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The problems of data placement are investigated abstractly, and we use the theory of NP-completeness to prove some
results which indicate the level of difficulty of some increasingly realistic data placement problems. As a consequence
of these theorems it is established that the likelihood of finding a deterministic algorithm to solve any of these data
placement problems with acceptable performance is very small, and other, possibly heuristic, methods are suggested.
A particularly interesting data placement problem considered in this study is formulated as the layered data placement

problem, which is shown to be NP-complete.

INTRODUCTION

It is a basic fact of physical database (DB) design that
those potential storage schemes (defined below) for the
organization of data in a DB system, DBS, which have
small associated access times for queries based on
multiple attributes of multiple relations, often have high
associated redundancy. A question which naturally arises
is:

Problem 1

Do there exist some query collections, and record sets
used in their evaluation, for which it is possible to have
storage schemes in which minimum access time is
combined with zero or minimum redundancy or wasted
space ??

The answering of this question will provide building
blocks suitable for construction of complex structures to
satisfy a variety of queries in particular applications.

Definition 1

A storage scheme is a combination of a filing scheme and
a placement scheme. A filing scheme is a method for storing
a set of records which all describe a single entity-type
and have the same simple format—i.e. a file—in the store
of a DBS. Placement schemes are explained below.

Such storage methods include a wide range of ‘hashing
algorithms’ which have traditionally been applied to
accessing files in primary storage, and also a collection of
auxiliary data accessing structures among which tree-
based techniques are most familiar. The latter also
originated in primary storage applications but have more
recently been given considerable attention as solutions to
secondary (external) storage accessing problems, and this
has led to the advent of a proliferation of ‘external filing
schemes’, some of which combine hashing and tree
techniques.!

In the present context, that of modelling the process of
storing data on rotating storage devices, RSDs, such as
disks or drums, we are not concerned with decisions
relating to specific filing schemes. We are more concerned
with the decision posed as Problem 2 below:

Problem 2

How can data subcollections, files, records and attribute-
values associated with a query collection, Q, be juxta-
posed (placed) on secondary storage devices of a DBS so
that responses to the most important queries are quickest
and the use of storage capacity is as favourable as
possible?

Solutions to this problem are placement schemes. It is our
intention to derive versions of Problem 2 which model
the problem of placement of data in a DBS, so that
insights into solution methodologies may be permitted.
As various formulations of the problem are presented,
their degrees of difficulty are studied and approaches to
their solution are suggested which are the most likely to
be rewarding.

IDEALIZED PLACEMENT PROBLEMS

In order to analyse general placement problems and
develop a theory of placement it is useful to start from
first principles in an idealized universe in which the
storage of the DBS considered is composed of /inear or
one-dimensional stores.

In such stores the physical records are scanned and
searched in a linear pattern. The next record to be
accessed from a given initial position is located by
traversing the intervening records sequentially one-by-
one in a single linear direction. Thus we are considering
very much simplified RSDs in which all the data are on
a single track, organized in much the same manner as for
a tape medium—the traditional one-dimensional store.
Clearly detailed insights gained from such a study are of
limited value, but this is a worthwhile analysis as an
appreciation of the difficulty of placement of data in a
DBS is imparted by it, and basic theoretical foundations
are established.

We begin with a definition of a very desirable property
for a given collection of queries, O, with respect to a
given collection of records, possibly representing different
entities.

Definition 2

In a given DB, the ordered consecutive retrieval property,
OCRP, is held by a collection of queries Q, with respect
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to a collection of tuples, 7, stored on a linear store, if for
any geQ, all the tuples in T which are accessed during
the evaluation of g can be stored without redundancy in
consecutive storage cells of the store of the DBS, in
accordance with the order in which they are referenced
during the evaluation of g.

A weaker version of this property is the consecutive
retrieval property proposed and analysed by Ghosh. 23

Definition 3

The consecutive retrieval property, CRP, is held by Q with
respect to the tuple collection T if for any ge Q all tuples
in T pertinent to the evaluation of g can be stored without
redundancy in consecutive cells of the store of a DBS.

In addition to the direct access filing schemes outlined
above, linking mechanisms are required to navigate
between records in different files (or even within a single
file). The different types of accessing mechanisms
combine to make available access paths for queries on
the DB. In terms of access path structure, Definition 2
means that at least one access path for each query ge Q
must be composed of records which are grouped
contiguously to form files as required. The files so defined
all describe a single entity-type by definition, but may be
interspersed by records containing attributes describing
some other entity, in the order in which they are needed
to evaluate the query. Definition 3 on the other hand
merely means that if # instances of records are needed
in the access path for any query ge Q then they are stored
in # consecutive record-sized storage cells.

Example:

Consider a single relation EMP
EMP (Name, No, Dept, Manager, Salary)
composed of six tuples as in Table 1.

Table 1

Tuple-id Name No Dept Manager Salary

t, Abbot 16 A Abbot 20 000
ts Carey 25 A Abbot 15 000
ts Jones 94 B Smith 22000
ts Pepper 106 A Abbot 22 000
ts Smith 112 B Smith 28 000
te Thompson 131 A Abbot 15000

There are 3 queries against this relation with the
following qualification predicates:
q,: (Salary = 22 000)
q: (Salary = 22 000 v Manager = Name)
q3: (Dept =A)

whose targets are met from (some of) the attribute-values
from tuples

13,1,
by, t3, 84,15
L, l, 14, e,
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respectively. A possible permutation of the tuples to meet
the requirements of both OCRP and CRP—assuming
that the order of tuple presentation is not important for
these queries—for ¢, ¢,, g5 against EMP is:

le—l—l)—l4—13—1s 0y

Here only hashing or indexing access mechanisms (on,
for example, Salary, Dept and Manager: Name) are
needed and are assumed to exist as required.

Consider now an additional query:

g4 = (Salary > Manager’s Salary)

(note: this query is abbreviated for clarity) which has
target tuple z,.
There are two possibilities here :

(a) g, may be a member of the ‘original query set’ used
to determine initial access mechanism needs and
therefore have tailored access paths so that only one
record (t,) need be accessed; so CRP and OCRP are
both demonstrated for all four queries.

(b) g, may be an ad hoc query without tailored hash and
link element support, and may therefore have an
access path involving access to:

b bty s, U=ty ts, te— Ty 2

possibly using ‘foreign keys’ to link an employee with
his manager.

Clearly the set of four queries has the CRP with respect
to the six tuples with arrangement (1), but can it be said
to have the OCRP if it is an ad hoc query?

To have the OCRP ¢, must simultaneously be adjacent
to 15, 14, te, which is clearly impossible, and so (q,, ¢,,
43, 44) does not possess the OCRP with respect to the
tuples (¢,, t;, 13, t4, 15, t6) if ¢4 is an ad hoc query. If some
mechanism were provided to allow managers’ salaries to
be ‘remembered’ when they are hit, then the arrangement
ts—t3—t,—t,—t,—ts would meet the requirements of OCRP
for all 4 queries.

THE INTRINSIC DIFFICULTY OF
FUNDAMENTAL PLACEMENT PROBLEMS

The theory of NP-completeness'® supplies techniques
for proving that a given problem is ‘just as hard as’ a
large family of other problems, which have become
widely recognized as being exceptionally hard through
their persistent resistance to efforts of experts at solving
them for many years. The foundations of this theory were
laid by Cook* when he drew attention to a class NP of
decision problems—problems with ‘yes’ or ‘no’ answers—
which can be solved in polynomial time by a non-
deterministic Turing machine. Most apparently intract-
able decision problems—in the sense that no polynomial
time algorithm can possibly solve them—which have
been identified in practice can be classified as NP
problems. There exists a set of NP problems—the
‘hardest’ members of the NP class—to which every other
NP problem can be reduced polynomially, and the
classical members of this subset were defined by Karp.’
These are collectively referred to as the class of NP-
complete decision problems.

These considerations have provided a theoretical basis
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for reducing a large collection of individually complex
problems to a single question: ‘Are NP-complete prob-
lems intractable?’ This is now one of the leading open
questions in contemporary mathematics and informatics.
Many investigators are willing to conjecture that NP-
complete problems are intractable—but no rigorous
theoretical basis has yet been established for this
assumption. In this paper the technique of establishing
that certain problems are NP-complete is used, with the
intention of showing, not that they are intractable, but
that they possess a well-defined level of complexity, and,
at least, that dramatic progress will be required to
produce an algorithm to solve them in polynomial time.
Hence other methods of solution should probably be
sought.

We now establish that some basic data placement
problems are NP-complete.

A fundamental decision problem confronting the
physical database designer is that of determining whether
or not a given collection of queries has the CRP with
respect to a given set of records. Ghosh?'* has established,
using a set-theoretic approach, several basic theorems
which provide assistance in answering this query if, for
example, it is added to a set of queries possessing the
CRP under certain conditions, or if it belongs to a set of
queries whose pertinent record sets are nested. Many of
Ghosh’s results have been confirmed and more powerful
results obtained by Eswaran® by adopting a graph-
theoretic approach to analysing the CRP. Necessary
conditions for the possession of the property were
established using concepts from graph theory such as
Hamiltonian paths, linear graphs and intersection
graphs. A third approach by Nanako’ was to use set-
closure properties to establish necessary and sufficient
conditions for CRP.

We now examine the CRP and similar properties at a
level of abstraction slightly above this by looking at the
intrinsic difficulty associated with determining if a set of
queries has the property.

Problem 3

The CRP(Q,T)-problem is the name given to the problem
of determining whether a given set of queries, Q, has the
CRP with respect to a given set of tuples, 7.

Definition 4

A binary matrix (i.e. one with only 0, 1 as entries) has the
consecutive ones property if all its columns can be permuted
so that each row has all its ones occurring consecutively.

Theorem 1
The CRP(Q,T)-problem is solvable in polynomial time.

Proof. Let |T| be the cardinality of T. The CRP(Q,T)-
problem is clearly equivalent to determining if a matrix
has the consecutive ones property. Fulkerson and Gross®
have shown that this problem is solvable in polynomial
time.

Note: the problem of checking the OCRP for a set of
queries and a set of tuples can be similarly mapped onto

a slightly more elaborate check of the consecutive ones
property, and hence is not NP-complete either.

Definition 5

The consecutive retrieval property with bounded range,
CRBR(Q,T,K), is held by query collection Q with respect
to tuple collection T and given Ke Z™ if there exists m <
K consecutive record-sized storage cells in the store of
the DBS, containing for any g € Q, all tuples of T pertinent
to the evaluation of g without redundancy.

This property may be restated as follows: given a finite
set of tuples T, and a collection {T;},1 < i < n, of subsets
of T, containing tuples pertinent to queries {Q;},1 <i <
n, respectively, and Ke Z*, then {Q;} has the CRBR
(Q,T,K) w.r.t. T <> a sequence of tuple occurrences s€ T*
with |s|] < K can be selected, such that V i the elements of
T; occur consecutively (without redundancy) in s. Here
T* denotes the set of all finite subsets of T'(with repetition
allowed).

Problem 4

The CRBR(Q,T,K)-problem is the name given to the
problem of determining whether a given set of queries Q
has the CRBR(Q,T,K) with respect to a given set of
tuples T and a given constant, Ke Z*.

We now establish the, initially perhaps counter-intuitive,
result that despite the fact that the CRP(Q,T)-problem
is mathematically tractable, by Theorem 1, the
CRBR(Q,T,K)-problem is intrinsically difficult.

Theorem 2
The CRBR(Q,T,K)-problem is NP-complete.

Proof. A non-deterministic Turing machine can guess the
arrangement of the tuples. Let |T| be the cardinality of T.
Let T be an alphabet of |T| symbols. There is a 1-1
correspondence f:T — X and, a fortiori, f.T; - X;, for each
subset T; of T"and some subset Z; of Z, due to the fact that
both, by definition, have a 1-1 correspondence with
members of Z™.

Similarly there is a 1-1 correspondence g:X* — T*,
where Z* is the set of strings w of £ and T* is the set of
sequences of occurrences s of tuples in T. Kou® has
shown, using a polynomial time transformation from the
classic Hamiltonian path problem, which Karp® had
previously shown to be NP-complete, that the problem
of determining if there is a string w in * with |w| < K
such that Vi the elements of ¥; can be stored consecutively
without redundancy within w is NP-complete.

Hence the CRBR(Q,T,K)-problem is also NP-com-
plete or else an NP-complete problem can be transformed
into one solvable in polynomial time by a 1-1 mapping.

MORE REALISTIC PLACEMENT MODELS
AND PROBLEMS

Much of the work done on consecutive placement of
records was, by implication at least, concerned with

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 317

202 udy 60 U0 188n6 Aq 09/ LEE/S L€/ Z/10M4e/|uf00/W0d"dNo"oIEPEDE//:SARY W) PAPEOUMOQ



D. A. BELL

single-relation queries. Just how applicable these con-
cepts are to realistic database design problems was not
considered beyond some queries on single-relation ‘da-
tabases’.

Explicitly stated for multi-relational queries, the
CRP(Q,T)-problem becomes the following:

Given a set, Q, of queries on a collection of relations
{Ri}, 1 < i< n, does there exist an organization of tuples
in {R;}, without duplication, such that V query in Q all
pertinent tuples can be stored in consecutive storage cells
in the store of a DBS?

Clearly if | J/(R)) is treated as one large file consisting
of multiple record-types (corresponding to different
entities) and the different entity-types can be juxtaposed
in any way desired, then the results of both Ghosh and
Eswaran are directly applicable to a multi-relation
database.

However, the restriction to linear storage devices is
extremely untypical of RSDs, and the condition of
consecutiveness is extremely restrictive and unlikely to
be met in a real system design situation.

Hence the more tolerant CRBR(Q,T,K) property is
more realistic, but we have an immediate possibility of
confusion in trying to introduce a measure of distance.
In Definition 5, K is a number of records, so the type
(size) of records involved has a large impact upon the
level of redundancy in terms of storage capacity—and
ultimately upon retrieval performance.

For RSDs we assume a model of storage where each
track of each cylinder is divided up into a fixed number
of pages. We now use a well-known definition of distance
between two tuples ¢; and ¢;, denoted d(z;, ).

Assume that there are x pages to the track and y
cylinders on our RSDs, and define:

latency cost = rd;
where r is the time taken to rotate over 1 page, and dj; is
the number of pages in the direction of rotation separating
the pages holding tuples i/ and j.
seek cost = s/,

where s is the time taken to move the R/W-head system
of the RSD over 1 cylinder, and /,, is the number of
cylinders separating the cylinders p, ¢ holding tuples i
and j, respectively.
The distance function d(t;, t;) is given by:
rdu + Slpq
rG—i—1)+s(p—q) fl<i<j<x
= { fl<j<i<x
ifi=j

rG—i—1+x)+s(p—¢q)
rx—1)+s(p—q)
Note: this distance function ignores the contribution of
transfer time to costs.
This concept of distance can be applied to
CRBR(Q,T,K) in an obvious way in order to help in the
generalization of the placement problem.

Problem §

The query set clustering problem, QC-problem is stated as
follows: Given a finite set, T, of tuples, and the distance
function d(t,, t,)eZ* as defined above, between every
pair of tuples 7, and ¢, in 7, and positive integers K and
{B;}, 1 <j< K. Can T be partitioned into K disjoint
subsets T, ..., T, such that, Vi< K and V¢;, t, in T},
d(t,,t,) < B;?
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Theorem 3
The QC-problem is NP-complete.

Proof. A result due to Brucker'® implies that if all the B;
equal the same constant (B say) then the problem is NP-
complete. In fact it can be shown even for K =3 the
problem remains NP-complete.

If the problem were not NP-complete for varying B; in
{B;}, this would mean it was not NP-complete for B =
max {B;}, which is a contradiction with Brucker’s result

J
above. O

Note. Variants of this problem with max{d(z,, t,)} < B;
or 2d(t,, t,) < B; or ave d(t,, t,) < B are also NP-
complete. Also when the probabilities p, and p, of access
to t; and ¢, respectively, are included, so that the
condition becomes

p1p2d(t, t;) < B;
the problem remains NP-complete.

Another partitioning problem related to CRP is now
given.

Problem 6

Given a finite set of tuples T, and a collection of subsets
{Ti}, 1 < i< n, of T corresponding to the sets of tuples
pertinent to queries {Q;}, 1 < i< n, respectively. The
storage partitioning problem, SP-problem, is stated as
follows: Is there a set of disjoint partitions P,, . . ., P, of
T such that at most one tuple corresponding to Q;, Vi, is
in each P;, and yet all tuples corresponding to Q; (i.e. set
T) are contained in |T;| consecutive partitions?

Theorem 4

The SP-problem is NP-complete.

The proof of this theorem follows as a special case of a
general NP-complete partitioning problem analysed by
Lipsky.'!

It is clear from these results that any time spent trying to
find an algorithm with polynomial execution time to
solve these problems is very likely to be wasted. The
corresponding real-world physical database design prob-
lems such as the problem of getting all tuples associated
with a particular query (or application—see later) to be
physically close to one another (e.g. on a single cylinder
or page, where B; is the (variable) cylinder or page size,
respectively, in Problem 5, for instance), or to be placed
on consecutive storage blocks (possibly the P; of Problem
6 being simultaneously accessible storage units to allow
parallelism) are therefore proved to be extremely difficult
problems.

In more realistic models account must also be taken of
the fact that queries are often logically grouped by the
applications with which they are associated. These
applications are likely to have (temporarily) fixed
priorities or urgencies or probabilities, which imply a
natural ‘importance’ ranking.
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Definition 6

The set of applications {4;}, 1 <i < n, is said to possess
the application consecutive retrieval property, ACRP, with
respect to the tuples {7;}, 1 </ < m, if there exists an
ordering of the {7;}, without duplication, such that, for
every A; in {4;}, all tuples pertinent to its collection of
queries can be stored in consecutive storage locations.

A similar definition analogous to Definition 5 can also be
given with ‘queries’ replaced by ‘applications’, and this
can be extended to include the notion of distance as
defined earlier in this section, rather than the notion of a
bounded number of records (K) spanning the pertinent
tuple set.

The major difference between these properties and the
CRP of Ghosh et al., is that in Definition 6 the individual
queries are not constrained to have the CRP. The CRP
only need hold for clusters of queries—those relating to
the separate applications. All the theorems of Ghosh et
al., can be clearly applied within applications—although
they must be extended to include more realistic treatment
of DBS architectures. Ghosh has developed such a
treatment in Ref. 12 and has thereby generalized his one-
dimensional treatment considerably. However we believe
that the concept of distance introduced here is more
realistic.

Now we define an ordering on the set of applications
{A;} as follows:

A< Aj<u <u, alkandJ

where u; is a measure of the urgency, probability, or other
priority of application A,, for each i.

The nature of the {4,} in practice suggests an amended
version of the ACRP, where only a selection of the
applications, the most important, need have the ACRP.

Definition 7

A set of applications {4;}, 1 <i < m, has the truncated
consecutive retrieval property of order n, TCRP(n), n < m,
with respect to tuple collection {7;} if and only if {4;},
1 <i< n, possess the ACRP w.r.t. {T;}.

Clearly a similar truncated property can be defined for
queries and the definitions of placement and retrieval
properties of both this section and the preceding section
may be rewritten correspondingly.

THE LAYERED PLACEMENT PROBLEM

The primary objective of this study of placement is to
consider the problems defined next.

Problem 7

Given m tuples, ¢, . . ., t,, stored on n pages p,, . . . , p,,
let d(ijz) be the retrieval unit cost to tuple ¢ on page P
when the previously accessed tuple was on page p,.
Tuples may be replicated between pages, but not within
pages. We require to find an optimal placement (assign-
ment) of tuples to pages as follows: we seek a minimal
collection of pages M C {p;}, 1 <i<n to store the m

tuples so that the expected cost of retrieval of pairs of
consecutively-accessed tuples is minimized and there is
no duplication of tuples. The problem is called the
covering placement problem, CP-problem.

The CP-problem is NP-complete

The proof of this result is similar to a proof of a result by
Eswaran!® for a network of computers, which uses a
mapping from the set covering problem.’ Thus this
problem is not solvable in polynomial time or else many
other difficult problems would be solvable in polynomial
time by a deterministic Turing machine.

The CP-problem assumes an initial allocation of tuples
to pages, possibly with replication between pages, and
requires a non-redundant minimum cover of these pages.
A very similar problem, the data placement problem, D P-
problem, where the tuples are not initially assigned to
pages but are to be optimally assigned during the solution,
is also known to be NP-complete.

Problem 8

Given m tuples ¢, ..., t, stored on n; occurrences of
storage units su;, where each i corresponds to a level of
proximity, assume a fixed cost k of locating a tuple on an
su, occurrence. Let d; be the retrieval unit cost to a tuple
on an sy occurrence when the immediately preceding
access was to a tuple on a different su; occurrence, but not
on a different su; occurrence, any j >i. If i = 1, d,(xyz)
represents the cost of retrieving tuple ¢, on su, occurrence
y when its immediate predecessor was on a different su,
occurrence z.

Assume that there is a cost differential between each
level of storage—i.e. for each i there is a factor f; such
that

di=ﬁdi—l,ﬁ> 1

Tuples may be replicated between su; occurrences but
not within su, occurrences.

Assume that each sy has a constant finite capacity c;
such that ¢; is a number of tuples when i=1 and a
number of su;_; occurrences for all other i.

We require to find an optimal placement of tuples to
su; units—i.e. to minimize the total cost of requested
tuple-pair retrievals, while eliminating the duplication of
tuples. This problem is called the layered covering
placement problem, LCP-problem.

Theorem 6

The LCP-problem is NP-complete.

This result follows easily, a fortiori, from Theorem 5.

Again the analogy of the LCP-problem, called the
layered data placement problem, LDP-problem, is NP-
complete following from the complexity of the DP-
problem.

These results show the difficulty of the problem of
minimizing retrieval costs when there are multiple levels
of proximity corresponding to ‘same page’, ‘same
cylinder’, ‘same disk’, etc. (the su; of Problem 8). Thus
for example in addition to getting a minimum cover in
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terms of pages, a minimum cover in terms of pages within
a corresponding cylinder has to be obtained. In modern
DBS the levels of the storage hierarchy which lead to the
data staging problem may extend up through layers such
as associative disk memories'* to the level where the
RSDs are on differing geographic sites. Clustering at all
levels is worth while because of the cost differentials. The
multi-level version of the DP-problem is the one given
most attention when establishing techniques for place-
ment in Ref. 15.

The results of this section therefore give formal warning
that it is likely to be fruitless to look for solutions that
solve the DP-problem or LDP-problem in polynomial
time. The emphasis should be placed on heuristic
approaches rather than deterministic approaches.

SUMMARY

In this paper the problems of data placement have been
modelled at various increasing levels of realism, and it is

shown that many of these problems are extremely difficult.
The problems are all concerned with the determination
of whether or not a given arrangement of tuples on
physical storage is possible. They are not explicitly
concerned with the problem of finding such arrange-
ments. However it is clear that, because the ‘existence’
problems are NP-complete, the problem of finding the
arrangements must be at least as difficult.

Hence it is proved to be inadvisable for database
designers to seek algorithms to arrange data in the
patterns described, and other systematic approaches,
possible with less ambitious goals, are preferable. Some
such approaches to placement problems are introduced
and studied by Bell.'*
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