Short Notes

On Instruction Set Encoding

This note proposes that computer instruction
encoding and decoding should take advantage
of the user and kernel states of the machine so
asto provide the operating system with privileged
instructions inaccessible to the user.

Today most computers, including many micro-
computers, execute instructions in one of two
states, which we will call Kernel and User
states. The purpose of this division is to
provide protection for the operating system
from user error or malice, and to protect
processes from each other also in a multi-user
or multi-tasking environment. In the Kernel
state all instructions in the machine’s instruc-
tion set are available, whereas in the User
state only a subset can be executed; those
instructions that affect peripheral equipment
or the internal registers whereby the operating
system effects protection and manages the
machine’s resources are considered illegal
instructions.

Sometimes, as in the DEC PDP-11 ma-
chines, a segment of working storage address
space is designated as the ‘I/O page’. Access
thereto is denied in the User state and there
reside the peripheral control, status and data
registers, as well as the internal registers used
inmanagementand protection. However, even
on such machine architectures a number of
Kernel privileged instructions are needed, as
resort to the reference manuals will show.

The net result is that during instruction
decoding in the User state attempts to execute
certain instructions, the Kernel state ‘privi-
leged instructions’, have to be detected and
trapped.

To avoid the need to detect these special
cases we make the following proposal.

Every contemporary machine architecture
to which the above discussion applies also has
a program status word (PSW), or an analogue
thereof. A bitin this PSW determines in which
state the machine is. We propose that this bit
be gated as the leading (trailing?) bit of the
operation code during instruction decode, thus
providing for different instruction sets in the
two states.

Rarely is an instruction set dense, using all
the possible encodings. So those instructions
that are ‘no-ops’ can be used as privileged
instructions in the Kernel state. Alternatively,
there will be User state instructions without
utility in the Kernel state, e.g. floating-point
operations or decimal arithmetic.

An objection will be that compilers and
interpreters can afford protection against
illegal instructions (except perhaps while they
are themselves being debugged) and that
nobody programs in assembly code anymore.
Wrong. The circle of home, personal computer
users widens daily, and many wish to play with
machine code. It may be that if they crash
their system we should regard it as a salutory
lesson and not a tragedy, but there is much
talk of ‘user friendly’ systems. Perhaps it could
be facilitated at the microchip level.

H. D. BAECKER

Department of Computer Science
University of Calgary

Calgary, AB, Canada

Received June 1983

Participative Systems Design

A recent paper by Wood-Harper and Fitzgerald!
and a subsequent note by Cookson’ have
suggested that participative systems design is
concerned primarily or solely with implementa-
tion. This note provides a description of partici-
pative design as practised by the writer.

In recent issues of The Computer Journal there
have been discussions of different approaches
to systems analysis, and attempts have been
made to classify and describe the characteris-
tics of each approach. This is a praiseworthy
effort and it is to be hoped that such discussions
and explanations will continue. However, in
the paper by Wood-Harper and Fitzgerald!
and the subsequent note by Cookson? state-
ments have been made about participative
design which are not correct, in particular the
point that participative design is concerned
primarily or only with implementation. This
does not accord with my experience. of using
this approach in different companies during
the past thirteen years. I would describe
participative design, which should be called
participative sociotechnical design, as having
the following features. First, the total design
task is defined as embracing a number of
subsystems. These are technology (hardware
and software), administrative tasks (handling
information, solving problems, co-ordinating
activities etc.) and organizational structure
(networks of groups, roles and relationships).
The design boundary is therefore placed
around an integrated unit or set of units such

© Wiley Heyden Ltd, 1984

as a department or functional area. Secondly,
users are actively and jointly involved with the
technical specialists in parts of this design
task; especially administrative and organiza-
tional design and the design of the man-
machine interface. There are two reasons for
involving users in this way. One, users possess
a great deal of knowledge relevant to good
organizational design; they know how their
department does work and can soon identify
how it should work. They are, better than an
outside ‘expert’, able to systematically and
accurately analyse their own information
needs and, if an expert system is being
designed, to specify their key knowledge
attributes. Two, practical experience in design-
ing contributes to learning how to design, and
technical knowledge can be gradually trans-
ferred to users. This is of considerable benefit
when technical expertise is a scarce and
overstretched resource.

The design task starts, not with the assump-
tion that a computer-based solution will be
introduced, but with the question ‘do we need
to change? Is our department optimally organ-
ized now to achieve its mission or could
organizational and/or technical change make
us more effective?’ If the answer to these
questions is ‘yes’ then the mixed user/technical
specialist design group moves into the design
task. This encompasses an analysis of prob-
lems that are impeding efficiency and effective-
ness and an analysis of the job satisfaction
needs of all staff who work in the department.
Precise objectives are then set for the new
system covering efficiency, effectiveness and

job satisfaction. A number of organizational
administrative and technical options are next
identified and examined in detail and
the organizational-administrative-technical
combination that matches best with the system
objectives is the one that is selected. This is
then designed out in detail, tested through
pilots and implemented. Later the working
system is carefully evaluated by the users to
check that it is continuing to meet the specified
system objectives.

The participative systems design process
therefore covers the traditional systems design
model of investigation, analysis, design and
implementation shown by Cookson. Where it
differsisin breadth not in length.? Its emphasis
is on good organizational and technical design,
with participation a means for achieving this.
ENID MUMFORD
Manchester Business School,

Booth Street West,
Manchester, M15 6PB, UK

References

1. A. T. Wood-Harper and G. Fitzgerald, A
taxonomy of current approaches to sys-
tems analysis. The Computer Journal
25(1), 12-16 (1982).

2. M. J. Cookson, Taxonomic Studies on
current approaches to systems analysis.
The Computer Journal 25(3), 283-284
(1983).

3. E. Mumford, Designing Human Systems,
Manchester Business School (1983).

Received September 1983

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 283

202 udy $0 uo 1s8n6 Aq 6/8/9€/£82/€/.Z/91014e/|uf00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

