A Dialogue Development System for the Design and
Implementation of User Interfaces in Ada*

J.ROBINSON aAnND A. BURNS

Postgraduate School of Studies in Computing, University of Bradford, U.K.

The need for tools to aid the implementation of user interfaces is highlighted. Techniques for the production of good user
interfaces are outlined and facilities to ease implementation of interfaces designed using these techniques are suggested.
Emphasis is placed on the need for multi-level adaptable interfaces, and the need for a separate, high-level specification of
an interface. A dialogue development system intended for use with interactive systems writien in Ada is proposed.

1. INTRODUCTION

With the growing use of interactive computer systems
there is an increasing awareness of the importance of the
user interface. This awareness, once almost totally the
preserve of the academic community, is now, thankfully,
extending into industry.!

The need for an improvement in the quality of user
interfaces is without doubt. Unfortunately, the problems
associated with the production of ‘good’ interfaces are
also apparent and act as a serious deterrent to
programmers who wish to provide ‘easy to use’
interactive software. The Ada programming language,
together with its programming support environments,
now promises to enable systems to be developed which
will ease these problems considerably. However, before
discussing such environments, it is first necessary to
review the facilities required by a user of an interactive
system.

The design of user interfaces is a subject which has
received much attention from academics, and design
methodologies have been proposed to ease this design
process.? Whilst this area still presents some difficulties,
the increased appreciation of user needs has led to a
greater understanding of the techniques required to
improve the design and effectiveness of interfaces.

Some of these, however, impose a heavy workload on
the applications programmer. It is essential that
programmers are allowed to concentrate on the develop-
ment of the applications software whilst still being able
to guarantee a good user interface. In many cases the
reason for a bad interface has been the difficulties
presented by the implementation of a better alternative.
This problem has been recognised and new languages
developed® 4 and existing languages extended® 7 to ease
the programmers’ task.

Burns® has highlighted the shortcomings of i/o
facilities in existing languages. Whilst the design of new
programming languages has made great strides in recent
years, i/o facilities have remained largely unchanged. The
fact that the definitions of C and Algol 60 omit any form
of i/o perhaps demonstrates better than anything else the
low priority which language designers have associated
with i/o. The typical read/write statements, originally
designed for batch work, fail to exploit the facilities
provided by even the simplest of interactive display
terminals.

* Ada is a registered trademark of the U.S. Department of Defense.

22 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

This paper discusses facilities intended to ease
implementation of user interfaces. Emphasis is placed on
multi-level, adaptable interfaces and the need for a
separate, high-level specification of an interface.

2. FACILITIES FOR PROGRAMMING
INTERACTION

2.1 Simulation of a perfect user

Interactive computer systems must be robust to user
errors. A system which ‘crashes’ due to a user error is no
better than useless. Fortunately, this is universally
accepted and systems will usually carry out input
validation.

It is attractive for an applications programmer to
assume a ‘perfect user’ who supplies inputs in exactly the
form expcted, removing any need for error trapping. The
provision of i/o facilities which emulate a perfect user
have been provided in Simula®? and Pascal.’ These
solutions, however, leave the programmer to supply
suitable feedback. Whilst the programmer must have the
option of providing messages, the user interface should
be able to construct default messages for use when no text
is available. Edmonds!®- ! suggests that an error message
can be seen as a transformation of the original input
message, just as a transformation of the original message
is passed on to the main system, the only difference being
the destination. The proposed system, therefore, must be
able to handle all user errors and, unless already specified,
generate appropriate feedback. This simplifies the
applications software whilst guaranteeing the user a
robust and helpful interface.

It must be emphasized that we are proposing automatic
generation of user feedback as a means of guaranteeing
existence of feedback. In most cases manually created
feedback will be far better than that generated by a tool.
However, there may be cases where text based on
information on the data object (e.g. range, type, etc.) is
required, in which case an automatically generated
message may well be sufficient. Consider an integer data
object ‘size’, range 0..10, in the following dialogue.
PLEASE TYPE IN SIZE >> 11
INPUT SHOULD BE IN RANGE 0..10
PLEASE TYPE IN SIZE >> 10

An interactive system may rely completely on these
generated messages in the early part of its development
cycle, messages which prove to be unsuitable being
replaced later by manually generated text.

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

DIALOGUE DEVELOPMENT SYSTEM FOR USER INTERFACES IN ADA

Frequently users will require a backtracking facility,
i.e. the facility to re-enter input. This can usually only be
provided in a limited form as eventually a point will be
reached where an action has been carried out which
simply cannot be ‘undone’. The proposed system,
however, will provide some form of backtracking without
this introducing extra work for the programmer.

2.2 Input/output format control

The use of text layout, font types, etc. is of considerable
importance to any form of textual information exchange.
Newspapers rely heavily on the use of different fonts and
bold type to provide emphasis. These visual aids are used
as a speaker would use gestures, facial expressions and
changes in the tone of voice to provide emphasis and
maintain interest;** the use of computer graphics in a
similar manner is important. However, much work has
been done in the development of user-friendly graphics®
and it does not seem necessary to duplicate that work.
However, the need for the easy specification of screen
formats is clearly important.

Facilities of this type have been provided in existing
tools and in extensions to existing languages,”’ illustrating
the unsuitability of normal i/o for the implementation of
modern interactive computer systems.

2.3 Interface specification

The wuser interface specification (UIS) should be
completely separated from the applications software.
Advantages of using this approach include:

(i) easy modification of the interface without unneces-
sarily affecting the applications software;

(ii) demonstration of the interface independently of
this software;

(iii) the facility for the interface to be developed in
isolation, perhaps by a user interface or domain
specialist, provided the internal interface between the user
interface and the applications software has been defined.

This complete separation is unusual. Traditionally, the
UIS, if such a thing exists, will also contain information
regarding the applications software. The need to tie the
UIS with the application routines may influence the
appearance of the interface, e.g. the grouping together of
inputs to one routine, and will probably create more work
if the interface, or the application routines, have to be
changed.

The provision of a suitable user interface specification
language (UISL) encourages this separation. The
distinction between a specification language and an
implementation language, and the ideal of collapsing
these two languages into one, is made in ref. 12.

We hold the opinion that a UIS may also be used to
implement an interface by providing an interpreter for the
specification language, giving the language a dual role as
a specification and programming language. A high-level
specification language for the definition of forms for use
in office information systems!® included the use of the
language as an implementation language.

It has been common in the past to consider the user
interface of a system as the master and the system as the
slave. Most tools have reflected this, typically by
providing some standard interface on to which application
routines are ‘hung’.'® This approach favours the use of
state diagrams in the design phase,'®- 1 representing the

system as a finite set of states which are traversed in
response to user inputs. The specification of a state
consists of a list of possible user inputs, possible paths
from this state and application routines to be executed at
that state.

We propose, however, that a user—computer dialogue
is a ‘mixed initiative’ dialogue; i.e. the responsibility for
control of the dialogue is distributed. With no permanent
master/slave relationship, the user and system can be seen
as two parallel processes interacting via the user
interface.!” Consider the following dialogue.
>> COPY
file 1 > FRED
file 2 > JOHN
file copied.
>>

When the prompt ¢ >> ’ is given, control of the dialogue
is transferred to the user, who may type any command
available on the system. The path which the dialogue will
take depends on this input. The user fails to specify the
names of the files to be copied and the interface takes
control to request the file names. Control is returned to
the user when the ‘ >>’ prompt is issued.

To include dialogue paths in the UIS, all possible paths
through the dialogue must be completely predictable at
the design stage. If we wish to change the interface, e.g.
moving a data object from one state to another, this
prediction will be invalidated, possibly forcing extensive
changes to the UIS. The UIS therefore should have no
knowledge of possible paths through the dialogue. The
UISL should have predefined rules for the movement of
the dialogue from one state to another.

2.4 Virtual terminals

For the purposes of this discussion we are disregarding
graphics terminals, and concentrating on the more
common dumb and intelligent VDUs which are only
capable of displaying normal text. These terminals have
similar characteristics (e.g. reverse video, blink, etc.).
However, the control character strings which operate
these functions will invariably differ between terminals.

The UISL should make all references to the display
device in terms of a virtual terminal. Several constraints
must be made if this is to be successful, e.g. the virtual
terminal must not impose unnecessary restrictions on
terminals which may be connected to the system. Neither
should the virtual terminal force a sophisticated terminal
to have its capabilities under-used as a consequence of a
restrictive set of ‘virtual facilities’.

Since it would be impossible to produce a set of virtual
facilities which would include all possible facilities in
actual devices, it is necessary to have a virtual device
which may be extended easily. These extensions must be
achieved without affecting existing interfaces using the
virtual terminal.

Criticisms of the use of virtual terminals can be found
in ref. 18. We believe, however, that the concept of an
extensible virtual device provides a powerful tool for user
interface production.

2.5 Adaptable interfaces

Interactive systems attract a diverse range of users
possessing a wide variety of computing experience. To
provide an interface suited to the abilities of users, one

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 23

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

J.ROBINSON AND A. BURNS

must provide an interface less rigid than those currently
in common use.

A dialogue between two people allows for the differing
knowledge levels of the communicating partners. For
example, a car mechanic involved in a discussion with an
experienced colleague will use a terse dialogue using terms
and phrases which would prove unintelligible to a new
apprentice. When talking with a ‘naive’ colleague, the
mechanic will adapt to make allowances for inexperience.

Also, the human element of a system is not static and
will adapt to a system or environment as experience is
gained. As the apprentice mechanic gains more knowledge
about the work, colleagues will adapt to allow for this
increase in experience. If this adaptation did not occur the
dialogue would become a source of irritation and
inefficiency.

It is the inability of many interactive systems to adapt
which causes user discontent. Whilst ‘serious’ systems
have largely ignored this requirement, it is ironic that they
should have found widespread use in far more trivial
applications. In any amusement arcade you will see video
games adapting to the abilities of their players. Some
allow the user to choose a level of difficulty whilst others
automatically adapt as the game progresses; the longer
the game lasts, the better the player must be, and hence
the harder the game gets.

It is recognized that a system should provide a number
of different interfaces.’®-20.21.22 There are several
different user types, categorized on their past experience,
and although there is currently no agreement on the
number of dialogue levels, it is certain that a multi-level
interface has a much better chance of pleasing its users.

An interface may implement a different type of
interaction at each level or a different version of the same
interface. Mozeico’s graphics system?? uses a five-level
interface, three in a command language style, one a menu
type question—answer dialogue and the other a tutorial
frame-driven dialogue. Luker’s Modeller?! on the other
hand retains a similar structure on each level, with the
verbosity of the dialogue varying between levels.

Some users may be expected to progress through levels
as their experience improves whilst others may be happier
to stay with a known level. Research??® has demonstrated
that some users simply learn to use the system without
understanding its operation. A user who shows an
increase in understanding of the system will be likely to
benefit from a move to a higher dialogue level, whilst a
user who is learning by rote would suffer considerably by
a change.

It is also common for a user to become an expert at
part of the system whilst remaining a naive user of other
parts, hence requiring a mixed-mode interaction. Clearly
users must be able to change levels as they wish.

It has been suggested* that an adaptable user
interface must leave the control of the adaptation with the
user. The user has a conceptual model of the system with
which he/she is working and this could be disturbed by
an interface which is dynamically adapting to the user.
An obvious source of confusion would be change from
a command-driven mode to a menu-driven mode when
a user made mistakes at the command level. Modeller2!
forces a change in dialogue level when an error occurs at
the ‘expert’ level. This change does not result in a change
in mode since both levels use a similar style, and it seems
to work well in practice.

24 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

The implementation of such a sophisticated user
interface using conventional languages would impose an
unbearable workload on the programmer, e.g. since the
user will be allowed to swop between levels of interaction,
it is important that the levels will not get out of step, i.e.
a change of level could not result in a change in the state
of the dialogue.

Often the users of a system will require a more subtle
adaptation. A good example is ‘parallel-sequential
tradeoff’.>* The user may enter commands singularly or
several in sequence, allowing an experienced user to speed
their interaction with the system, as they become
accustomed to the required sequence of commands.

A widely used technique is to allow a mnemonic form
of a command; e.g. a system may allow LIST, LIS, LI
or L to refer to the same command, provided no
ambiguity arose.

2.6 Help facility

Despite widespread acceptance of the importance of a
help facility there are still interactive systems in existence
which provide no such facility, and many more which
provide one which is of little practical use.

It has been proposed in ref. 24 that the help facility
should be adaptive. The ‘query-in-depth’ technique
proposed by Gaines and Facey allows the user to expand
on the information given by repeating the call for help.
This allows an inexperienced user to gain access to a long
and detailed help message whilst not forcing this verbose
text on an experienced user. A disadvantage is that a naive
user must work through the terse messages before
receiving the verbose text.

The help information issued should vary according to
the current state of the dialogue. In a system with user
levels this information should differ between levels. Given
that different levels could implement different modes of
interaction, these differences could be considerable. This
system could also include a ‘query-in-depth’ style of
adaptation within each level.

It is difficult to imagine the user view of the system and
hence what kind of user feedback is required if the users
are not allowed to influence system design. This
involvement is made simpler if the help information may
be demonstrated to the user.

2.7 Rapid re-configuration of the interface

The need for user involvement in the design process, and
the easy adaptation of the system to changing user
requirements throughout its life cycle, means a user
interface must be quickly and easily modified.

It has been recognized that user involvement in the
design and support of interactive systems is essential to
their success.!!-2® Eason et al.?5 highlighted the lack of
user involvement. Users were split into three groups;
managers, specialists and clerks. The survey showed that
459; of managers, 329, of specialists and 259 of clerks
had been involved in the design of computer systems, yet
over 709 of all users wished to become involved in the
design of future systems. Proposals have been put
forward (e.g. ref. 26) for design and support techniques
to encourage user participation, and problems which may
arise have been documented. Prospective users must have
the opportunity of seeing a prototype of a proposed

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

DIALOGUE DEVELOPMENT SYSTEM

system, or at least its user interface, before agreeing to its
introduction. Similarly, any changes to an existing
system, or user interface, should be demonstrated.

Changes made to an existing system will typically be
proposed by the users and will often be vague and/or
impracticable,?” with the users often having no idea of
how these changes will affect the system. The ability to
change an interface rapidly allows a specialist to
demonstrate the effects of changes and to demonstrate
alternatives. The effects of this are far-reaching: users are
more likely to get an interface which they like and accept,
and will be more likely to accept the introduction of a new
system or the alteration of an existing one.

This leads us to two requirements.

(1) The user interface should be completely separated
from the software behind it. Typically a user interface in
an interactive system will be distributed throughout the
systems software, making changes to the interface
difficult and the provision of several different interfaces
almost impossible.

(2) Where possible, changes to the interface must be
carried out without re-compilation of software. The user
interface will be closely linked with the applications
software and some changes, e.g. range of an input
variable, will also force changes to this software. Despite
this there are many changes, e.g. screen formats, which
may be carried out without these being propagated into
the software. This problem is reduced by implementing
the system in an interactive language.* It is unfortunate,
however, that in many applications the use of an
interactive language is either not possible, or simply not
attractive. In this case the provision of tools to help speed
the modification of the software when necessary will help
considerably.

The advantages of constructing an interactive system
in such a way have been sufficient to encourage the
development of appropriate system construction tools.34

3. THE PROPOSED SYSTEM

The rest of this paper is devoted to proposing a dialogue
development system (DDS), for use with the Ada
language,?® which is to be developed with the above
comments in mind.

The general structure of an interactive computer
system constructed using this DDS is shown in Fig. 1. The
following sections outline the purpose of each component
of the DDS and the way in which these components
interact with each other.

3.1 The dialogue development system (DDS)

The DDS comprises a range of tools for the production
and maintenance of user interfaces. The applications
software will interact with different components of the
DDS at different stages of its life cycle. These components
will include the following:

3.1.1 Dialogue manager (DM). This is the central core of
the DDS, and it is this component with which the
applications software will interact during the time that the
system is ‘live’. The dialogue manager supervises the
dialogue and implements the interface specified in the
UIS, essentially acting as an interpeter for the UISL. This
interpreter is, however, very sophisticated and handles

FOR USER INTERFACES IN ADA

Input
— .
Dialogue
5 -OUtp—m development
Terminal Feedback system
—_—
o 1
u n
t P
p u
u t
t
Applications
software
Figure 1

work, such as backtracking, input data validation, etc.,
which would normally have to be carried out by the
applications programmer.

Our model of a user—computer dialogue treats the two
partners in the dialogue as two concurrent processes.
Since the DDS is intended for use with Ada, the dialogue
manager will be implemented as a task in an Ada library
and will run in parallel with the applications software
using it. Hence the actual software will reflect the
conceptual model of the system it implements.

To the applications software, the DM appears to be a
pre-defined package containing a task to which calls are
made for transferring data between itself and the user.
The DM is transparent to the user. Subcomponents of the
DM will include the following.

(1) Feedback generator. This generates appropriate
user feedback, and initially will simply consult a set of
standard messages which will be customized to suit the
feedback required.

(2) Adaptive interface handler. This component con-
trols adaptation of the dialogue. It will simply check user
input and, when a request for change of level is received,
will inform the other components of the DM that the level
has been changed. Effectively this component will act
as a filter in the input stream.

(3) Bufferedi/ohandler. This allows parallel-sequential
tradeoff. If the data required has already been input the
DM reads this directly from an input buffer. If this buffer
is empty then the user is prompted for the input.

The initial versions of these components will be as
simple as possible in order to allow a prototype of the
system to be constructed. They do however open up
interesting avenues for further development once the
system has been shown to be feasible. For example, both
the adaptive interface handler and the feedback generator
could be replaced by expert systems.

3.1.2 Specification languages translator. This is essentially
the front end of the DM and will convert a UIS written
in the UISL into an intermediate form. The prototype
system will be built around a subset of the UISL for which
a translator has been constructed.

3.1.3 Virtual terminal. The virtual terminal is a device-
and machine-independent Ada task which transforms
device-independent instructions produced by the dialogue

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 25

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

J.ROBINSON AND A. BURNS

manager into device-dependent strings of control
characters.

The virtual terminal software has no knowledge about
the terminals with which it communicates, but uses a
database of information about the types of terminals
which may be connected to the system. Adding a new
terminal type should require nothing more than an
extension of the database with information regarding this
terminal’s characteristics. This divorcing of device
information from the virtual terminal software is to aid
the adaptability of the virtual device to new terminals
which are added to the system.

This software can be looked on as the database handler
for the terminal description database, with the extra
function of checking all tokens sent from the dialogue
manager, and deciding whether these are passed directly
on to the real terminal or, in the case of control
information, replaced by control character strings before
passing on to the actual terminal.

3.1.4 Validator/system configurator. The validator is
responsible for checking the interface between the
applications software and the UIS. This is not checked
by the UISL translator since this internal interface can
become quite complex and as such is better managed by
a separate component.

There is a need for a tool that will configure a
‘production’ system from its constituent parts. This tool
may include the validator as a subcomponent.

3.1.5 Screen formatter. An interactive screen formatter
will be available to enable the construction and
modification of screen formats to be achieved easily and
quickly.

Whilst the specification language is undoubtedly the
best way to approach the specification of textual
dialogues, the specification of menus, etc. is not so
straightforward. It is in this situation that the screen
formatter should be able to interact with the UISL
translator. The screen formatter will have an extensible
database of screen formats which are ‘instantiated’ by the
formatter. These formats are stored in the database in the
form of ‘stencils’, i.e. a basic outline of a screen which
will require parameters to be supplied to fill in the gaps
left in the stencil specification. The formatter will have an
interactive front end for the specification of these stencils.

The instantiation of screen formats will essentially be
a macro call from the UIS, i.e. the format instantiation
mechanism is not actually part of the UISL, and hence
not part of the functions of the UISL interpreter, but will
be replaced by UISL statements.

3.1.6 System monitor. Once a system has gone live, there
is a need for constant analysis of the systems performance
and how this affects the performance of its users. The
system monitor will record appropriate data, e.g. the
location of points in the interface where users encounter
problems with the dialogue. These data may then be
analysed to assess the systems performance, and changes
and enhancements can be suggested based on these
results.

3.2 Applications software

The applications software is defined for the purpose of
this document as that software which implements the
functions of a system.

26 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

All communication between this software and the user
is made via the dialogue manager. The interface between
the applications software and the DM is strictly defined
in the UIS to enable changes in this internal interface to
be carried out easily and with as little delay as possible.
The applications software deals only in the basic units of
i/o, e.g. integers, characters, strings, etc., and the basic
operations ‘get’ and ‘put’, which transfer these objects
to and from the dialogue manager.

No validation of user inputs needs to be carried out by
the applications software, this responsibility being
carried by the dialogue manager. The applications soft-
ware also has no knowledge of the interface presented
to the user. The type of interface, prompts, user feedback,
etc. are transparent, thereby separating the applications
software from the user interface and rendering it almost
immune from interface reconfigurations. The only
changes which will affect the applications software, such
as changes to the range of an input or output object, can
be detected at the interface between the dialogue manager
and applications software and the necessary alterations
made.

The applications software which may use the DDS
proposed here will be written in Ada and will run in
parallel with the dialogue manager.

Ada was developed primarily as a language for
embedded systems and its facilities naturally reflect this.
Due to the widespread publicity it has received, however,
the language has attracted attention from many other
areas of computing and has shown itself to be suitable for
application to fields other than real-time systems (e.g. ref.
29).

The choice of Ada, not only as the language to be used
with the DDS, but also as the implementation language
of the DDS itself, was made due to several factors. The
language provides an excellent medium in which to work,
supporting as it does state-of-the-art programming
language features. In particular, the facilities for
packages, tasks and separate compilation make the
language eminently suitable for this work. Perhaps the
most important advantage of developing the DDS for,
and in, Ada is the proposals for the development of Ada
Programming Support Environments.?® Clearly, the
DDS would form the central hub of an APSE for
dialogue and interactive system development. It is with
this in mind that the DDS will be designed and
implemented in a manner complying with the require-
ments for APSE tools as laid out in ref. 30.

3.3 Relationships between tools

The relationships between components of an APSE are
clearly important and are often complex.3® For example
the relationship between the Applications Software and
the UIS, given that the requirement of independence of
the interface and software is to be fulfilled, is far more
complex than would at first appear. This relationship also
involves the DM, which is responsible for managing
communication between the applications software and
UIS.

Tool interfaces are usually specified in terms of Ada
package specifications. However, the relationship between
tools often cannot be fully specified using this facility
alone and extra information, in the form of data formally
specified and contained in files, will be required.

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

DIALOGUE DEVELOPMENT SYSTEM FOR USER INTERFACES IN ADA

Moreover, in some cases two tools will carry out all
communication via a data file. The DM and UISL
interpreter, forexample,communicate viatheintermediate
code of the UISL, putting the file containing this inter-
mediate code in the position of defining the interface
between these two tools. The following sections outline
some of the files which will be present in the DDS and
which will be involved in interface specifications.

3.3.1 Dialogue specification file. The dialogue specifica-
tion file contains the specification of the user interface.
This specification will, of course, be converted to some
intermediate code by the UISL translator and it is this
form which will, in effect, specify the interface between
the DM and UISL. In fact the information contained in
this file may not be sufficient to specify this interface, and
work is being carried out to develop a method of
completely defining this interface. More complicated
however is the role which this file plays in the relationship
between the applications software and the DM this is
however beyond the scope of this paper.

3.3.2 Terminal description database. The terminal descrip-
tion database contains the characteristics of each type of
terminal used on the system. The database associates the
device-independent terms of the dialogue manager with
the actual control character strings which will implement
that function on the particular terminal in use, e.g. change
to reverse video.

A similar, if rather limited, database is already

REFERENCES

1. Computing’s user friendly competition. Computing 10,
44, 30-39 and 15 (November 1982).

2. B. Schneiderman, Human factors experiments in designing
interactive systems. Computer, 12, 12, (1979).

3. A. 1. Wasserman, Design Goals for Plain. Proceedings of
the 11th Hawaii Conference on Systems Science 1, 60-70
(1978).

4. B.R. Gaines and P.V.Facey, Basys—a language for
processing interaction. Proceedings of the Conference on
Computer Systems and Technology, IERE 36, pp. 251-262,
(1977).

5. A. Burns, Enhanced input/output on Pascal. 4CM Sigplan
Notices, Dec., (1983).

6. W. M. Newman and R. F. Sproull, Principles of Interactive
Graphics. McGraw-Hill Computer Science Series (1979).

7. J. M. Lafuente and D. Gries, Language facilities for
programming user-computer dialogues. IBM Journal of
Research and Development, 22, 2 (1978).

8. M. Ohlin, Safe conversational Simula programs using class,
SAFEIO. Association of SIMULA Users, Third SIMULA
Users’ Conference and Educational Workshop, Brighton,
1975.

9. R. J. Orgass and R. E. Porter, Dialog. A Simula class for
writing interactive programs. Virginia Polytechnic Institute
and State University technical memorandum no. 79-3a,
(1979).

10. E. Edmonds, Adaptable man/machine interfaces for
complex dialogues. Proceedings Eurocomp 1978.

11. E. A. Edmonds, Adaptive man—computer interfaces. In
Computing Skills and the User Interface (ed. M. J. Coombs
and J. L. Alty).

12. Specification of dialogue and interactive programs. In
Methodology of Interaction (ed. R. J. Guedj et al. 1980).

13. E. Denert, Specification and design of dialogue systems

available on the UNIX* operating system?! and similar
database may exist on some other operating systems,
although certainly not all operating systems have such a
facility.

This file does not specify a relationship between two
tools but between a tool and an outside entity i.e. external
to the APSE, in this case a VDU.

4. CONCLUSION

We have highlighted the need for an improvement in
user—computer interfaces, and the requirement for the
provision of tools both to aid the applications programmer
in the development of such interfaces, and to encourage
the use of techniques for the provision of user-friendly
and adaptable user interfaces.

A dialogue development system intended for use with
the Ada programming language has been proposed. This
will be designed and implemented at the University of
Bradford on a DEC VAX 11/750 running the UNIX
operating system.32

Acknewledgements

The authors gratefully acknowledge the financial support
of the Science and Engineering Research Council and the
University of York, U.K. for the provision of an Ada
compiler.

* UNIX is a registered trademark of Bell Laboratories.

with state diagrams. International Computing Symposium,
Liege, Belgium (ed. E. Morlet and D. Ribbens), (1977).

14. D. L. Parnas, On the use of transition diagrams in the
design of a user interface for an interactive display system.
Proceedings of the National ACM Conference, pp. 379-385,
(1969).

15. N. H. Gehani, High level form definition in office informa-
tion systems. The Computer Journal, 26, 1 (1983).

16. B. Negus, M. J. Hunt and J. A. Prentice, Dialog: a scheme
for the quick and effective production of interactive
applications software. Software, Practice and Experience
11, 205-224 (1981).

17. W. M. Newman, Languages for describing interactions. In
Display Use for Man—Machine Dialogue (ed. W. Handler
and J. Weizenbaum) (1971).

18. Portability and device independence. In Methodology of
Interaction, (ed. R. A. Guedj et al.) (1980).

19. 1. A. Newman, Personalised user interfaces to computer
systems. Proceedings Eurocomp 1978.

20. R. L. Wexelblat, Design of systems for interaction between
humans and computers. In BCS 81, Information Technology
for the Eighties (ed. R. D. Parslow) (1981).

21. P. A. Luker, Computer-Assisted modelling of continuous
systems. Ph.D. thesis, University of Bradford, U.K. (1981).

22. H. Mozeico, Human/computer interface to accommodate
user learning stages. Communications of the ACM, 25,
(No. 2) (1982).

23. T. C. S. Kennedy, Some behavioural factors affecting the
training of naive users of an interactive computer system,
International Journal of Man—Machine Studies, pp. 817-834
(1975).

24. B. R. Gaines, The technology of interaction — dialogue
programming rules. International Journal of Man—Machine
Studies 14, 1, 133-150 (1981).

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 27

¥202 I4dy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/wod dno-olwspede//:sdiy Wwolj papeojumo(q

25.

26.

27.
28.

29.

28 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

J.ROBINSON AND A. BURNS

K.D. Eason, L.Damodaran and T.F.M. Stewart, 4
Survey of Man—Computer Interaction in Commercial
Applications. SSRC report HR 1844/1 (1974).

L. Damodaran and K. D. Eason, Design procedures for
user involvement and user support. In Computing Skills and
the User Interface (ed. M.J. Coombs and J. L. Alty)
(1981).

D. J. Cairns and J. J. Florentin, Human factors and pro-
gram flexibility. BCS’81, Information Technology for the
Eighties (ed. R. D. Parslow).

J. D.Ichbiah et al., Reference Manual for the Ada
Programming Language. United States Department of
Defense (1983).

J. A. Kirkham, A. Burns and R.J. Thomas, The Use of
Structured Systems Analysis in the Rapid Creation of
Information Management System Prototypes Written in
Ada. Ada Letters, 4, 1 (1984).

30. D. A. Fisher, Requirements for Ada Programming Support

31.

32.

33.

34.

35.

Environments — Stoneman. United States Department of
Defense (1980).

UNIX Programmer’s Manual (seventh edition, Virtual
VAX-11 Version) (June 1981).

M. Banahan and A. Rutter, UNIX — The Book. Sigma
Technical Press (1983).

T. C. S. Kennedy, The design of interactive procedures for
man-machine communication. International Journal Man—
Machine Studies, 6, 309-334 (1974).

G. Ringland, Introduction to developinginteractive systems
for the small machine environment. Proceedings of the
Conference on Computer Systems and Technology, IERE 36,
pp. 241-250 (1977).

A.Burns and J. Robinson, Tool requirements for the
implementation of user interfaces in Ada. Ada U.K. News
(Jan. 1984).

¥202 Iudy 01 uo 1senb Aq 066.91/22/1/82/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

