C=K*2C+2C—-1 (1)

Jj=0,=24C+M,-J
+ (- 1*"tMOD2C=K'+2C (8)

Combining (7) and (8),
8C+ M +M,—2J=(K+K)*2C+2C-1
=J=K”C+w )

where K and K’ are integers such that 0 <j<2C -1,
and K” equals either —1, 0 or 1 because 1 < J < 2C.
Expression (9) means that the tail of loop i will be
compared to the head of loop i+ 1 at either halfway
between M; and M,,,, ie. J=(M;+ M., + 1)/2, or
J=(M;+ M;,, + 1)/2 + C depending on whether there
is any quadruple comparator situated at these locations.
From (9),

M+M,. +1=2J-K"C)
=>M+M,, =2J-KC)-1 (10

this gives rise to another requirement for the marking of
the comparator array:

Requirement (3). (For marking schemes)
M; + M;,, = An odd integer
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This requirement will ensure that the tails and heads
of the loops will be compared by the vertical comparisons.
It is automatically satisfied when marking schemes A or
B are used; however, it has to be considered if other
marking schemes are used.

Now we will derive marking scheme A. From (5) and
(6), we have

i'=i+landi’' =i— (—1)*"2
=i+ [J/2] = An odd integer
=[J/2] = (An odd integer) — i

Case (1) ati = even, [J/2] = odd,

_ )2+(An odd integer), or
=J= {2:(An odd integer) — 1 (1)

from (10) and (11),
=M;,,

_ }J4*(Anodd integer) — 2K"C — 1 — M, or (12)
~ |4*(Anodd integer) — 2 — 2K"C — 1 — M;

Case (2) ati = odd, [J/2] = even,

_ )2+(Aneven integer), or
J= {2* (An even integer) — 1 (13)
from (10) and (13),
=M.,
_ }4=(Aneven integer) — 2K"C — 1 — M, or (14)
~ )4=(Aneven integer) — 2 — 2K"C — 1 — M;

We can obtain Scheme A by setting K” = 0 in (12) and
(14):

M.,
_ J4x(Anoddinteger) — 1+ 1 — M, fori=even
~ l4*(Aneveninteger) —2+ 1 — M;, fori=odd
After simplifying,
M,

for i = odd
fori = even

. J4*(Anoddinteger) -2+ 1 — M,_,,
" ]4+(Aneveninteger) — 2+t 1 — M,_,,

where
1<M;<2C, fori=0,1,...,2R—1
To derive Scheme B, let

._ ) 1,fori=even
M= {20, for i = odd

Case (1) at i = odd, from (9) and (13),

1+2C+1 |2x(Aneven integer), or
2 ~ |2*(An even integer) — 1

=J=K'C+C+1 €{3,4,7,8,...} (15)
out of the three possible values of K", —1, 0 and +1,

only K" =0 can satisfy both (15) and (1 <J <20C),
therefore,

J=K"C+

J=C+1€{3,4,7,8,...}
=Ce{2,3,6,7,...}
C= {2* (An odd integer), or
" |2#(An odd integer) + 1

Case (2) ati = even, from (9) and (11),

(16)
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J=K'C+ 20+1+1_ {2*(An odd integer), or

2 2#(An odd integer) — 1
J=K'C+C+1 €{l,2,5,6,...} 17

both K” = 0 and — 1 can satisfy (17) and (1 < J < 2C).
When

K"=0,C €{0,1,4,5,...} (18)
When
K" = —1, C'= Any positive integer (18)

For all values of i, both (16) and (18) can be satisfied
simultaneously by the requirement:

C= 2+(An odd integer), or
" |2*(An odd integer) + 1
€{2,3,6,7,...}

which is Requirement (2) of Scheme B.

Now let us consider the diagonal comparison. We will
show that Requirement (3) can actually be waived when
marking scheme B is used with Algorithm II.

Again, from Fig. 7, items q; ; and a; ;- are compared
diagonally if

J=J-(-1 ?3)
i'=i—(=1)y+Va ©)

Converting J and J' into j and j' using (2) and (3), we
obtain

j=[4C+ M; — J + (-1t MOD 2C]MOD 2C
Jj'=[4C+ M, —J' + (-1t MOD 2C]MOD 2C

=[4C+ M, — T+ (-1
+ (— 1y MOD 2C] MOD 2C

The heads and tails of the loops are compared by the
diagonal comparisons if

j=2C—-1
j=0
i=i+1

Substituting these values into the above expressions, we
get
j=2C—1=4C+ M; - J + (-1t MOD 2C
=K*2C+2C -1
J=0=4C+ M, —J+(=1) + (- 1)*'+tMOD2C
= K'*2C
Adding up the two expressions,
8C+ M+ M, —2+ (-1 =(K+K +1)s2C—-1
=M+ M, =2J—K*2C—-1-(-1)
=2J—-K")*C—-1—-(-1Y
=2(J— K")*C or 2(J — K")*xC -2
= An even integer

This shows that Requirement (3) can be waived when
Scheme B is used with Algorithm II, because if M; +
M;,, equals an odd integer, then the tail-and-head
comparisons will be provided by the vertical comparison,
but if M; + M;,, equals an even integer, then it will be
provided by the diagonal comparison, as shown above.

The requirements for the marking schemes are sum-
marized in Table 1.

Table 1. Requirements for the Marking Schemes

Marking Scheme  Algorithm | Algorithm |1

A Requirement 1 Requirement 1

B Requirements 1 and 2 Requirements 1 and 2

Others Requirements 1, 3 and Requirement 1 and
others derived from (5), others derived from
(6) and (9). (5), (6) and (9)

4.3 Correctness of the termination method

If the marking scheme is correct and Requirements (1),
(2) and (3) are duly met, then Condition (1) of Section 3.2
is sufficient to guarantee proper termination. The reason
is that, as we can see from expressions (2), (4) and (6), the
comparison pattern repeats every 2C cycles. If there is
no exchange in the most recent consecutive 2C cycles,
then there will be no further exchange in the subsequent
comparisons, meaning that the sorting process must have
been completed.

4.4 Timing complexities

Supposing each comparison operation requires time #¢
and each shifting operation takes time g, then the cycle
time of Algorithm I is (2¢¢ + tg) and that of Algorithm II
is (3tc + t5). Let Ny, N,, T, and T, be the number of
cycles and total sorting times of Algorithms I and II,
respectively, then

T, = (2tc + ts) *N,
T, = (3tc + ts) *N,

If the input list is already in the desired order, then
N, = N, = 2C, which is the number of cycles needed by
the control unit to generate the termination signal. For
randomly and inversely ordered input lists, both N; and
N, are found to be in O(N) by simulations,'® and N, is
observed to be always much less than N, (the examples
given in Figs 2(a) and 2(b) help illustrate this point).

(19

5. DISCUSSION

Since sorting is such a common and necessary operation
in computer applications, there are dozens of sorting
algorithms described in the literature. In this paper we
have presented two sorting algorithms using the systolic
idea, and the functional design of a sorter based on these
algorithms has also been suggested. Our primary goal is
to look into the design of a special-purpose VLSI chip
that can be attached to a conventional host computer
such as the one envisioned by Foster and Kung!! (see
Fig. 9).

Undoubtedly, the usefulness of the sorter is not limited
to scientific computations, it could also be used in office
information systems and relational database machines.

With the stated goal in mind, we now compare our
proposal with some existing ones and the following
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Figure 9. A general-purpose computer with special-purpose chips
attached."’

criteria will be used: (1) time complexity; (2) hardware
complexity and (3) control structure:

(1) Time complexity. In Table 2, the sorting times of the
various existing algorithms could be divided into four
categories: O(logN), O(log’N), O(N'?) and O(N),
where N is the number of items to be sorted. Muller
and Preparata’s algorithm? is in the fastest category,
but their algorithm requires a discouraging number
of comparators, O(N?). Batcher’s bitonic sorter' and
the perfect shuffle’ are in the O(log?N) category, and
they are characterized by the shuffle-exchange type
of interconnections. The two mesh sorting schemes
sort N2 items on a N x N mesh with approximately
O(N) time, therefore they belong to the O(N'/?)
category. Nassimi and Sahni’s mesh sorting scheme®
is based on Batcher’s bitonic merge algorithm and it
needs approximately 14N routing steps and 2logNV
compare—-exchange steps on an N x N mesh, but it
requires that the input subfiles be pre-sorted. Thomp-
son and Kung’s mesh sorting scheme® needs roughly
6N + O(N*PlogN) routing steps and N + O(N??
logN) compare—exchange steps. The odd-even sort
and the RSS algorithms belong to the O(N) category,
but because of their simple control structures and
near-neighbour type of data movements, their actual
sorting times could be less than those of the mesh
sorting schemes which require rather complex control
and data movements.

(2) Hardware complexity. Sorters with shuffle-exchange
type of interconnections are not well-suited to VLSI
implementations because shuffle-exchange networks

have a very low degree of regularity and modularity,
and they require wires of various length. It has been
shown by Thompson'!? that at least O(N?/log’N)
chip area is required to lay out an N-vertex shuffle-
exchange network. This would be a serious drawback
when N is large. On the other hand, the interconnec-
tion patterns required by the mesh, the odd—even and
the RSS algorithms are highly regular and repetitive,
and therefore are conducive to VLSI implementa-
tions.

(3) Control structure. The logic for the various operations
(horizontal comparison, vertical comparison and
diagonal comparison) specified in Fig. 5 can be
hardwired into each of the RSS comparators, and the
control unit shown in Fig. 1 simply broadcasts to all
the RSS comparators the sequence of these opera-
tions. The control structure required by the RSS
algorithms is therefore comparable to that required
by the Batcher’s and the odd—even sorters, and is
very much simpler than that required by the mesh
sorters. When implemented as a single chip, the RSS
array would need very simple control lines.

Although the RSS array is analogous to the odd—even
sorter, its resources are better used because of its re-
circulating nature. Most existing sorting networks impose
non-trivial constraints on their network sizes. For
examples, the Batcher’s sorter and the perfect shuffle
network require that the numbers of input lines be a
power of two, and the mesh sorting algorithms operate
on square arrays. The constraints of the RSS algorithms
(see Table 1) appear to be less stringent in this respect.

In summary, although the RSS algorithms are not
optimal in every aspect, they are better than other
existing schemes as far as hardware simplicity and hence
large-scale implementations are concerned.
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Table 2. Complexities of some sorting algorithms

Method Input Number of Time Interconnection  Control com-
comparators complexity* plexity*
Batcher's bitonic sorter’ N O(Nlog? N) O(log? N) high low
Muller and Preparata’s® N O(N?) O(logN) low high
Odd-even transposition sort* N O(N?) O(N) low low
Perfect shuffle® N O(N) O(log?N) high low
Thompson and Kung's mesh sorter® N2 N x N mesh O(N)t low high
Nassimi and Sahni's mesh sorter® N? N x N mesh O(N)t low high
RSS N O(N) O(N) low low

* In terms of amenability to VLS| implementations.
t See discussions.
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