An Axiomatic Theory of Software Complexity

Measure

Ronald E. Prather

Department of Mathematics and Computer Science, University of Denver, Denver, Colorado, USA

In software engineering, various ‘metrics’ have been introduced in an attempt to measure the complexity of programs.
We show how the whole idea of a ‘software complexity measure’ can be axiomatized in such a way as to include the
more familiar concrete examples and to allow for new measures that might offer advantages not captured by those
previously introduced. In particular, a new testing measure is introduced, based on the ‘multiple-condition’ test
strategy. Comparisons are made between this new measure and the more traditional metrics. In addition, a more
general theoretical study is initiated, showing the effect of the axiomatic development in relation to the treatment of

program structuredness.

1. INTRODUCTION

The new and rapidly developing field of ‘software metrics’
seeks tomeasure the inherent complexity of large software
systems with a view toward predicting the overall project
cost and evaluating the quality and effectiveness of the
design.

It is fairly certain that no one ‘magic number’ can
serve as a measurement for all of the characteristics of
software that might be considered important in this
respect. Instead, one expects that different metrics will
be needed in estimating a program’s inherent psycholog-
ical complexity, its readability, testability, maintainabil-
ity, flexibility, etc. On the other hand, it would be nice to
think that these separate measures might share some
common characteristics that could serve to unite the field
and point the way to future research.

With this in mind, we propose a new axiomatic theory
of software complexity measure over the class of
structured programs. We show that the traditional
metrics of Halstead and McCabe indeed satisfy this
system of axioms when they are suitably restricted to the
structured programming constructs. We then describe a
general method for extending certain measures satisfying
our axiom scheme to the class of unstructured programs,
i.e. we provide a uniform treatment of the ‘psychological
complexity’ of the goto statement, yielding a universal
abstract complexity theory grounded in the original
axiomatic system.

In the course of this development, we also present a
new testing complexity measure, based on the so-called
‘multiple-condition’ test strategy. It is shown that this
new measure also satisfies our axiom scheme, and yet,
offers several advantages over the traditional measures
of Halstead, McCabe, etc., now widely in use. In turn,
this shows that our scheme is sufficiently flexible as to
allow for improvements and comparisons from one
measure to another.

2. TWO STANDARD COMPLEXITY MEASURES

It has been said' that there must be, ‘as many complexity
measures as there are computer scientists’. Not all of

these have caught on with the software engineering
community, however. Nevertheless, their number serves
to explain our attempt to axiomatize the whole notion of
a complexity measure, hoping to provide for a more
unified and systematic approach to the field. For our
purposes, and without regard to their validity, it will
suffice to briefly describe the two most often cited
metrics—those of McCabe? and Halstead.> Although
they do provide some basis for the scheme to be
introduced shortly, we feel obliged to comment on certain
inadequacies in these metrics in order that comparisons
and recommendations for improvement can be made at
a later point.

We view a program F as being represented by a
‘skeleton’ of its underlying flowchart, a directed graph
symbolizing the flow of control. Accordingly, a program
or flowchart graph F = (V, E) is a directed graph with
vertex set ¥ and edge set E. It is further supposed that
the graph has a single entry point, the start vertex (V/),
and a single exit point, the stop vertex (/\), and that
every vertex lies on a path from ‘start’ to ‘stop’. The other
vertices are further partitioned into statement nodes and
decision nodes, the former having one exiting edge, the
latter two (or more). The statement nodes are identified
with (sequences of) simple statements (of assignment,
input, and output) and the decision nodes are character-
ized by predicates, representing Boolean conditions
causing a branch in the flow of control (with the two
exiting edges labelled ‘T” or ‘F’ accordingly).

Given a program graph F = (V, E), McCabe? suggests
the use of the graph’s circuit rank :

p(F)=|E| - |V|+1

as a measure of the program’s complexity. It is well
known that this number is closely related (and in fact,
differs by one from) the number of linearly independent
paths through the graph, and it has been suggested that
the testing of a program over a corresponding ‘basis’ of
program paths represents an adequate test of the
program’s performance. Furthermore, McCabe has ob-
served that this same circuit rank p can be computed as
the ‘number (p(F) = d) of decision nodes’ in the graph.
In spite of the fair degree of acceptance of the McCabe
measure in software engineering circles, several criti-
cisms can be made. Of course, it will be true that one can

CCC-0010-4620/84/0027-0340 $04.00

340 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

© Wiley Heyden Ltd, 1984

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

AN AXIOMATIC THEORY OF SOFTWARE COMPLEXITY MEASURE

always expect to find a set of examples for which a given
measure performs poorly, i.e. contrary to our intuition.
More than this, however, we believe that there are three
fundamental objections to McCabe’s measure, incongru-
ities that have not been given much attention elsewhere.
We list these as follows:

1. pisrelatively insensitive to program restructuring.
2. p correlates too closely with ‘number of lines of code’.
3. ptakes no account of program nesting levels.

The net effect, we feel, is that McCabe’s metric is too
coarse, too elementary toreflect the intricacies of program
complexity, the many features standing in the way of our
ability tounderstand the program or to test its correctness.

Regarding (1), it has been shown* that McCabe’s
metric may actually increase for our having restructured
the code according to accepted structured programming
precepts. Considering (2), we of course realize that the
‘number of lines of (uncommented) code’ is often used as
a crude ‘yardstick’ of programming effort. But the close
correlation reported® between this figure and McCabe’s
is hardly a validation of the McCabe theory. Intuitively,
we feel that there must be ‘more to it’ than this.
Particularly in reference to (3), it can be argued that the
levels of nesting of a program segment should contribute
to its complexity. But the two flowchart segments of Fig.
1 are equally complex from the standpoint of the McCabe
measure. Surely it is easier to analyse the sequence of
loops in (a). If I understand each of them in isolation,
then I understand their sequential effect—in an additive
fashion. On the other hand, the nesting of constructs
(repetitions, selections, etc.) as in (b) may be expected to
have more of a multiplying effect on the complexity, or at
least, so it can be argued. The point is, we are looking for
a broad-based axiomatic framework where such points
of view can be explored and compared to the traditional
approaches to complexity.

(a) (b)

gLLGTIT e

T

Figure 1

The second standard measure of program complexity
is the ‘software science’ metric of Halstead.> If we count :

n = number of distinct operators and operands
N = number of operator and operand occurrences

in a program F, then the program volume
v(F)= Nlogn

is taken as a measure of the complexity. It is;ordinarily
suggested that this expression represents the number of
‘mental comparisons’ necessary to implement the pro-
gram, and that a comparable effort is necessary in
understanding the program. At least, this is the justifica-
tion usually given.

In fact, a number of empirical studies®’ have been
offered in support of an apparent correlation of Halstead’s
measure with various counts of programming errors. On
the other hand, it is easily seen that Halstead’s metric is
subject to the same criticisms previously cited for the
case of McCabe’s measure. The study previously noted*
shows the ineffectiveness of Halstead’s metric in relation
to program structure, and clearly, the volume measure
does not take a program’s nesting levels into account. In
fact, we could hardly expect it to be otherwise, since
Halstead’s analysis is ‘linguistic’ rather than ‘structural’
in nature.

But we remind the reader that our point in all of this,
as mentioned above, is to seek a unified axiomatic
framework for countering such objections as listed here,
and for developing new metrics along more universal
guidelines. This goal then becomes our central point of
focus in the discussions to follow.

3. AXIOMATIC SOFTWARE COMPLEXITY
MEASURE

As we have indicated, we first intend to present an
axiomatic framework applicable to software complexity
measure as it relates to the structured programming
methodology. In Section 5, we then show how certain
measures satisfying our axioms in this respect can be
extended so as to be applicable to unstructured programs
as well, thus transcending the initial limitations and
allowing for a broader scope to the theory.

The tenets of the structured programming methodology
are now well understood® ° and they need not be repeated
here. For our purposes, it will suffice to say that a
structured programis one that has been builtup inductively
from certain simple statements acting as a base set of
processes, using only the three familiar constructs:

(a) sequence:begin S,;S,;...;S,end
(b) selection: if Pthen S, else S,
(c) repetition: while Pdo S

where the S; (S, T respectively) are themselves structured
(but possibly compound) processes and P is an arbitrary
predicate in the programming language under consider-
ation. Nore that a process is a program segment
(subflowchart) having a single entry and a single exit
edge. Among these are the assignment statements and
input/output statements ordinarily considered to be
‘simple’. Depending on the programming language under
consideration, other statements might also be regarded
as simple, but such details need not concern us here.

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 341

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

R. E. PRATHER

Let us now suppose that m is a function from the class
of structured programs (in a given programming lan-
guage) to the non-negative real numbers. Such a function
will be called a proper measure (of program complexity) if
it satisfies the three axiom schemes:

(@) m(begin S,; S,;...; S, end) > ¥ m(S))

(b) 2(m(S,) + m(S,)) > m (if P then S, else S,)
. > m(Sy) + m(S,)

(¢) 2m(S) = m (while P do S) > m(S)

where we require the two left-hand inequalities (denoted
(b’) and (¢') in the sequel) only for sufficiently large m(S).
Note the strict inequalities at the right, hereafter referred
to as conditions (b) and (c) to distinguish them from the
left-hand inequalities.

The reasons for our requiring the first inequality and
the right-hand inequalities of (b) and (c) are not very
profound; we ask little more than that ‘the complexity of
the whole be greater than (or equal to, in the case of (a))
the complexity of its parts’. But how much greater? That
is the question we address in (b") and (c’). Here, one may
think of the predicate P as having an implicit complexity
of its own. The two inequalities then insist that the
complexity of the predicate be regarded as not having
exceeded that of the body of the construct in question. If
these are arguable positions to have taken, then the
burden of proof must await the consequences of these
assumptions (e.g. see Theorem 3 in Section 5). Beyond
this, we must first test the adequacy of these requirements
in relation to the concrete measures currently in use.

Verification that p is a proper measure

Using McCabe’s simplified count, i.e. the number d of
decision nodes, we have:

(a) p(begin S;; S,;...;S,end)
=3d; =3 p(S)
(b) p(if Pthen S, else S,)
=1 +d1 +d2>d1 +d2=p(S1)+p(S2)
(©) p(while PdoS)=1+d>d=p(S)

considering only the right-hand inequalities of (b) and
(c). The inequalities (b’) and (c’) are seen to be satisfied
whenever p(S) > 1, say, and that is sufficient for our
purposes.

Verification that v is a proper measure

Considering the Halstead metric, N log n, and using an
obvious notation, we have:

(@) v(begin S,;S,;...;S,end) = Nlogn
=2 Nilogn >3 N;logn, = 3 v(S;)
(b) v (if P then S, else S,)
= Nlogn = (Np + N, + N,)logn
> Nplognp + N, logn, + N,logn,
> N,logn, + N,logn,
=¥S,) + ¥(S,)
(¢) v(while Pdo S) = Nlogn = (Np + Ng)logn
> Nplognp + Nglogng
> Nslogns = V(S)

again concentrating on the right-hand inequalities of (b)
and (). In this case, the inequalities (b’) and (c') may

342 THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984

present something of a problem. It is, of course, possible
that the Halstead complexity of the predicate P may
exceed that of the body of the construct in question,
whatever its measure. However, this is indeed an unusual
occurrence, and we are entirely justified in thinking that
this happenssorarely in practice as to regard the Halstead
metric as a ‘proper measure’ in good standing.

As we have said, the main test of the soundness of our
axioms will rest with the conclusions we are able to draw
from them. For the time being, we offer the following
result, stated without proof.

Theorem 1

Let m;,m,,...,m, be proper measures of program
complexity. Then any weighted linear combination of
these measures is again a proper measure.

It is clear that this result is of definite interest in any
attempt to obtain a composite complexity measure built
up out of existing measures as components. On the other
hand, the more substantive questions must be deferred
until we provide the extended capabilities of Section 5.

4. A NEW TESTING COMPLEXITY MEASURE

The general goal of software testing is to affirm the quality
of a program through systematic exercising of the code
in a carefully controlled environment. It is hoped that
the successive execution of a program according to a well
designed test scheme will continually exhibit the proper
behaviour, thus indicating the unlikelihood of program-
mingerrors. In fact, considering the difficulty in obtaining
actual proofs of correctness, program testing has become
possibly the only truly effective means for ensuring the
quality of software systems of non-trivial complexity.

There are a number of testing strategies that can be
used to ensure a reasonable level of confidence in a
program’s correctness. Primarily, these criteria are based
on the objective of providing adequate ‘coverage’ of the
flowchart graph by the totality of program paths that
have been traversed by the testing scheme. Among the
more commonly used criteria are the following:

1. Statement coverage. Execute all statements in the
graph.

2. Node coverage. Encounter all decision node entry
points in the graph.

3. Branch coverage. Encounter all exit branches of each
decision node in the graph.

4. Multiple condition coverage. Achieve all possible
combinations of condition outcomes at each decision
node of the graph.

5. Path coverage. Traverse all paths in the graph.

It is clear that ‘statement coverage’ and ‘node coverage’
are in themselves rather weak testing strategies. The
‘branch coverage’ criterion, however, implies these two,
and has come to be regarded as a minimal standard of
testing achievement.

The stronger criterion of ‘path coverage’ is difficult to
achieve in a program of reasonable complexity. The
‘multiple condition coverage’ criterion again ensures
branch coverage, and moreover, provides for an extensive
checking of a program’s condition logic. Moreover, the

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

AN AXIOMATIC THEORY OF SOFTWARE COMPLEXITY MEASURE

mechanics of the test case generation problem are
somewhat easier to handle than are those for the path
coverage criterion. Furthermore, the multiple condition
coverage strategy leads to an effective measure of a
program’s testing complexity, as we now show.

As we would expect, this new testing measure p will first
be defined inductively over the simple statements of a
language so as to constitute a proper measure on the class
of structured programs. We must therefore first decide
on a measure of complexity for the simple statements of
a (structured) program. Rather than attempting to assess
the relative complexity of one simple statement as
compared with another, however, we agree instead to
take the simple statement as our ‘unit’ of complexity,
writing in effect:

u (simple statement) = 1

Of course, it is only a relative complexity that matters in
comparing one program with another, so we are free to
choose any ‘scaling factor’ we wish in developing our
standard, and one may thus interpret the above conven-
tion as our having normalized all complexity measure-
ments accordingly. It is our feeling, however, that this
would be an appropriate place to superimpose a ‘Hal-
stead-like’ metric, so as to differentiate the complexity of
one simple statement from another, providing a fine-
tuned accounting for the operators and operands in-
volved. We mention this as a possibility for further study,
but in the present context we will continue to operate
with the unit measure given above.

In a bottom-up testing methodology, based on any
testing strategy whatsoever, one assumes that certain
processes have already been adequately tested and that
their correctness is reasonably assured before they have
been integrated into a larger process whose testing is
under study. Our inductive definition of the testing
measure p is consistent with this philosophy. Thus, in
considering (a) the sequence construct, we suppose that
the measures u(S;) have already been assigned to
processes S;, S,,..., S,, and we then seek to assign a
measure to their sequential ‘sum’. We take the view that
u should be additive over such sums, writing:

(@) u(beginS;,S,,...,S,end) =3 u(s,

the intuitive assumption being that ‘If I understand each
process separately, then I understand their sequence
taken as a whole’. Moreover, we view this additivity
formula as a recognition that in some respects a complexity
measure should correlate with the crude measure of
‘program length’. But we only expect a high degree of
correlation in the case of programs that are, to a large
extent, built up out of straight line code. As we will see,
our measure performs quite differently with respect to a
program’s nested constructs.

Arguing by induction once more in treating (b) the
selection construct, we must again assume that appropri-
ate measures of complexity u(S,), u(S,) have already
been assigned to the processes S, and S, . In consideration
of the multiple condition testing strategy, we then agree
to assign:

(b) u(f Pthen S, else S,) = 2 max (u(S,), u(S,))

by taking a ‘worst case’ view of the situation, as though
the two test cases needed to exercise the (supposedly

simple) Boolean condition P will cause a traversal of the
process (S; or S,) of %reatest complexity. (Note: we
substitute the figure 2!*' for 2 in the case where P is a
complex Boolean condition composed of |P| simple
Boolean relations.) And we remark that an alternative
approach would be to substitute the ‘ave’ for the ‘max’
function, in assuming that roughly half of the paths
through P will traverse S, , the other half S,. In any case,
we will have worked toward the objective of compound-
ing the complexity of deeply nested processes.

Finally, in (c) the repetition construct, we again impose
a multiplicative effect in writing:

(c) u(while P doS) = 2u(S)

(Note: once more, we replace 2 by 2! in the case where
P is a compound Boolean condition.) In keeping with the
multiple condition testing strategy, we wish to recognize
the existence of all possible combinations of the simple
conditions appearing in P, treating each combination as
having specified a path through S. Since each such path
entails the derivation of appropriate input test data and
the test is then administered successively through P to
the module S (though admittedly, some inputs may
bypass S via the ‘false’ alternative), our multiplicative
formulation would seem to be well founded.

We note the compounding effect of successive nesting
levels with u as opposed to McCabe’s measure p. For the
two loop structures of Fig. 1, we obtain by way of
comparison:

(@ (b)
p=3 p=3
u=2+2+2=6 u=2(1+2(1+2(1))=14

assuming simple statements and simple conditions
throughout. For the measure p, the two programs are
considered equally complex, whereas for u, the state-
ments at a deeper level of nesting weigh more heavily in
the ultimate determination of program complexity.
Moreover, in the case of McCabe’s metric, there is no
provision for weighing the complexity of the straight line
code that might be represented by the three repeated
process of Fig. 1. Sixteen assignment statements would
count the same as one. With the measure u, however,
their effect would at least be additive, and moreover, we
have the additional opportunity of imposing a Halstead-
like fine tuning of the measure of the individual simple
statements, as mentioned earlier.

Before proceeding further, we should check to see that
our new testing measure satisfies the axiom scheme of
Section 3, as this will be important in the sequel.

Verification that u is a proper measure

Reviewing the axioms, and comparing with (a), (b), (c)
above, we may compute:

(@) p(beginS;;S,;...;8,end) =3 u(S;)

(b) u(Gf Pthen S, else S,)
= 2max (u(S,), u(S>)) > 2ave (u(S;), u(S,))
= pu(S) + u(S>)

(c) u(while Pdo S) = 2u(S) > u(S)

as required. In this case, we see that the inequalities (b’),
(c') are trivially satisfied.

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 343

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

R. E. PRATHER

Figure 2

Example

To illustrate the more intricate computations with our
new testing complexity measure, consider the (structured)
flowchart of Fig. 2. Here, the notation n written in a
square denotes n sequential simple statements, and
similarly, the notation m written in a diamond indicates
a Boolean condition composed of m simple Boolean
relations. The inner selection statement has two branches,
of complexities:

4(1 + 2max (1, 2)) = 20 (the left branch)
2 max (4 max (2, 1), 2 + 2(3)) = 16 (the right branch)

respectively. Finally, we compute the complexity of the
flowchart as a whole:

u=6+22+40)+6+4=100
thus completing the example.

5. THE PSYCHOLOGICAL COMPLEXITY OF
THE GOTO STATEMENT

Given the emphasis of software development manage-
ment on quality, testability, maintainability, etc. and
considering all of the literature over the last decade
extolling the virtues of structured programming in this
regard, one would think that only structured programs
would be written nowadays. Sadly, this is not yet the
case, and we must still acknowledge the fact that some
programs are ill conceived, poorly structured and there-
fore difficult to test or maintain. Considering this state of
affairs, a viable program complexity measure must allow
for unstructured programs, and ideally, should treat

344 THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984

‘structuredness’ as one of the features that it attempts to
measure, so that a well structured rewriting of a program
might be reflected in a comparison of measures.

In a modern programming language (e.g., Pascal, C,
etc.) a goto statement may be an available though
unnecessary complement to the usual range of program-
ming constructs considered earlier. In such a setting, the
status of the goto statement is on the same level as a
simple statement. That is, syntactically at least, one is
allowed to write ‘goto label’ wherever a simple statement
could have appeared. Thus (as if in Pascal), we may write
for example:

begin
goto L;
M:S;
L: if P then
goto M
end

in order to effect an unnatural implementation of a ‘while
loop’, as shown in Fig. 3(a). Redrawing the flowchart to
reflect the illusion of structuredness exhibited in the code,
we have Fig. 3(b), where a flowchart circular symbol g
has been introduced to simulate the goto statement. More
precisely, circular symbols g, h are paired as a means of
reflecting the discontinuity in program flow—from g to
h.

Arguing in the abstract, we think of g (or better m(g))
as an ‘indeterminate’ to be used in algebraic expressions
for program complexity, using a measure m. From this
point of view, we can compute expressions (involving g)
for the complexity of unstructured flowcharts just as
before—thinking of each g as a simple statement and
disregarding the accompanying hs. But the question then
naturally arises: What complexity figure m(g) should be
associated with the gs? We offer several suggestions in
this regard.

As a first approach, one might try to ‘calibrate’ g by
comparing a number of standard poorly structured

(o)

Figure 3

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

AN AXIOMATIC THEORY OF SOFTWARE COMPLEXITY MEASURE

programs to their (standard) restructured equivalents,
computing their measures for both versions in each case.
The results could be used (equating and solving for g in
each case) to arrive at a nominal complexity figure g', to be
used in measuring each goto found in practice. In fact,
some program managers could assign a figure somewhat
in excess of this nominal value with a view toward
discouraging any use of gotos whatsoever. As an
additional refinement to this technique, ‘upstream’ gotos
could be given an additional penalty (say twice the usual
value), since it is well known that these cause the most
difficulty in practice.

Notwithstanding this simple refinement, it must still
be argued that ‘all gotos are not created equally’—some
are worse than others. Ideally, we would like to measure
the complexity of one goto as opposed to another in some
meaningful way. In our attempt to do this (and throughout
this section generally), we are of course thinking of an
arbitrary proper measure m, and thus, we are departing
from the testing philosophy that governed our thinking
in the preceding phase of our study.

We suppose then that m is a proper measure in the
sense of Section 3. More specifically, such a measure will
be said to be inductive if it can be defined inductively over
the class of simple statements (to the structured programs)
of the language. In this connection, the following result
is of interest:

Theorem 2
The measures p and u are inductive (but v is not).

Proof. For McCabe’s measure p, we have
p (simple statement) = 0
and the inductive definitions:

(@) p(beginS;;S,;...;S,end) =3 p(S)
(b) p(if Pthen S, else S,) = 1 + p(S,) + p(S,)
(c) p(while PdoS) =1 + p(S)

whereas for our new testing measure y, the definitions of
Section 4 are already inductive, thus completing the
proof.

As is generally agreed, the difficulty with the goto
statement is that its effects cannot be localized. We
cannot understand its contribution to a program’s
complexity without surveying the broader segment of the
program in which the goto g (and its accompanying target
h) are embedded. It is as if the level of complexity of the
code surrounding (g, h) actsasa barrier toour understand-
ing the effect of g itself. And it is in this spirit that we
offer a more comprehensive treatment of the complexity
of a goto g, viewed as an extended axiom in our writing:

(d) m(g)= max m(A)

ASX=[g,h]

{g,h}nA=0
where X is the subflowchart ‘spanned’ by g and A,
and we take the maximum complexity of all maximal
subflowcharts!® 4, disjoint from g, 4 but contained within
X. We feel that this approach serves to distinguish one
goto from another, generally giving more weight to those

with remote targets.
We will see that the consequence of axiom (d) is to
enforce a penalty for the use of the goto statement, one

Figure 4 Figure5

that is sufficient to render a restructured version of poorly
conceived code to be of lesser complexity, at least in the
typical situations that one is likely to encounter in
practice.

Suppose we are reviewing programs written in a
modern programming language (e.g. Pascal, C, etc.), but
we are dealing with programmers who are inexperienced
in such languages, having previously coded only in
FORTRAN or BASIC, say. Such programmers are likely
to follow their old habits, ‘wiring up’ if-then—else and
while-do constructs using goto statements, as indicated
in Figs 4 and 5, respectively. Our fundamental result
shows that such a practice is uniformly discouraged, as
long as we are measuring complexity as outlined above.

Theorem 3

Let m be an inductive measure of program complexity,
extended (to treat the goto statement) as in axiom (d)
above. Then if F(S;) is any structured programming
construct (i.e. if-then—else, while—do, etc.) and if F' is its
unstructured goto implementation, then we have:

m(F) < m(F")

for all S; of sufficiently large measure.

Proof. It will suffice to indicate the technique of proof in
the typical situations exhibited in Figs 4 and 5. For Fig.
4 (an unstructured if-then—else), we have:

m (if P then S, else S,)’
= m (begin if P theng,; S,; g,; S, end)
> m (if P then g,) + m(S,) + m(g,) + m(S,)
> m(g,) + m(S,) + m(g,) + m(S,)
= m(S,) + m(S,) + m(S,) + m(S,)
= 2(m(S;) + m(S,)) > m (if P then S, else S,)

using axioms (a), (b), (d) and (b’).

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 345

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

R. E. PRATHER

Similarly, for Fig. 5 (the while—do, where the program-
mer has not understood that the ‘while’ statement
automatically loops back to the test P), we have:

m (while Pdo S)
= m (while P do begin S; g end)
> m (begin S; g end)
> m(S) + m(g)
= m(S) + m(S) = 2m(S) > m (while P do S)

using axioms (a), (c), (d) and (¢').

Note that it was necessary to use all of our axioms in
order to verify only these two instances of restructuring.
On the other hand, a more extensive survey of the
common programming mistakes of this kind shows that
the penalty remains in force. For example, a more obtuse
rendering of the while—do construct is that shown earlier
in Fig. 3. Nevertheless, in this case, we again have:

m (while Pdo S) > m (while Pdo S)

as the reader may easily check. It is hoped that this
survey, although falling short of a complete proof, will be
sufficient to convince the reader of the validity of our
claim.

Having considered these few examples, we have good
reason to expect that a general extended measure m (in
the sense of axiom (d) above), will adequately reflect an
improvement in program structure through elimination
of gotos. On the other hand, our formulation of the
weighting of goto statements presents a few computa-
tional difficulties. First of all, in reference to axiom (d), it
must be mentioned that the effective determination of
the spanning subflowchart X and its maximal subflow-
charts 4, though certainly feasible,'° represents a rather
elaborate algorithm in and of itself. More serious perhaps
is the observation that the figures m(A4) may not be readily
available, owing to the fact that the subflowcharts 4 may
themselves involve goto statements! It may even happen
that a number of gotos g are so ‘tightly coupled’ that, in
reference to axiom (d), it seems that we cannot compute
any one value m(g) without knowing all of the others. It
is this last point that we now wish to discuss.

In returning to the idea that each goto statement g
appearing in a program is an indeterminate (and writing
g rather than m(g) in axiom (d)), a closer look at our
earlier formulation leads to a system of linear equations
with the gs as unknowns:

g1 — a[l’ 2]g2 - _a[l’n]gn = bl
_0[27 llgl +g2—""_a[21n]gn=b2

—a[n, 1]g, — a[n, 2]g, — - - - +g,=b,

if we simply make the replacement g = ave 4 in (d). On
the other hand, we would prefer to retain the ‘max’ rather
than the ‘ave’, if only to maximize the penalty for using
gotos. We still obtain a system of equations (non-linear,
however) for the gs as unknowns. (Note: the use of the
average rather than the maximum perhaps gives a better
statistical accounting for the psychological barrier rep-
resented by the goto, and in addition, provides for an
easier algebraic analysis of the complexity equations.
One then has the option of solving the system of equations
by ordinary means.) But instead, we take a pragmatic, if
less conventional approach.

We suggest that the ‘max’ be retained in axiom (d) and
that the nominal complexity figure g’ be substituted for

346 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

all gs appearing on the right-hand side of our system of
equations. One may then solve for the gs immediately,
and we propose that these values be taken as representa-
tive of the complexity of the various goto statements. In
effect, we have suggested the computation of one Gauss—
Seidel-like iteration,'! using the initial guess g = g'.

Example

Consider the (unstructured) flowchart of Fig. 6, and
suppose we are using the new (but extended) testing
complexity measure y, as introduced in Section 4. (In the
absence of a known empirical value for g’ relative to the
testing measure y, we suggest that a unit nominal value
g’ = 1 be used, though we have reason to expect that an
experimental determination would yield a g’ > 1.) The
reader should recall the meanings of n in a square and m
in a diamond, as in our earlier example. One then
computes:

g, =max(1,1,1,2max (3,4),2 + 2(1 + g,))
=max(1,1,1,8,6) =8

g, = max (1, 2,2 max (3, 4), 2(1 + 2max (1, 1 + g,)))
=max(1,2,8,10) =10

substituting g = ¢’ = 1 on the right, as explained above.
With these results for the goto complexities, we then
compute:

p=2+2max (2(1 + 2max (1,1 + 8)),
2max 2max (3,4),2 + 2(1 + 10))) + 2
=2+ 2max (38,48) + 2 = 100

for the flowchart as a whole. Of course, it must be
remembered that our hand computation obscures the
difficulty in identifying the required subflowcharts X, 4
appearing in axiom (d). Nevertheless, it is clear that our
treatment of the resulting system of equations does
provide a convenient, practical, and comprehensive
solution to the goto complexity issue.

Figure 6

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

AN AXIOMATIC THEORY OF SOFTWARE COMPLEXITY MEASURE

6. CONCLUDING DISCUSSION

With program complexity measures, it is traditional that
a maximum module complexity figure be suggested for use
as a ‘yardstick’ for deciding that a program is ‘too big’
and should be split up into separate procedures. Thus the
figures:

p=10

n=>50

are generally accepted!? as appropriate for use with
McCabe’s measure p and with 7, the ‘number of lines of
code’ measure. (Note that n also satisfies our axioms.)
Our experience suggests that a corresponding figure:

u=100

be used with the new testing complexity measure
developed here. Note, however, that a module of McCabe
complexity p = 10 say, can vary in u measure by several
orders of magnitude, depending on whether we are
basically dealing with straight line code or with deeply

nested code. Again, this demonstrates the failure of
McCabe’s measure to distinguish between these two very
different situations. On the other hand, our new testing
measure, when restricted to programs of size 100 (the
suggested maximum module complexity figure) might be
said, generally, to have established a natural threshold at
‘flowcharts that fit on a page’, so to speak, if we can judge
by Figs 2 and 6. And yet, depth of nesting, use of well-
structuredness, etc., will significantly influence the
measure in specific instances.

One of the main features of the particular measure we
have introduced is its relevance to an established testing
methodology. Hopefully, further experimental verifica-
tion will confirm the apparent intuitive advantages of
this particular measure. On the other hand, it must be
remembered that this measure is only one of many that
might fit into the axiomatic framework we have provided
here. And it is further hoped that this framework might
serve as a basis for other investigations into software
complexity measure, both in the abstract and in the
concrete realm of actual software metrics.

REFERENCES

1. B. Curtis, In search of software complexity, Workshop on
Quantitative Software Models, IEEE, New York (1979).

. T. J. McCabe, A complexity measure, /EEE Trans. Software
Engineering SE-2(4), 308-320 (1976).

. M. H. Halstead, E/lements of Software Science, Elsevier, North
Holland (1977).

. A. |. Baker and S. H. Zweben, A comparison of measures of
control flow complexity, /EEE Trans. Software Engineering SE-
6(6), 506-512 (1980).

. M. R. Paige, A metric for software test planning, Proc. Software
and Applications Conf., IEEE, New York (1980).

6. T. Sunohara, A. Takano, K. Vehara and T. Ohkawa, Program
complexity measure for software development management,
5th Intl. Conf. on Software Engineeing, |EEE, New York (1981).

7. B. Curtis, S. B. Sheppard, P. Millman, M. A. Borst and T. Love,

H» WN

[3)]

Measuring the psychological complexity of software mainte-
nance tasks with the Halstead and McCabe metrics, /EEE Trans.
Software Engineering SE-5(2), 96-104 (1979).
8. R.C.Linger, H. O. Mills and B. |. Witt, Structured Programming,
Addison-Wesley, Reading, Mass. (1979).
9. 0. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured
Programming, Academic Press, New York (1972).
10. R. E. Prather and S. G. Giulieri, Decomposition of flowchart
schemata, The Computer Journal 24(3), 258-262 (1981).
11. V. N. Faddeeva, Computational Methods for Linear Algebra,
Dover Publishing Co., London (1959).
12. C. L. McClure and J. Martin, Maintenance of Computer
Programs, Prentice Hall, Englewood Cliffs, N.J. (1982).

Received December 1982

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 347

20 udy 01 U0 188n6 AQ 61.81LEE/0VE /L Z/10M4E/|UfLO0/W0d"dNO"oILSPEDE//:SARY W) PAPEOUMOQ

