Embedded Macro Processors

P. J. Brown

Computing Laboratory, The University, Canterbury, Kent CT2 7NF, UK

Macro processors are often found embedded in systems and applications software: assemblers, compilers, text
formatters, circuit design packages, etc. These embedded macro processors are all different from one another, mainly
because each has unique requirements for communicating with its host software. This paper presents a generalized off-
the-shelf component, able to serve as the embedded macro processor in almost any desired host software. The key to
the generality is that macros are defined using an existing high-level language such as Pascal, thus giving the writer of

macros all the power of that language.

Sometimes macro processors are used as preprocessors,
which run independently of any other software, and
sometimes they are embedded in a particular piece of
software. Examples of the latter are

(a) macro processors that form part of a macro assembler

(b) macro processors embedded in certain compilers

(c) macro processors embedded in text formatters such
as nroff.’

There are three main advantages of embedding a macro
processor in a given piece of host software. They are

(@) Closer interaction. The macro processor may be able
to examine variables and data structures within the
host software and tailor its macro replacement
accordingly. Thus, for example, a macro in nroff can
examine the current page number—to see if it is even
or odd, say—when it is generating page headings.
Similarly a macro processor within an assembler may
be able to examine, and perhaps even to change, the
assembler’s symbol table.

(b) Better syntactic control. The host software is able to
confine macro replacement to certain contexts, and
the syntax of macro arguments may be made to fit
the syntactic constructs of the host software. Thus in
nroff (which has an extremely simple syntax) macros
are only recognized in the context of nroff commands,
and macro arguments are split up in the same way as
arguments to nroff commands. A similar scheme is
adopted by most macro-assemblers.

(c) Better error messages. A notorious problem with
macro preprocessors arises as follows: the macro
processor converts a source text into a program in a
language L, and then passes this program to the
compiler for the language L. If the compiler finds
errors in the program, these come out in terms of the
converted text rather than the original source text.
An error in the X statement in line 100 of the
converted text may really be caused by an error in
the Y statement in line 40 of the original source text,
and the puzzled user is normally left to relate the two.
With embedded macro processors such problems can
be lessened or even eliminated.

Given these three solid advantages, embedded macro
processors, although each tied to one application,
dominate the field, and general-purpose macro prepro-
cessors are used relatively less.?

IMPLEMENTING EMBEDDED MACRO
PROCESSORS

It is probably true that, although hundreds of embedded
mMacro processors exist, no two are the same: instead each
has been separately designed and implemented. This
represents an enormous waste of time both for the
implementors and for the macro writers, who have to
learn a new (and often formidable) notation each time
they use a new macro processor.

An ideal is that all embedded macro processors should
be the same, or at least should share a common kernel.
However such an ideal has not been achieved in any
other software field, so it is not reasonable to expect it to
happen with embedded macro processors. ‘Not invented
here’ is a natural human feeling. It is, nevertheless,
reasonable to expect the sort of commonality that arises
with, say, programming languages: that there be half a
dozen popular models, all widely used and implemented.
In programming languages the top six take perhaps 90%,
of the market, the other 109 being shared by countless
thousands of other languages. There are, of course,
problems of incompatibility between different imple-
mentations of the six popular languages, but nevertheless
the degree of commonality that exists has saved both
users and implementors immense amounts of time.

The main reason that no such commonality occurs
with embedded macro processors results from what we
quoted as the first advantage of embedded macro
processors: closer interaction with the host software. For
example a macro assembler usually provides a mechanism
for examining a symbol table, and a macro processor
embedded in a text formatter must provide a mechanism
for accessing page numbers, fount names, distance of
indentation and so on.

Implementors of the host software find that no existing
macro processor meets their special needs, and thus need
no further excuse to create a new one of their own.

A POTENTIAL SOLUTION

The object of this paper is to present a potential solution
whereby an existing macro processor can be used, and
re-used, to serve as an embedded macro processor in
diverse environments. We assert that a suitable macro

CCC-0010-4620/84/0027-0348 $03.00

348 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

© Wiley Heyden Ltd, 1984

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

EMBEDDED MACRO PROCESSORS

processor for this purpose is SUPERMAC,? because it
allows users to write macros in an existing high-level
language.

Before pursuing this point we shall explain the
fundamentals of SUPERMAC. SUPERMAC is alibrary
of macro processing routines, in a similar way to NAG
being a library of numerical algorithms. Like NAG,
SUPERMAC is available in various high-level lan-
guages. The different implementations have common
functions but a different user interface—the interface for
the Pascal user is different from that for the FORTRAN
user.

In this paper we shall concentrate on SUPERMAC-
Pascal,* the implementation of SUPERMAC in Pascal.
In SUPERMAC-Pascal the macro writer constructs a
Pascal program that defines his macros and how they are
to be replaced. This program, which will use the
SUPERMAC library, is compiled in the normal way and
then executed in order to apply the macros to some given
source text and produce the corresponding output.
Macros are therefore completely separate from the text
they operate on; this contrasts with macro schemes where
macro definitions are placed on the front of the text they
are to process.

A SUPERMAC-Pascal macro can be defined using
the library procedure Macrop. The first argument to
Macrop is a string that represents the pattern of the
macro to be recognized; within this pattern a pair of
minus signs represents an argument. The second argu-
ment to Macrop is the name of a procedure in the user’s
program. This procedure is called every time the macro
pattern is matched, and defines how the macro is to be
replaced. A simple call of Macrop is

Macrop (‘SECTION — — : — — ;° dosection);

When all the macros have been defined, the SUPERMAC
procedure Mscanf is called to process a source file, e.g.

Mscanf(myfile),

SUPERMAC then scans myfile, looking for occurrences
of any of the macro patterns that have been defined. Text
that does not match any pattern is copied directly to the
output file; text that does match a pattern causes a call of
the procedure corresponding to the pattern, and this
procedure defines what text (if any) is to replace the
pattern. As an example of such a procedure call, assume
that the source file contains the text

SECTION A.1: Fundamentals;

When this text is encountered in the source file it matches
the pattern we have defined above, and thus the procedure
dosection is called. The arguments to the macro call—
accessed via Marg (see below)—are the strings ‘A.1’ and
‘Fundamentals’.

In order to show how a procedure such as dosection is
encoded, we shall assume that SECTION is a macro for
a text formatter and is such that

SECTION A.1: Fundamentals;
is mapped into

/space 4

/Bold

A.l Fundamentals

/Roman
/space 1

The SUPERMAC library provides procedures that can
be used to output text that is to form part of a macro
replacement. Among these procedures are

Mstr(S) output the string S

Min output a newline character

Marg(N) output the Nth argument of the current
macro

Mspace(N) output N spaces
Using these, the dosection procedure can be encoded as

procedure dosection;
begin
Mstr (‘/space 4°); Min;
Mstr (‘/Bold’); Min;
Marg(1); Mspace(6); Marg(2); Min;
Mstr (‘/Roman’); Min;
Mstr (‘/space 1°); Min
end; {dosection}

As it stands this procedure performs a straight replace-
ment that could be done by a preprocessing macro. We
shall, however, soon show macros that are dependent on
their environment.

USING SUPERMAC-PASCAL

We have used Pascal as an example in this paper because
Pascal is a widely known high-level language. In one
sense, however, Pascal is a bad example : standard Pascal
has no facility for separate compilation. Fortunately this
is more a problem in theory than in practice, and almost
all production Pascal systems do have a facility for
separate compilation. We shall therefore assume that
this is the case.

Normally the SUPERMAC-Pascal library is pre-
compiled, and a user’s program that calls the library is
compiled separately and then linked with the pre-
compiled library.

THE ADVANTAGE OF AN EXISTING HIGH-
LEVEL LANGUAGE

Having explained the nature of SUPERMAC, we shall
now return to our claim that it is suitable to act as an
embedded macro processor. The reason is that the writer
of a SUPERMAC macro has all the facilities of a high-
level language at his command. These should be adequate
to meet all reasonable needs (though inevitably each
high-level language has its blind spots). As a concrete
example, assume we want to extend our dosection
procedure so that all the SECTION names are remem-
bered in a table, which, can, at the end of a run, be output
as a table of contents. This presents no problem: Pascal
offers adequate tools (arrays, records, perhaps pointers)
to build such a table, and these can be used in the
dosection procedure. (Remember that dosection is an
ordinary Pascal procedure; there are no special restric-
tions upon it just because it happens to define the
replacement of a macro.)

As a second example, assume that ‘major’ SEC-
TIONs—those whose names contain one number (e.g.
SECTION A.l)—are to be replaced in a different way

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 349 .

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

P. J. BROWN

from ‘minor’ SECTIONs—those whose names contain
more than one number (e.g. SECTION A.1.1). This
again presents no problem. Pascal if statements can be
used to examine the form of the string that is the first
argument to SECTION, and to output different replace-
ments depending on the format of this string.

Thus SUPERMAC-Pascal provides the necessary
power, assuming that Pascal itself does. It also, as we
shall see, provides the necessary communication facilities
to allow communication between the host software,
SUPERMAC itself, and the macro writer’s procedures.
Communication is simply performed via global variables,
procedures, and data structures, all shared among the
above three components.

A PROTOTYPE SYSTEM

To illustrate this, and to demonstrate the feasibility of
using SUPERMAC as an embedded macro processor,
we built a prototype system.

The essence of good prototype design® is to produce a
system quickly and cheaply that can be used to investigate
the matters of interest. In our case it would have been
nice to construct an elaborate piece of software such as a
text formatter. However, since such programs require
years of implementation effort, we settled for a much
more limited piece of software, which, it is hoped,
encapsulates all the necessary properties of a text
formatter as regards macro expansion.

The prototype host software, which is called Liner, is
merely a tool for adding line-numbers to a document.
The input to Liner consists of lines of text with
interspersed Liner commands, and the output is a listing
of the input text lines with a line-number against each
line. The command lines are identified by a trigger
character at the start of the line; the initial setting of the
trigger is ‘/". The commands themselves control the
numbering system and the format in which line-numbers
are displayed. The commands we shall use in our
examples are

/1 N set the line-number to N

/i N set the line-number increment to N (default 1)

/w N set the print width to N

/t C set the trigger character to C

/b highlight the line that follows by printing asterisks
as its line-number

As an example, if Liner is fed the following input:

A line

/1100

A second line
A third line
/h

A fourth line
A fifth line

then it produces the output:

1: Aline
100: A second line
101: A third line
*xx*xx%. A fourth line
103: A fifth line

350 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

As can be seen, Liner is very much a prototype to test
ideas, rather than the software tool that the world has
been yearning for. Nevertheless it has a fundamental
similarity to a valuable tool, a text formatter.

Liner has been implemented with SUPERMAC-
Pascal as an embedded macro facility. Macros are
allowed anywhere within the command lines, i.e. the
lines that start with the trigger character. Liner calls
SUPERMAC to process each such line and then it
processes the result, which is usually a sequence of one or
more Liner commands. (Thus macros can be used to
redefine existing commands, since Liner does not
examine commands until after SUPERMAC has pro-
cessed them.)

MODIFYING EXISTING SOFTWARE

An alternative to the prototype approach would have
been to take an existing text formatter with embedded
macro processor and to replace the latter with SUPER-
MAC. The prototype approach was, however, felt to be
cleaner and less constrained. Moreover, this reflects the
real potential use of SUPERMAC: it is unlikely that
people will want to modify existing software where an
alternative macro processor has already been imple-
mented; instead SUPERMACs likely role is with newly-
built software.

IMPLEMENTATION OF LINER

Liner has been written as an ordinary Pascal program,
using the SUPERMAC library. In order to illustrate
built-in macros it has been given one such macro: R is a
macro command to do a ‘reset’ and is mapped into

11

A1
It therefore sets the line-number and increment back to
their default initial values of 1. (In this paper we use
macro names made up of capital letters in order to
distinguish macros from built-in commands.)

Liner has been implemented in Berkeley Pascal, and
runs under the UNIXt system. In Berkeley Pascal, a
program references the SUPERMAC library by includ-
ing the line

include # “‘supermac . h”

The file supermac.h contains specifications of all the
procedures (e.g. Macrop, Mstr) in the SUPERMAC
library, and also a number of public constants, types and
variables.

In Berkeley Pascal, a procedure or function is shared
between several separately compiled modules if it is
declared as external in all of them (where external is used
like the Pascal keyword forward). One of the modules
must contain a declaration of the body of the procedure
or function. This mechanism can be used, as we shall see,
to allow the incorporation of user-defined macros as well
as the built-in ones.

The overall layout of the encoding of Liner is shown in
Fig. 1.

+ UNIX is a Trademark of Bell Laboratories.

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

EMBEDDED MACRO PROCESSORS

program Liner . . .;

include **supermac . h”

procedure definemacros; external; {user-defined macros; see main text}
procedure process

{ This is the guts of Liner. It is a procedure to read lines of the source
text and process them. If a line is a command (i.e. begins with the
trigger) it is fed to SUPERMAC, and the resultant output, which may
consist of a mixture of command lines and text lines, is then re-
processed; lines that are not command lines are listed with a prefixed
line-number.

>

procedure Rproc; {built-in macro R}

begin |output two Liner commands}
Mstr('l 1°); Min;

Msir(‘li 1)

end; | Rproc)

begin {main program}

{Initialize SUPERMAC)
Macrop(‘R #°, Rproc); {define built-in macro}
definemacros; {define user macros}
process

end.

Figure 1. The encoding of Liner.

The whole purpose of a macro facility is to allow the
user to extend Liner; thus the system must cater for user-
defined macros. This is done by calling an external
procedure called definemacros. Each user supplies his
own version of the procedure—if no such procedure is
found a null procedure is assumed, i.e. no user-defined
macros are present.

Liner is pre-compiled into loader format. The user of
Liner either writes his own version of the definemacros
procedures or alternatively selects a macro library that
consists of a version of definemacros provided by the
system or by another user. He then compiles this and
links it with the pre-compiled versions of Liner and the
SUPERMAC library in order to get a compiled version
of Liner with his own macros incorporated.

Obviously the mechanics of linking and so on should
be hidden from the user. In UNIX, this is achieved by a
shell script called liner, which does any necessary
compilation and linking and commences execution.

INTERACTION WITH ENVIRONMENT

We have now shown that our prototype

* is built using an existing macro processor

¢ provides the necessary power for writing macros

o allows for built-in macros, macro libraries and user-
defined macros.

We shall now cover the interaction between macros and
Liner itself.

The objects (constants, data types, variables, pro-
cedures and functions) within Liner which might be
needed by macros are made public. Most of these public
objects are variables. Examples are

linenumber : integer; {the current line-number}
increment : integer; {the current increment}
printwidth: integer; {the current printwidth}
trigger: char; {the current trigger character}

(In an ideal world there would be control over whether
the outside user could only read these variables or could
both read them and write them. Pascal does not provide
this control and all variables are effectively read/write;
more recent languages such as ADA and Modula-2 do
provide the necessary control.)

Definitions of all the public objects in Liner are
collected into a file. This file is then combined with the
supermac . h file (which contains the definitions of the
public objects in SUPERMAC) to form a declarations
file called liner. h. A user who includes /iner . h then has
access to all the public objects in both SUPERMAC and
Liner.

In order to illustrate the communication between user-
defined macros and Liner we shall show a sample user-
defined macro which performs a task that could not be
done by a macro preprocessor. The task is to provide two
macros SAVE and RESTORE: the SAVE macro saves
the current values of the line-number and increment, and
the RESTORE macro restores them to their previously
saved values.

The definitions of these macros are shown in Fig. 2.

include ‘“liner . k"

var
havesaved: Boolean; {true if something saved}
saveline: integer; {saved linenumber}
saveincr: integer; {saved increment}

procedure SAV Eproc,

begin
saveline = linenumber
saveincr = increment
havesaved = true

end; {SAVEproc)

procedure RESTOREproc;,
begin
if not havesaved then begin {error case}
writeln(Merr,
‘ERROR: wrong RESTORE after input line’, Mli: 4);
writeln(Merr,
‘# last output line was numbered’, linenumber : printwidth)
end else begin
linenumber = saveline .
increment = saveincr
end
end; { RESTOREproc)

procedure definemacros,
begin
havesaved = false
Macrop(‘'SAVE', SAVEproc).
Macrop('RESTORE", RESTOREproc)
end; |definemacros)

Figure 2. SAVE and RESTORE macros.

The interest in this example lies in three areas

¢ the macros communicate with Liner; in particular
they use and reset two of its variables

« the operations could not be performed by textual-
substitution macros since there are no built-in Liner
commands for manipulating variables

e the RESTORE macro gives a meaningful error
message, expressed in terms of the Liner environment.

The last of these points requires further explanation as
it uses some SUPERMAC public objects that we have
not explained. These are Merr, which is the file to which
error messages go (normally the terminal), and MIi,

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 351

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

P. J. BROWN

which is a function that returns the number of input lines
so far processed. (Dressing M/i up as a function means
that this quantity is read-only.)

Note that neither SAVE nor RESTORE generates any
text as output; they are therefore each replaced by the
null string. They can be called by a line such as

/SAVE

which saves the environment and then executes the null
command (which does nothing), or by a line such as

/SAVE i 20

which saves the environment and then sets the increment
to 20.

While discussing inter-communication between
macros and Liner it is worth returning to our built-in R
macro. The second line of the procedure corresponding
to this macro was

Msir (‘i 1"); Min;

This can be improved by a better interaction with its
environment. The problem is that, as it stands, it assumes
the trigger character is /°. If the user changes the trigger
character the macro will not work any more. This can be
remedied by using the trigger public variable, which gives
the current setting of the trigger character, and the
SUPERMAC procedure Mchar, which outputs a char
value. As a result the above line can be rewritten as

Mchar(trigger); Mstr(‘i 1°); Min;

With this improvement the R macro automatically uses
the current trigger.

DISPENSING WITH BUILT-IN COMMANDS

As we have defined it the R macro achieves its effect of
setting the line-number and increment back to 1 by
outputting the pair of Liner commands

1 1

i1
It could equally well have been made to set the line-
number and increment directly, i.e.

procedure Rproc;
begin
linenumber = 1;
increment =1
end;

Furthermore we can define a macro / that has exactly the
same effect as the built-in Liner command /, i.e. it resets
linenumber. (We have not actually covered the SUPER-
MAC mechanism for converting arguments of macros
into integers, which is needed for the numerical argument
of this / macro, but it is not hard to do.) Similarly we can
define macros that achieve the effect of other Liner
commands.

Taking this to an extreme we could have defined Liner
to have no built-in commands at all. We could also dispense
with built-in macros. Instead all the necessary variables
and procedures could be made publicly accessible; then
user-defined macros (such as our / macro) or macro
libraries would be used to manipulate these variables.

352 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

Such a scheme can have its attractions if different sets
of users want to see the same piece of software in a
different syntactic or semantic light. There could, for
example, be a baroque set of macros that presented the
user with an array of line-numbers rather than a single
one, one element of this array being active at any one
time.

Nevertheless this is a course to be followed with care:
the extensible language, able to be moulded to any user’s
needs, has always proved a mirage. One cause of this is
an obvious and fundamental limitation: macros can only
interact with a software component if it is executed at
the same time as macro processing. If, for example, Liner
had been implemented in two stages:

(1) compilation: the Liner commands are translated into
some intermediate language

(2) execution: the intermediate form of the commands is
then executed and the numbered output produced

then, assuming macro processing takes place at the first
stage, there can be no interaction between macros and
the variables active at the second stage. Thus macros
cannot use variables such as linenumber and increment,
which are variables that apply at execution time.

This is, of course, a well-known limitation with macros
embedded in compilers. A compiler is often broken down
into a sequence of stages typically there are four or five
stages—and each stage may need its own macro processor
(see Solntseff’s® classification).

PERFORMANCE

If a user is defining some new macros, he needs to
compile the Pascal program that defines his macros and
link this with SUPERMAC and with Liner in order to
generate an executable program. This is a relatively slow
process—it takes about three seconds of processing time
on a VAX/780 if the Pascal program is a hundred lines
or so. However if the macros are to be re-used this
executable program can be saved, thus avoiding the
overhead of compiling and linking again (though at the
expense of a lot of disc space). In this case—and it is the
most frequent case since the average user does not define
new macros for every run—performance depends only
on the speed with which

(a) macro patterns are recognized
(b) procedures corresponding to macros are executed.

SUPERMAC is relatively slow at the former because it
allows for elaborate patterns, but is quick at the latter
since all the procedures are compiled, not interpreted.
Certainly the overall process should be faster than a
completely interpreted macro scheme.

To put speeds in perspective, it takes 15 seconds of
VAX(/780 time to read in the macro definitions for the ms
macro package of nroff,” and the overhead of actually
recognizing and executing the macros comes on top of
this.

CONCLUSION

The prototype works. It is, we hope, not too great a leap
of the imagination to assume that it would still work if

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

EMBEDDED MACRO PROCESSORS

Liner were replaced by a piece of production software,
be it a compiler, a text composition system or a circuit
layout package.

The advantage of SUPERMAC to an implementor is
that it is an off-the-shelf component which is powerful
enough to meet most specifications.

The advantage of SUPERMAC to the macro writer is
ease of learning: if he knows Pascal (or whatever other
language variant of SUPERMAC is used) he already
knows how to define macro replacements; there is thus
no new syntax and semantics to learn. He does, however,
need to learn how to define macro patterns within

Macrop, etc. Even this modest amount of learning reaps
further rewards if SUPERMAC is used as the macro
processor in a number of different pieces of software.
The only new matters to learn for each such piece of
software will be the public objects (e.g. linenumber in
Liner).

Beyond the macro writer there comes the naive user:
someone who is content to use existing macro libraries
and has no desire to learn how to define macros.
SUPERMAC gives this person the advantage of good
performance, certainly in comparison with conventional
interpreted macro packages.

REFERENCES

1. J.F.Ossanna, NROFF/TROFF User’s Manual, Computer Science
Report 54, Bell Laboratories, Murray Hill, N.J. (1976).

2. 0. M. Lecarme, Review 40454, Computing Reviews 24 (7),
283-284 (1983).

3. P.J. Brown, SUPERMAC—a macro facility that can be added to
existing compilers. Software—Practice and Experience 10, 431-
434 (1980).

4. P.J.Brown and J. A. Ogden, The SUPERMAC macro processor
in Pascal. Software—Practice and Experience 13, 295-304
(1983).

5. N. H. Gehani, An electronic form system—an experience in
prototyping. Software—Practice and Experience 13, 479-486
(1983).

6. N.Solntseff, Classification of extensible programming languages.
Information Processing Letters 1 (3), 91-96 (1972).

7. M. E. Lesk, Typing documents on the UNIX system: using the
-ms macros with Troff and Nroff. Bell Laboratories, Murray Hill,
N.J. (1978).

Received July 1983

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 353

20z udy 01 U0 189n6 AQ ££81EE/8YE/ 7/, Z/1014e/|uf00/W0d"dNO" oIS PEDE//:SARY W) PAPEO|UMOQ

