Table 2. Algorithms for the n queens problem

Wirth Rohl lexqueens

n

6 0.92 0.35 0.33

7 3.60 1.30 1.25

8 154 49 48

9 69 214 20.3
10 328 93 91
11 1681 460 457
12 9201 2424 2409

Received October 1982

SHORT NOTES

ROBERT W. IRVING
Department of Mathematics
University of Salford
Salford MS 4WT

UK

References

1. N. Wirth, Algorithms + Data Struc-
tures=Programs, Prentice-Hall, Engle-
wood Cliffs (1976).

2. E. Horowitz and S. Sahni, Fundamentals

of Computer Algorithms, Pitman, Poto-
mac (1978).

3. J. S. Rohl, Generating Permutations by
choosing. The Computer Journal 21,
302-305 (1978).

4. J. S. Rohl, Letter to the Editor. The
Computer Journal 22, 191 (1979).

5. R. Sedgewick, Permutation generation
methods. Computing Surveys 9, 137-
165 (1977).

6. J. M. Wilson, Interrupted permutations in
lexicographic order. Algorithm 114, The
Computer Journal 26, 92 (1983).

7. R.J. Ord-Smith, Generation of permuta-
tions in lexicographic order. Algorithm
323, Comm. ACM 11, 117 (1968).

Consistency in Point-in-Polygon Tests

In many applications it is necessary to be able
to determine if a point is contained in a polygon.
If co-ordinate values are approximate, we may
be happy to have borderline cases dealt with in
an arbitrary manner. However, if two regions
have a common border section, decisions should
be consistent. A simple algorithm for determin-
ing containment consistently is given.

In many applications it is necessary to be able
to determine if a point is contained in a
polygon. For example, in a geographical
information system we may wish to determine
if a point representing a house is inside a
region with a polygonal boundary. Commonly,
an area will be partitioned into a number of
regions. In this case different regions have
common boundary sections. If co-ordinate
values are approximate, we may be happy to
have borderline cases dealt within an arbitrary
but consistent manner. For example, if a point
is on a borderline, between two regions, it may
be treated as being in one region or the other,
but should not be treated as being in neither
or both regions. A similar case arises when
one region is contained in another. If a point
is considered to be in the inner region, it should
also be considered to be in the outer region.

The problem of determining whether or not
a point is inside a polygon has been widely
considered."* We develop an algorithm pro-
posed in Ref. 5 as corrected in Ref. 3 with
some further modification to ensure that points
on or near a boundary are treated consistently.
To determine if a point is inside a polygon, we
can draw a horizontal line (called a ray) from
the point to the right. Each time the ray crosses
the polygon, it goes from inside to outside or
vice versa. Therefore, the point is inside the
polygon if and only if the ray crosses the
polygon an odd number of times. The following
FORTRAN 77 logical function solves this
problem, assuming that the co-ordinates of the
point are given by PX and PY and that the X
and Y co-ordinates of the vertices of the
polygon are in the first N elements of the
arrays X and Y, respectively.

LOGICAL FUNCTION INSIDE (PX,
PY,N,X,Y)
DIMENSION X(N), Y(N)
LOGICAL CROSS
INSIDE = .FALSE.
DO10I=1,N-1
10 IF (CROSS (PX, PY, X(I), Y(I), X(I +
1), Y(I + 1))) INSIDE = .NOT. INSIDE
IF (CROSS (PX, PY, X(N), Y(N), X(1),
Y(1))) INSIDE = .NOT. INSIDE
RETURN
END

A call to CROSS (PX, PY, X1, Y1, X2,Y2)
returns true if and only if a ray from (PX, PY)
crosses the line segment (i.e. polygon side)
joining (X1, Y1) and (X2, Y2). Before consid-
ering the implementation of CROSS we should
consider how to handle borderline points.

To handle borderline cases consistently, we
will shift each polygon to the left by an
infinitesimal distance, and downwards by an
infinitely smaller distance. (This also elimi-
nates the nasty cases which can arise if a
polygon vertex lies on the ray from the point.)
The following logical function CROSS tests a
point and one side of a polygon.

LOGICAL FUNCTION CROSS (X, Y, X1, Y1, X2,Y2)
IF ((Y.LT.Y1) .EQV.(Y.LT.Y2)) .OR. (X.GE.X1.AND.X.GE.X2)) THEN
C SIDE ENTIRELY ABOVE, BELOW OR ENTIRELY TO LEFT OF POINT

CROSS = .FALSE.

ELSE IF (X.LT.X1.AND.X.LT.X2) THEN

C SIDE TO RIGHT OF POINT, BUT NOT ENTIRELY ABOVE OR BELOW

CROSS = . TRUE.
ELSE IF (X1.LT.X2) THEN

C SIDE NOT ENTIRELY ABOVE OR BELOW POINT AND
C SIDE NOT ENTIRELY TO LEFT OR RIGHT
CROSS = X.LT.(XI + (Y - Y1) * (X2 - X1) /(Y2 = Y1)

ELSE
C SAME AS ABOVE

CROSS = X.LT. (X2 + (Y — Y2) * (X1 — X2) /(Y1 — Y2))

END IF
RETURN
END

We present now a complete explanation
of the above function. Clearly, a ray from
(X,Y) cannot cross a ray from (X1, Y1) to
(X2, Y2) shifted as described above,
if (Y.LT.YI.AND.Y.LT.Y2) .OR.
(Y.GE.Y1.AND.Y.GE.Y2). This condition
reducesto(Y.LT.Y1).EQ.(Y.LT.Y2). Further-
more, if (X.GE.X1.AND.X.GE.X2) then the
ray starts to the right of the shifted side and so
cannot cross the ray. These two cases are
allowed for in the first alternative to the IF
statement of the function CROSS. In the
remaining cases, a horizontal line through the
point (X,Y) must cross the shifted line seg-
ment (since either Y.LT.Y1.AND.Y.GE.Y2
or Y.GE.YI.LAND.Y.LT.Y2 if the first IF

alternative is not selected). If
(X.LT.X1.AND.X.LT.X2) then the shifted
line segment lies to the right of the point and
must cross the ray.

There is really only one remaining case, but
we have broken it down into two subcases for
reasons that will become clear shortly. (The
values assigned to CROSS in the last two IF
alternatives are algebraically equivalent but
due to rounding errors may not produce the
same result on a computer.) If none of the
above cases apply then the side crosses the
horizontal line but is not entirely to the left or
entirely to the right of the point. We must
compute the exact point where the horizontal
line and side cross, and test to see if this is to

THE COMPUTER JOURNAL, VOL. 27, NO. 4,1984 375

20z udy 01 U0 188n6 AQ 9061 £€/S/E//.Z/1014e/|uf00/W0d"dNo"oIEPEDE//:SARY W) PAPEO|UMOQ

the left or right of the point. Each of the last
two IF alternatives do this.

The reason we must break the last case into
two subcases is that if two polygons have some
sides in common, the vertices need not occur
in the same order (i.e. the order of the common
vertices may be reversed). However, we want
the same side and same point always to
produce the same result when CROSS is called.

To determine if a ray from (X,Y) crosses a
side from (XA, YA) to (XB, YB), given that
YA # YB, we can compute the X co-ordinate
of the point where the side crosses a horizontal
line through (X,Y) using the expression XA +
(Y - YA)* (XB — YA)/(YB — YA). A cross-
ing occurs if and only if X is less than this
value. We know that XA # XB, or one of the
earlier cases would apply. We make certain
that this test always produces the same result
by requiring that XA < XB, and reversing the
vertices if necessary.

If retrieval of information on the basis of
location is rarely performed, or if only a small
number of points is to be considered, then the
above algorithm may be applied to each point
in turn. If a large number of points is to be
searched frequently, the points may be organ-
ized in a tree structure.? A set of points and a
rectangle which contains all of the points in
the set are associated with each node of the

SHORT NOTES

tree. If the rectangle is entirely inside or
outside the region of interest then so are all the
points in the rectangle. Otherwise, we must
consider a lower level node having smailer
associate rectangles, and so forth, down to the
level of individual points.

This approach easily generalizes to three (or
more) dimensions, to regions with other than
polygonal boundaries, and to other geometrical
operations.

F. W.BURTONt}

School of Computing Studies
University of East Anglia
Norwich, NR4 7TJ

England

V.J.KOLLIAS

Athens Faculty of Agriculture
Laboratory of Soils and Agricultural
Chemistry

Iera Odos, Votanicos

Athens, Greece

J. G. KOLLIASt

Department of Computer Sciences
National Technical University of Athens
9, Heroon Polytechnion Avenue
Zografou

Athens (621), Greece

tPart of this work was done while visiting
Michigan Technological University.

tPresent address: Department of Electrical
Engineering and Computer Science, Box 104,
University of Colorado at Denver, 1100 Four-
teenth Street, Denver, Colorado 80202, USA.

References

1. B. K. Aldred, Points in polygon algo-
rithms. UKSC-0025, UK Scientific
Centre, IBM United Kingdom Ltd.,
County Durham, England (1972).

2. J. L. Bentley, Multidimensional binary
search trees used for associative search-
ing. Commun. of the ACM 18, 509-517
(1975).

3. R.Hacker, Certification of algorithm 112:
Position of a point relative to polygon.
Common. of the ACM 5, 606 (1962).

4. S. Nordbeck and B. Rystedt, Computer
cartography point in polygon points. B/T
7,30-64 (1967).

5. M. Shimrat, Algorithm 112: Position of
point relative to polygon. Commun. of
the ACMS, 434 (1962).

Received April 1983

The Halting Problem Does Not Matter

Suppose that P is a program whose set of
acceptable data accept(P) is recursive. Then
there is another program P’ with the same
acceptable data, which cannot loop, and which
behaves like P for all input data in accept(P).

A key measure of program quality is robust-
ness. A program is said to be robust if it will
behave sensibly, whatever its input. In partic-
ular, it should never under any circumstances
go into an infinite loop. There are certain
conceivable kinds of data which can only be
distinguished and accepted by programs which
might loop. Such a set of possible data is called
recursively enumerable but not recursive. (This
is the terminology of Ref. 1.) If anybody can
construct a set of conceivable data which is
not even recursively enumerable, then he has
discovered a counterexample to Church’s
thesis. In practice, all useful programs accept
a set of data which is not only recursively
enumerable, but also actually recursive.

Proposition
Suppose that P is a program whose set of
acceptable data accept(P) is recursive. Then

there is another program P’ with the same
acceptable data:

accept(P’) = accept(P)
and which cannot loop:
loop(P') is empty

and which behaves like P for all input data in
accept(P):

if P and P’ are both given the same word w
from accept(P) as initial datum, then their
outputs will be the same.

Proof

Throughout what follows, all programs will be
regarded as Turing machines. The output of a
program is the content of its tape on termina-
tion. The key assumption is that accept(P) is
recursive. This means that there is a program
Q,and

accept(Q) = accept(P)

and Q cannot loop. The program P’ is
constructed from P and Q.

Let P’ have some input datum w. This
datum is a sequence of symbols stored at the
left hand end of the machine’s tape. First, P’
copies this word one position to the right on
the tape, and inserts a special character (say
E, not recognized by P) before it. Secondly, it
inserts another special symbol (say F, not
recognized by P or Q) after the word, and
makes a new copy of w to the right of F. At the
far end of this copy, P’ inserts a third special
symbol (say G, not recognized by Q). If w is
the sequence

wl,w2,w3,...wn
then by this stage the tape appears as
Ewlw2...wn Fwlw2...wnG

Thirdly, the tape head is moved to the tape
cell to the right of the one holding F.

Next, P’ performs all the operations of Q.
Just one modification is required in Q. When-

376 THE COMPUTER JOURNAL, VOL. 27, NO. 4, 1984

ever the tape head is situated over a cell
containing G, P’ will

(a) over-write this cell with a blank charac-
ter, and move the head to the right
(b) write G, and move the head back left.

During this stage, the input will be rejected if
and only if the original datum w would be
rejected by Q.

Where Q would halt, P’ contains a subrou-
tine which restores the tape to its initial state.
This is possible because E and F still delimit a
copy of w, and G marks the extent of tape
which has been over-written. At the end of the
subroutine, which cannot fail or loop, P’ enters
the original program P.

Q.E.D.

In practice, programmers worthy of the
name always write their code on these lines.
The halting problem does not concern them.
It should be seen for what it is: a profound
feature of mathematics, and a curiosity in the
history of computing.

ALAN HUTCHINSON
Department of Computation
U.M.LS.T.

Sackville Street

Manchester

UK

Reference

1. Z. Manna, Mathematical Theory of Com-
putation, McGraw- HillKogakusha, Inter-
national Student Edition (1974).

20z udy 01 U0 188n6 AQ 9061 £€/S/E//.Z/1014e/|uf00/W0d"dNo"oIEPEDE//:SARY W) PAPEO|UMOQ

