A Database Architecture for Aggregate-Incomplete

Data

David S. Bowers

School of Computing Studies and Accountancy, University of East Anglia, Norwich NR4 7TJ, UK

The problem is addressed of data which are not only incomplete, but also aggregate in nature. Some difficulties
associated with maintaining the consistency of such data are illustrated. These problems arise in particular when it is
required that both aggregate and simple data values should be stored. An architecture is proposed for a database
management system to handle this class of data, which is termed aggregate-incomplete. A generalized materialization
strategy is defined on the basis of the proposed architecture, and it is shown that the consistency problems are reduced

to manageable proportions.

1. INCOMPLETE DATA AND AGGREGATE-
INCOMPLETE DATA

Incomplete data in database systems present a number
of problems which have been receiving attention for
some time. These problems are concerned, not so much
with the representation of unknown values or ‘nulls’, but
with how they should be treated once stored.

Many designs for database management systems can
cope with ‘null’ values at least to the level of returning a
‘null’ value if an attempt is made to retrieve a data item
whose value is unknown, although they may not always
warn the user appropriately.!*?

The problem is more complicated if some arithmetic
operation is to be performed on the contents of a data
field for which some instances are ‘null’. For example,
givenanentity EMPLOYEE withan attribute SALARY,
the calculation of an average salary for all employees is
trivial if the data are complete. If, however, some of the
SALARY fields are ‘null’, it is necessary to define a new
way of calculating the average, which may not be obvious
to the user.>*

Further problems arise where a field in the database
for which at least one occurrence is ‘null’ is to be used as
a key for selecting data. In the previous example, it is not
obvious how a search criterion of ‘SALARY > 10000’
would be applied within a database containing ‘null’
values in the SALARY field.!'3~3

Perhaps the problem arising from ‘null’ values which
has attracted most attention is that where the field
containing the ‘null’ value is used for logical navigation,
and, in particular, where it participates in a relational
JOIN operation. Various solutions, such as the ‘MAYBE-
JOIN’ and the ‘OUTER-JOIN’, have been proposed for
the problem of information-loss in such a join,* %7 but
the question is still to be resolved.

A final class of problems arise when consistency
constraints are expressed in terms of fields which may
contain ‘null’ values. Consider, for example, a constraint
that the sum of salaries for all EMPLOYEEs must not
exceed some salary budget; this is non-trivial to imple-
ment if, for some EMPLOYEEs the SALARY field is
‘null’.

It is to this last class of problems that this paper is
addressed. Approaches have been proposed which either

assume partial knowledge of the null value,® or attempt
to deduce, from the statistical properties of the known
data, some knowledge of the null values.® Rather than
following either of these approaches, the discussion of
this paper is addressed towards the problems of storing
aggregate-incomplete data, and reconciling the set of
non-null data values.

Insection 2, an example of such a problem is developed,
based on a class of data termed aggregate-incomplete.
Section 3 introduces a number of basic concepts and
terms which may be used to describe aggregate-incom-
plete data. A database architecture is proposed in Section
4 which goes some way towards solving some of the
problems of representing such data in a database
management system. Section 5 discusses briefly the
generalization of the type of consistency constraint for
which the proposed architecture is appropriate. Finally,
Section 6 discusses the implementation of a system based
on the architecture for a real life problem.

A mathematical treatment of aggregate-incomplete
data will be the subject of a forthcoming paper.®

2. A POPULATION DATABASE

In this section, a data model for a simple population
database is developed, to illustrate the aggregate nature
of the class of data which is being considered, and some
of the problems which arise. Then, additional difficulties
are considered which are experienced if such data are
incomplete—that s, if the data are aggregate-incomplete.

2.1 Anexample of aggregate data

A trivial population database for Great Britain might
contain four data items, namely, population figures for
each of England, Scotland and Wales, and for the whole
of Great Britain. The last value, being the arithmetic
sum of the first three, is derived data.

If it is wished to retrieve from such a database the
value of the population for Great Britain, there are two
choices: to search directly for the ‘derived data’,
‘population of Great Britain’, or to retrieve the three
values for the country populations and form their sum. It
would seem reasonable to expect these two approaches

CCC-0010-4620/84/0027-0294 $03.50

294 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

© Wiley Heyden Ltd, 1984

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

A DATABASE ARCHITECTURE FOR AGGREGATE-INCOMPLETE DATA

to give the same result. (Inconsistencies due to machine
rounding errors are ignored for the purpose of this paper.)
Thus, there is an implicit consistency constraint that the
sum of the populations for England, Scotland and Wales
should be equal to any value stored as the population of
Great Britain. Thus far, this is a standard problem of
storing derived data in a database.

The trivial database is complicated slightly if the
population figures are broken down into ‘male’ and
‘female’. Now, three values must be stored for each of
the three countries and also for Great Britain—i.e. male,
female and total in each case. The set of derived data
now comprises total population for each of the three
countries, and male, female and total population for
Great Britain.

Derived values such as ‘total population of England’
or ‘male population of Great Britain’ are analogous to
the single derived value in the trivial case above. There
are just two ways of materializing such values, and they
should be equivalent.

However, the derived value ‘total population of Great
Britain’ in the enlarged database may be realized as:

(i) asingle stored value
(i) the sum of ‘male population of Great Britain’ and
‘female population of Great Britain’
(iti) the sum of the total populations of the three countries
(iv) the sum of male and female populations for each of
the three countries
(v) any combination of the above which avoids double
counting, e.g. total population of England + total
population of Wales + male population of Scot-
land + female population of Scotland. (There are
eight permissible combinations.)

Thus, the database management system must choose
between 12 strategies for materializing the value of ‘total
population of Great Britain’. It must apply consistency
constraints to ensure that all 12 are equivalent, as far as
the user is concerned. Further, it must be aware that:

(a) female population of Great Britain + male popula-
tion of England + male population of Wales + total
population of Scotland, and

(b) male population of Great Britain + female popula-
tion of England + female population of Wales

are both invalid, as are a large number of other
combinations. Summation (a) involves double counting
of the female population of Scotland, whereas (b) simply
ignores that part of the total population.

If a further level of disaggregation were to be
introduced into the database, for example, by dividing
the population figures between adults and children, the
problem would become even more complicated. The
basic data would then comprise 12 items such as, ‘female
child population of England’, with all the other data
items mentioned thus far being derived data. The derived
data would comprise some 14 data items with 2 data
materialization strategies, 3 with 8 strategies, 4 with 12,
and 1 (‘total population of Great Britain’) with well over
500 logically equivalent materialization strategies.

2.2 Aggregate-incomplete data

Clearly, if one were dealing with complete data, allowing
such a multiplicity of materialization strategies would

not be considered. Probably, only basic (non-derived)
values would be stored, requiring actual summations to
be performed to retrieve derived data. Derived data
might conceivably be stored once calculated, but it would
be foolish to permit them to take part in arbitrary
summations for other derived data.

This is not to suggest that it would be impractical to
have a set of static mappings between data items, so that
a particular derived data item would always be formed
from a given set of data values, some of which might
themselves be derived. This is no different from basing
views of the underlying data on other views. However,
the foregoing discussion has illustrated that there is a
consistency problem of exponential proportions if mater-
ialization strategies for derived data may be based on
arbitrary sets of derived or atomic data, with the strategy
selected effectively at random.

Consider now the problem where data are incomplete.
To return to the trivial example containing just three
basic values and one derived value, it would seem that
there would be essentially two choices if the values of
‘population of Great Britain’ and ‘population of England’
were known, and both the other values were ‘null’: not to
store the derived value, ‘population of Great Britain’, on
the grounds that it would make things difficult for the
database management system, or to insist on storing it,
on the grounds that it is a useful number.

The discussion in this paper assumes that the latter
choice is preferred. (The possibility of restructuring the
data to introduce, for example, a new data item,
‘population of Wales and Scotland’, is ignored, since
such a solution does not readily generalize.)

If the two values ‘population of Great Britain’ and
‘population of England’ are stored, then it is necessary to
return a ‘null’ value if either the ‘population of Scotland’
or the ‘population of Wales’ is requested. This is an
example of the first kind of incomplete data problem
outlined in the introduction to this paper.

If, at some future date, a value becomes available for
‘population of Scotland’, then it is necessary to check
that the value of ‘population of Scotland’ is currently
‘null’, and then insert the new value.

When a value for ‘population of Wales’ subsequently
becomes available, things are more difficult. The implicit
consistency constraint is that the sum of ‘population of
England’, ‘population of Scotland’ and ‘population of
Wales’ must be equal to the stored value of ‘population
of Great Britain’. Hence, before the value for ‘population
of Wales’ is entered, not only must the value currently
stored be ‘null’, but the new value must also be consistent
with those already stored. Should it not be consistent, it
is necessary to reject either the new value or one of the
values already stored.

In the simple case outlined above, the value being
considered is part of just one aggregate value—*‘popula-
tion of Great Britain’. As it has been shown, the number
of ways of materializing any aggregate quantity increases
rapidly as the number of levels of aggregation increases.
Unfortunately, this applies also in reverse—as the
number of levels of aggregation increases, so too does the
number of materialization strategies in which any given
value may partake.

Thus, in order to enter a new value into an arbitrarily
complex database containing aggregate-incomplete data,
every possible way must be considered in which the new

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 295

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

D. S. BOWERS

value must be consistent with those already present. This
means considering every materialization strategy in
which the new value could participate, and, if the data
are sufficiently complete for the materialization to be
performed, comparing the materialized value with any
stored aggregate value. Further, if the new value is itself
an aggregate, all possible materializations of that value
itself must be considered, and checked against the new
value. Finally, all materializations in which the new
value can participate, and for which an aggregate value
is not stored, must be considered, to check that the
aggregate value obtained using the new value is consistent
with any alternative materialization of that aggregate
value. This is no trivial task.

It would appear, therefore, that there is a choice when
designing a database for aggregate-incomplete data. It
can be decided not to store any aggregate values, thus
inconveniencing the user, for whom an aggregate value
may be just as important as ‘atomic’ data, or alternatively
to store all aggregate values, in which case horrendous
consistency problems may arise. It is not practical even
to restrict the system to materializing aggregates only
from atomic values to reduce the consistency problem,
because it cannot be guaranteed that all the atomic values
will be present if the data are incomplete.

In the sections that follow, a third strategy is explored,
which is essentially a compromise between these two
approaches. The strategy will allow the system to store
some, but not all, aggregate values. By defining a
generalized materialization strategy which is always
unique, the design reduces to a minimum the consistency
problem.

3. HIERARCHIC ATTRIBUTE SETS

Before discussing the architecture proposed for aggre-
gate-incomplete data, it is useful to introduce the concept
of a hierarchic attribute set. Examples of such sets, drawn
from the population database discussed in the previous
section, would include {‘Great Britain’, ‘England’,
‘Scotland’, ‘Wales’} and {‘total’, ‘male’, ‘female’}.

The members of these sets are attribute values which
describe particular numbers in the population database.
The sets are hierarchic in the sense that each element is
either a superset or a subset of another member of the
set. Hence, the term hierarchic attribute set.

Hierarchic attribute sets may display several levels of
hierarchy; for example, the attributes ‘England’, ‘Scot-
land’ and ‘Wales’ could be subdivided into their appro-
priate counties.

Any two elements of a hierarchic attribute set must be
disjoint, unless one is a strict subset of the other. For
example, ‘England’ and ‘Scotland’ are disjoint, whereas
‘England and Wales’ and ‘Scotland and Wales’ would be
overlapping, and hence invalid as members of the same
hierarchic attribute set.

Further, if any element of a hierarchic attribute set is
a subset of a second element, then there must be other
elements which, together with the first, are equivalent to
the second. For example, if the hierarchic attribute set
contains ‘Great Britain’, ‘England’ and ‘Scotland’, it
must contain also ‘Wales’ (or some collection of disjoint
elements whose union is equal to ‘Wales’).

296 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

Finally, the example discussed in Section 2 is described
by two independent hierarchic attribute sets, which are
regarded as orthogonal, in the sense that any element of
the first such set may appear in conjunction with any
element of the second set. Thus, valid combinations
could include ‘England male’, ‘England total’, ‘Scotland
female’ and ‘Great Britain male’.

4. A DATABASE ARCHITECTURE FOR
AGGREGATE-INCOMPLETE DATA

Having dealt with the potential difficulty of the problem
of aggregate-incomplete data, and introduced a few basic
terms, itis appropriate to consider a database architecture
which can go some way towards offering a solution to the
problem.

4.1 The proposed architecture

The architecture which is described below is a compro-
mise between the conflicting requirements imposed by
aggregate-incomplete data. Any such compromise is
bound to fall short of the mark in at least some respects.
Nevertheless, it is proposed as a design which is at least
useful, and which may be amenable to improvement
given further study.

The proposed architecture is developed in terms of
data described by a single hierarchic attribute set, and
then extended for data described by multiple hierarchic
attribute sets.

Consider the single-level hierarchic attribute set,
{Great Britain = England + Scotland + Wales}. It is
proposed that data described by such an attribute set
should be stored in a logical tree. That is, that there
should be a (root) node corresponding to ‘Great Britain’,
and a set of (leaf) nodes corresponding to ‘England’,
‘Scotland’ and ‘Wales’.

It is proposed that the logical tree should be pruned to
the minimum configuration required to store the known
data. That is, if there is no value to be stored for any
descendant of a given node, then that node should appear
as a leaf in the logical tree. If values should subsequently
become available for any descendant node, then it is
proposed that the tree should be extended as required.

It is proposed that there should be a consistency
constraint within the tree so that, should values be known
for all the daughter nodes of any node in the tree, then
they may be stored only if their arithmetic sum is equal
to the value for the parent node.

With this architecture, a value may be retrieved for
any node within the logical tree, either by reading the
value stored at that node, or by summation of the values
of daughter nodes, provided that the data are sufficiently
complete.

4.2 The population example

Applying these proposals to the population example, if
just a single value for ‘Great Britain’ is known, then a
logical structure of a single node would be stored—with
no daughters—containing that value.

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

A DATABASE ARCHITECTURE FOR AGGREGATE-INCOMPLETE DATA

If a value for ‘England’ were subsequently to become
known, then three daughter nodes would be added to the
original node, the ‘England’ value placed in one, and
‘nulls’ in the other two.

Adding a value for ‘Scotland’ would pose no problems,
as the null stored for the ‘Scotland’ node would simply be
replaced by the new value.

The addition of a value for ‘Wales’ would proceed as
follows:

If the sum of values for ‘England’, ‘Scotland’ and
‘Wales’ is equal to that for ‘Great Britain’

then insert the new value for ‘Wales’;

else reject the new value (i.e. give an error message).

If at some time the logical tree were to contain values
for ‘England’, ‘Scotland’ and ‘Wales’, but none for ‘Great
Britain’, a value input for ‘Great Britain’ could still be
checked for consistency. The action taken would be to
compare the input value with the sum of the stored
values, and confirm them to be correct if they were equal,
or to be erroneous if they were not.

If the hierarchic attribute set were later extended to
include the Welsh counties ({Wales = Clwydd + ---}) as
subsets of ‘Wales’, and values input for those Welsh
counties, then daughter nodes would be added to the
‘Wales’ node, and the same consistency constraint
procedure applied as described above. If no values were
stored for ‘Wales’ or ‘Great Britain’, the former value
would be materialized as the sum of the values for the
Welsh counties, and the latter as the sum of those for
‘England’, ‘Scotland’ and the Welsh counties.

4.3 Multiple hierarchic attributes

The next stage is to consider how the proposed architec-
ture might be extended to accommodate data described
by multiple hierarchic attribute sets. The problem, of
course, is that, if the attribute sets are truly independent,
then they ought to be represented in the logical tree by
orthogonal divisions. Such a network structure, apart
from being hopelessly complicated, would not overcome
any of the combinatorial problems discussed earlier.

The solution which is proposed is that the trees
representing the attribute sets should be joined together

into a single tree. Essentially, any node in the logical tree
will correspond to a set of attribute values, exactly one
being selected from each of the hierarchic attribute sets.
The presence of daughter nodes at the node in question
may represent the division of any one of those attribute
values into subsets. Subdivision of two or more attribute
values must be effected in sequence, so that the same
type of split may be replicated at a number of distinct
nodes in the tree. For example, a ‘male’-‘female’ split
may occur at nodes corresponding to each of the
‘England’, ‘Wales’ and ‘Scotland’ nodes.

With such a structure, the same rules may be applied
for data materialization and consistency constraints as
were applied above to a single-attribute data structure.
The problem of materialization will, however, be slightly
more complicated for quantities which do not correspond
to nodes in the actual configuration of the tree, but could
have done in an alternative configuration. For such
values, a special selective summation operation must be
defined, which is more complicated than a mere
summation over the node of a tree.

4.4 The materialization strategy

The strategy is developed in terms of a multiple attribute
tree derived from the three hierarchic attribute sets
introduced in Section 2, shown in Fig. 1. A possible
configuration for the tree is shown in Fig. 2, with the
labels at each node showing the three attribute values for
the node, and an asterisk indicating the presence of a
stored value.

i Great Britain =
England
Scotland
Wales)

! total =
male
female,

| people =
adult
child;

Figure 1. Three hierarchic attribute sets.

{Great Britain}
people
England Scotldnd WdlCS
total total total
people people people

)

England England Scotland
male female male
people people people

/\cotldnd Wdles Wales
female total total
people adull child

. /

Eng]dnd England Wales
male male male
child adult adult

Wales Wales Wales
female male female
adult child child

Figure 2. A multiple attribute tree.

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 297

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

D. S. BOWERS

Materialization of some values, such as ‘England total
people’, consists merely of a summation over the specified
node, if no value is actually stored at the node. The
algorithm can be expressed as the following recursive
procedure:

procedure sum_over_node (current_node)
if a value is stored at current_node then
sum_over_node = stored value
elseif current_node has daughter nodes then
sum =0;
for each daughter_node do
sum = sum + sum_over_node (daughter_node)
enddo
sum_over_node = sum
elseif no value stored and no daughter nodes then
error
endif
endproc

An error exit must be followed if any node required in
the summation is a ‘leaf” node (i.e. it has no daughter
nodes) with no value stored in it. In other words, if there
is insufficient data to materialize the value, then the
algorithm must fail.

A value such as ‘Great Britain male’, however, is more
difficult. This requires a selective summation of the
values corresponding to the nodes ‘England male people’,
‘Scotland male people’, ‘Wales male adult’ and ‘Wales
male child’.

The materialization strategy is unique, given the
configuration of the logical tree, and can be defined
precisely in terms of the action to be taken at each node
while scanning the tree. There is no question of having
to make an arbitrary choice between a (large) number of
strategies.

If the set of attribute values for the required value is
denoted {4}, and the set of attribute values for a given
(‘current’) node is denoted { B}, then the materialization
strategy may be expressed as a procedure to be followed
at any node, starting with the root node. In the following
expression of the algorithm, it is assumed that the
‘current’ node represents a division of the ith attribute
value.

procedure selective_sum (current_node, | A})
/* required value described by | A4}
current node described by | B;
current node is division of ith attribute */
if Vj. Aj 2 Bj then
selective_sum = sum_over_node (current_node)
elseif current_node has no daughters then
error
elseif Ai c Bi then
select appropriate daughter node:;
selective_sum = selective_sum (daughter_node, | A})
else
sum = 0;
for each daughter_node do
sum = sum + selective_sum (daughter_node, |A})
enddo
selective_sum = sum
endif
endproc

Unless the value corresponding to the ‘current node’ is
either the required value or a subset of it, then a further
selective summation is effected. Essentially, the first
branch from the node is taken, and whatever is required
from that branch is retrieved, and the selective summa-
tion node is returned to. As long as there are more
branches, the next in sequence is selected, and the
required contents retrieved, and so on. When there are
no more branches, the summation is complete, and either
the materialization is complete, or an earlier selective
summation node can be reconsidered.

298 THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984

As with the procedure sum_over_node, the algorithm
fails if the data are insufficiently complete to materialize
the required value. This could be either because a node
under consideration has at least one attribute value which
is a superset of that for the required value, and yet it is a
‘leaf” node, or because a simple summation over a node
fails. In either case, the data are insufficient to construct
the required value, and no other materialization strategy
could succeed.

The algorithm requires at most a complete traversal of
the logical tree, after which, either the value will have
been formed, or it will be known not to be available. The
total size of the logical tree grows only as the product of
the sizes of the single attribute trees, rather than showing
the exponential behaviour illustrated in the previous
sections.

Figure 3 shows the sequence of nodes visited, and the
action taken at each, in order to materialize values
corresponding to ‘England total people’ and ‘Great
Britain male people’ from the tree configuration of Fig.
2.

(a) {England total people;
{Great Britain total people|
{England total people;

(b) !Great Britain male people,
' Great Britain total people |

select daughter node
sum over node

sum over daughter nodes
(1), (2) and (3)

select daughter node
sum over node; add to sum

(1) {England total people;
'England male people,

(2) !Scotland total people]

Scotland male people! select daughter node

sum over node; add to sum
3

=

| Wales total people] sum over daughter nodes:

(i) and (i1)
select daughter node

sum over node;
add to subtotal

 Wales total adult}
'Wales male adult|

(i

=

(i) | Wales total child}

| Wales male child" select daughter node

sum over node;
add to subtotal

add subtotal to sum.

Figure 3. Materialization of aggregate values.

4.5 Consequences of the architecture

A few comments must be made about the effect of the
configuration of the logical tree, or the order in which the
attribute values are subdivided. The main restriction is
in the set of aggregate values which may be stored.

Clearly, a value can be stored only if there exists a
corresponding node in the tree. Thus, for example, no
value could be stored in the multiple attribute tree
considered above for ‘Great Britain male’. Hence, the
architecture fails to allow the user to store all possible
aggregate values. However, it does not prevent him from
materializing such values—if the data are sufficiently
complete—nor from checking them for consistency, since
the materialized value may be checked against an input
value.

Nevertheless, it does allow him to store aggregate
values in many cases. Indeed, the database management

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

A DATABASE ARCHITECTURE FOR AGGREGATE-INCOMPLETE DATA

system discussed in Section 6 selects the configuration of
the logical tree on the basis of which aggregate values are
presentin the initial inputdata. Although the architecture
may not allow all aggregate values to be stored, it does
allow sufficient to be stored to be useful.

Further, the architecture as proposed does not require
the configuration of the tree to be homogeneous. For
example, the tree shown in Fig. 2 has ‘Wales total people’
subdivided between ‘adult’ and ‘child’, rather than the
division between ‘male’ and ‘female’ which appears at
the corresponding nodes for ‘England’ and ‘Scotland’.
The algorithm given for materializing values is quite
capable of dealing with such ‘inhomogeneous disaggre-
gation’.

Since the materialization algorithm is well defined,
given the configuration of the logical tree, the problem of
selecting from an immense variety of materialization
strategiesis avoided. Further, the materialization strategy
can terminate immediately it is found to be impossible to
materialize the required value—there is no possibility
that an alternative strategy might be successful. Finally,
if the materialization strategy succeeds, then the value
obtained must be complete—there is no chance that some
component has been omitted.

5. GENERALIZATION

The consistency constraints associated with aggregate
values, as discussed in the development of the proposed
architecture, are purely arithmetic. In essence, certain
values which could be stored in the database must be
(arithmetically) equal to values formed from sets of data
items; the aggregate value is thus a single value
corresponding to a set, as well as being a value in its own
right.

The proposed architecture requires only this essence
of the consistency requirement—that some set property
matches the corresponding aggregate value derived from
the set elements. Arithmetic summation is just one
example of this class of requirements, but the architecture
could, in principle, support any other consistency
requirement of the same class, requiring only minor
modifications to the implementation.

Various types of aggregation are possible. These
include combinatorial operations, such as summation or
product, selective operations, such as maximum or
minimum, and containment operations, such as ‘all
elements are factors of the aggregate’. Similar operations
on textual data would also be possible.

Provided that the definition of the hierarchic attribute
sets is unique, then the proposed architecture should be
suitable for aggregate-incomplete data subject to consist-
ency requirements corresponding to any of these aggre-
gation operations. Further, it should be possible to cope
with multiple set values derived from a variety of
aggregation operations.

More complex aggregation operations, in which ele-
ments of particular sets are treated in an inhomogeneous
manner to generate the aggregate, or where two or more
sets of values take part in the formation of the aggregate,
could perhaps be accommodated, given some extensions
to the architecture; however, this is an area for further
study.

6. IMPLEMENTATION

A database management system based on the proposed
architecture has been implemented for the Energy
Research Group of the Cavendish Laboratory, Cam-
bridge. The system has been in operation for some two
years, serving a number of research projects in energy
policy and related areas.

The design and implementation of the database
management system for aggregate-incomplete data will
be discussed more fully in a forthcoming paper.'°

6.1 The data

The data stored by the system consist of energy production
and consumption figures, population data and a number
of economic indicators for each of 186 countries, over a
30 year time period. The raw data were derived from
published statistical series, and were aggregate-incom-
plete in nature. Many of the aggregates were derived
independently, and needed to be checked for consistency.
Out of a possible 300,000 data values, about half were
unknown when the data were loaded initially. This
proportion has been reduced significantly during the
period that the system has been in use, but by no means
eliminated.

The data are described by three hierarchic attribute
sets, corresponding, respectively, to geographical regions,
economic sectors and class of fuel. A fourth hierarchic
attribute set is used to represent to which year a particular
value refers. This hierarchic attribute set corresponds to
aggregation over time, to produce cumulative values,
although the raw data did not contain any such
aggregates.

6.2 Modifications to the architecture

Since the data were real values, rather than integers, and
subject to measurement and reporting errors, the require-
ment for equality in the consistency constraint had to be
relaxed to ‘equality within a specified tolerance’.

Two minor extensions to the architecture were required
to accommodate the data, but neither altered the
character of the system fundamentally.

The first concerned data, such as gross national
product, measured in national currency units, which,
although they could be described by combinations of
elements of the hierarchical attribute sets, could not be
aggregated directly. (Adding dollars to pounds is mean-
ingless.) Automatic aggregation is suppressed for such
data.

The second concerned data for which certain combi-
nations of the attribute values were not possible. Rather
than recording the corresponding data value as unknown,
which would make aggregation impossible, or as zero,
which would imply the possibility of a non-zero value, a
‘dummy’ value can be stored, which allows correct
aggregation while being invisible to the user.

6.3 User experience

Energy policy studies often require aggregate values,
being sums over geographical regions, economic sectors,

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 299

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

D. S. BOWERS

fuels, or some combination of these. All such aggregates
are readily available using the system, whether or not
they were present in the original data, provided that
there is sufficient information to form them. Such
derivations would previously have required exhaustive
manual searches of the data, as suggested in Section 2;
the implemented system, with its well-defined materiali-
zation algorithm, has been found to be a great asset.

Restructuring of the logical trees has not been a
problem. This would be necessary if the configuration of
the tree prevented the storage of some aggregate values,
whereas an alternative configuration could accommodate
them without preventing the storage of aggregate values
present in the original configuration. If the aggregate
values are input before the ‘atomic’ data, the tree is
automatically configured toaccommodate the aggregates,
provided that the different aggregates do not require
incompatible configurations, in which case a conscious
decision is needed as to which are to be stored. Since the
types of aggregate present in the data were known when
the data was loaded, a need to restructure the tree has not
arisen.

Restructuring would also be necessary if the definition
of the hierarchic attribute sets were modified fundamen-
tally. Minor extensions to the hierarchic attribute sets,
such as the subdivision of a particular (atomic) element,
can be accommodated readily, since the system is
concerned with logical rather than physical trees.
Although the system did need to be reloaded once, when
the size of the temporal hierarchic attribute set was
increased, it was found to be a trivial operation.

To date, the system has been found to be more than
adequate for its task supporting a research programme.

7. CONCLUSION

A class of data termed aggregate-incomplete has been
defined. Such data are described by hierarchic attribute
sets. It has been shown that, if aggregate values are stored
for such data, then the problem of materializing some
aggregate values is complicated by an immense variety
of materialization strategies.

Having asserted that it is desirable, if not essential, to
store aggregate values if data are incomplete, an
architecture based on a tree structure has been proposed
for a database to hold aggregate-incomplete data. A
materialization algorithm has been defined which is
unique, and which will always succeed if sufficient data
are stored. At most, the algorithm requires a complete
traversal of the data tree, a task which will often be
insignificant in comparison with attempting all possible
materialization strategies. It has been suggested that the
architecture could be appropriate for data subject to a
number of types of consistency requirements. It has been
asserted that, although the architecture fails to meet all
the requirements of aggregate-incomplete data in full, it
does satisfy all of them sufficiently for it to be useful as
the basis for a database management system. Finally, the
implementation of a system based on the architecture in
areal environment has been outlined.

Acknowledgements

I am grateful to Professor P. M. Stocker and to Dr P. A. Dearnley for
their advice and comments during the preparation of this paper. |
would like also to thank the referees for their helpful criticisms of the
content.

REFERENCES

1. CODASYL. Data Base Task Group Report (1971).

2. D. D. Chamberlain and R. F. Boyce, SEQUEL—a structured
English query language. Proceedings ACM-SIGFIDET Work-
shop, Ann Arbor, Michigan, May (1974).

3. D.D. Chamberlain et a/. SEQUEL-2: a unified approach to data
definition, manipulation and control. /BM Journal of Research
and Development 20, 560-575, November (1976).

4. C. J. Date, Null values in database management systems.
Proceedings of 2nd National Conference on Databases, Bristol,
July (1982).

5. W. Lipski, On semantic issues connected with incomplete
information in databases. ACM Transactions on Database
Systems 4 (3), 262-296 (1979).

6. M. Lacroix and A. Pirotte, Generalised joins. ACM SIGMOD
Record 8 (3), 14-15 (1976).

7. E.F. Codd, Extending the database relational model to capture
more meaning. ACM Transactions on Database Systems 4 (3),
397-434 (1979).

8. E. Wong, A statistical approach to incomplete information in
database systems. ACM Transactions on Database Systems 7
(3),470-488 (1982).

9. D. S. Bowers, A mathematical treatment of aggregate incom-
plete data. (To appear.)

10. D. S. Bowers, The design and implementation of a database
management system for aggregate-incomplete data. (To ap-
pear.)

Received May 1983

300 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

20z udy 01 U0 188n6 AQ £0/ LEE/Y6Z/7/LZ/910M4e/|ufo0/W0d"dNo"oILLEPEDE//:SARY W) PAPEOUMOQ

