The History of Macro Processors in Programming

Language Extensibility

P.J. LAYZELL

Department of Computation, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 10D

The evolutionary nature of computer programming has necessitated the continual development and enhancement of
programming languages. In an effort to make programming languages more responsive to such changes, a number of
language extensibility schemes have been designed. This paper examines the history of macro processors as a tool for

programming language extensibility.

1. INTRODUCTION

Over the past 20 years, much has been written in
computing literature about macro processors. In a recent
survey on macro processors and extensible languages
over 130 references were given.! But despite the wealth
of literature in this area, very little appears to have been
written about the history of macro processors, especially
in the field of programming language extensibility.

It is the purpose of this paper to give a brief résumé
of the history of macro processors and their association
with programming language extensibility. It is not
intended to give a full description of any macro processor
or programming language extensibility scheme.2 3

2. PROGRAMMING LANGUAGE
DEVELOPMENT

Before examining the development and role of macro
processors in programing language extensibility, it is first
necessary to place such a history in perspective by looking
at the need for the development and extensibility of
programming languages.

The growth of computer applications has led to the
development of numerous specialised programming
languages and their translators (compilers, interpreters
and assemblers) and has placed a heavy burden upon
installations which attempt to support an increasing
number of them, since more and more systems
programming time has been directed to their maintenance
and upkeep.

The major drawback with conventional translators is
that the features of a programming language which they
support are fossilised at the time they are written. This
gives rise to a number of problems.

First, users of translators will often have features built
into their particular translator that, in some cases, are
never used. For example, many COBOL users do not use
the Report Writer and Telecommunications facilities that
are provided.

Secondly, programming languages can often undergo
considerable revision and development as programming
techniques change. In both BASIC and COBOL, for
example, standards are now being altered to allow
structured programming constructs. However, a conven-
tional translator would have to be extensively modified,
if not completely rewritten to accommodate such
changes.

Finally, the nature of applications problems may

change and so require new language features such as new
data types or control structures. This may also require the
rewriting of a conventional translator.

As a result of these problems, considerable time and
energy has been expended in the development of
universal, all-purpose programming languages. The best
known example, PL/1, provides a good illustration of the
difficulties and drawbacks of attempts at such universal
languages.

For a language to be universal, it must provide features
for many diverse areas such as numerical analysis, data
processing, engineering applicationsand compiler writing.
Hence, the translator for such a language will become
unmanageably large, with very few installations having
the machine or support staff capacity to maintain it.
Furthermore, any language, no matter what diverse areas
it attempted to cater for, could never completely satisfy
user whims, such as particular new statements or control
structures.

As an alternative to numerous special-purpose lan-
guages or a single universal language, the notion of
extensible languages received widespread support in the
late sixties. Such a language would consist of a small but
powerful set of ‘core’ or ‘base’ features, which could then
be extended by the user so as to tailor his translator to
his specific needs, thus keeping the translator size as small
as possible.

3. THE DEVELOPMENT AND ROLE OF
MACRO PROCESSORS IN LANGUAGE
EXTENSIBILITY

The history of language extensibility spans a mere twenty
years, but in this period it is possible to identify a very
clear and definite trend. It can be seen from the published
literature on various types of extensibility schemes,
shownin Table 1, that there has been a drift from low-level
language extension by relatively simple macro processing,
through a stage of specially designed extensible languages,
up to the present-day development of syntax macro
processors, each designed for the extension of a single
programming language.

3.1 Initial ideas

Much of the early development work in language
extensibility dates back to the early and pre-sixties when
macro assemblers were used to make assembly languages

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 29

¥202 I4dy 01 uo 1senb Aq | L089Y/62/1/82/2101e/|ulwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

P.J. LAYZELL

Table 1. Chronology of language extensibility schemes

Language-

Language- Extensible languages Generalised orientated

orientated Generalised " syntax syntax

text macro text macro By altering By macros macro macro

processors processors compiler Processors —processors
Pre-1960 Mcllroy
1961
1962 XPOP
1963 Compiler-

compiler
1964
1965 GPM IMP Cheatham
TRAC
1966 System/360 LIMP MAD Leavenworth
ML/1
1967 ALEC ALGOL D
1968 PL/1 STAGE 2 BALM GPL COBRA
1969 PLITRAN EPS
PPL
1970 PROTEUS MACRO MP/1
1971 BABEL ECL HAMMER
WODON

1972
1973
1974
1975 CAMPBELL
1976 STEP
1977 PM
1978 C MCOBOL
1979
1980 CLEF

Note. Dates are approximate, and where dates are not specified by authors of schemes the earliest published reference is used.

‘higher-level’ by allowing the definition of repetitive
coding as macros. The initiative for this use of macros
camemainly fromcomputermanufacturers. Consequently
little detailed published material exists except on such
well-known schemes as the IBM System/360 Macro
Assembler, which is typical of most of the macro
assembler schemes. The problem with many of these
schemes was the limited formats permitted for the macro
call. Typically, all macro calls would be restricted to a
format such as:

macro-name, parameter-1, parameter-2,. ..
although XPOP® permitted marginally more flexible
macro call formats. Thus it would be possible to write:

STORE INTO GAMMA THE SUM OF ALPHA

AND BETA

or

STORE GAMMA = ALPHA + BETA
instead of:

STORE GAMMA, ALPHA, BETA
In its infancy, the main aim of language extensibility was
to reduce programmer coding time by providing
shorthand facilities and, to a lesser extent, improve
readability. Therefore the early macro processors were
simple text replacement schemes with few other capa-
bilities and can now be found in wide use today in
languages such as PL/1 and C.

30 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

3.2 Generalised macro processors

With the development in the early and mid-sixties of
higher-level programming languages, assembly languages
became less popular. The advent of COBOL and
FORTRAN meant that programmers no longer had to
write in low-level languages, and so the apparent need for
readability and high-level statements in programming
languages had been fulfilled to a large extent.

Initial stimulus in the area of extending higher-level
programming languages came from Mcllroy’s paper,®
which was to act as a foundation for many subsequent
macro processor and language extensibility schemes.

Mcllroy proposed a macro processor which could
conditionally replace text, depending upon details within
the macro call. Furthermore, he envisaged nested macro
calls and the need for a facility to generate unique
symbols so as not to conflict with those symbols defined
by the applications programmer.

Despite Mcllroy’s paper, most of the early macro
processor schemes did not incorporate all of these
features. Many of the schemes, such as GPM,” LIMP®
and TRAC® had limited facilities which considerably
restricted the format of the input text. LIMP, for
example, allows only nine formal parameters to be
specified in a macro call format. Furthermore, the macro

¥202 I4dy 01 uo 1senb Aq | L089Y/62/1/82/2101e/|ulwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS AND LANGUAGE EXTENSIBILITY

defining language of many of the early schemes was
clumsy and restrictive and often as unreadable as the
assembler languages the earliest schemes had tried to
improve.

However, Brown’s ML /1 macro processor!? permitted
amuch greater degree of flexibility in the format of macro
calls, by allowing nested calls and by the specification of
optional, alternative and repeated elements.

The power of ML/1 is considerably enhanced by the
availability of inter-macro communication through a set
of ‘macro-time’ registers, as well as conditional text
replacement and the generation of unique labels and
names.

3.3 A move towards extensible languages

Despite the success of the second generation of macro
processors to implement and extend programming
languages, such as the use of ML/1 to extend BASIC!!
and GPM to implement CPL, there was a move in the late
sixties towards new programming languages with built-in
extensibility. It seems likely that there were two main
reasons for this.

First, there was a question of operating efficiency.
Macro processors operating as pre-processors add
significatly to compilation costs and the generalised
nature of the second generation of macro processors
meant that their operation was slow.

Secondly, generalized macro processors do not fully
validate macro calls and hence can produce replacement
text that contains errors, thus causing problems for the
applications programmer with two error reports. For
example, Brown in his paper on extending BASIC to
permit string handling says that the macros used may
generate the erroneous BASIC statement:

151 LET 23 = S (Z1),
which would result from the fact that the macro processor
used did not fully validate the macro call. Therefore, it
is left to the BASIC compiler to report the error and so
provide two separate error reports for the applications
programmer to handle.

The new extensible languages were often deliberately
developed with minimal facilities which could then be
extended to fit a particular user’s application area. Such
extensions could be new data types such as records for
commercial data-processing applications, complex num-
bers for engineering applications, new operators to
manipulate the new data types and new statement forms.

Such was the interest in extensible and universal
languages at this time that the Special Interest Group on
Programming Languages (SIGPLAN) of the ACM held
two extensible languages symposia in 1969 and 1971,
attended by many of the ‘founding fathers’ of language
extensibility schemes such as Cheatham, Mcllroy, Irons,
Perlis and Standish.

Many of the schemes outlined at these symposia, such
as GPL,'2 IMP,»* PROTEUS" and PPL" resulted in
considerable euphoria and excitement about extensible
languages, and by May 1975 Standish had noted 27
extensible language schemes including extensible com-
pilers such as ALEC and BABEL.¢

However, at the 1969 symposium delegates were quick
to point out that extensible languages were unlikely to be
the complete salvation of the programmer. Cheatham
pointed out that programming is complex and that

‘maybe the extensible languages idea might help one to
organize his [the programer’s] complexity a little bit
better’.

It was soon discovered that extensible languages were,
indeed, not to be the complete salvation of the
programmer. As Hoare bluntly put it, extensible
languages have had, ‘a great lack of success’.!” The main
reasons for the failure of extensible languages are as
follows.

First, extensible languages are complex. Brown in a
recent paper on macros'® highlights the problems of
having to learn new macro defining languages; similar
arguments apply equally well to the learning of new
extensible languges especially when the majority of
programs are still written in non-extensible languages
such as COBOL and FORTRAN.?

Secondly, at the second symposium on extensible
languages in 1971, Standish exposed the erroneous belief
that with a handful of simple mechanisms such as syntax
macros, applied in simple ways, one can obtain both the
variability and efficiency demanded from extensible
languages.2°

Thirdly, the new extensible languages had to compete
with the now well-established languages such as COBOL
and FORTRAN, which became increasingly popular.
Extensible languages have therefore suffered the fate of
many other languages — an inability to present a serious
challenge to the already existing languages — despite their
obvious advantages.

Finally, when examining the various extensibility
schemes, two points become apparent. The more
successful schemes are the simpler schemes, the moral
being that it is better to produce a simple but usable
scheme with only a few features rather than a complex
and sophisticated, unusable scheme. In addition, if you
start with a simple base language you must often apply
considerable effort to extend it to approach anything like
a usable high-level language.

3.4 The development of syntax macros

In 1966, before the main development of extensible
languages, ideas for improved macro processors to extend
already existing languages were being floated by
Cheatham and Leavenworth?" 22 The ideas envisaged a
special type of macro called a ‘syntax macro’.

A syntax macro takes advantage of the syntactic
structures of programming languages. It can do thisin a
number of ways, the main one being to specify the
syntactic class (i.e. statement, identifier, literal, etc.) of
formal parameters within a macro call.

For example, in the macro call format:

DO integer TIMES statement
as well as matching the keywords ‘DO’ and ‘TIMES’, a
syntax macro processor would also check that the first
actual parameter was an integer and that the second
actual parameter was a statement.

The advantage of a syntax macro-scheme is that much
of the responsibility of syntax checking is moved from the
macro writer to the macro processor. A number of
generalized schemes using this approach have now been
developed, such as MACRO?? and STEP.*

Each of these schemes represents a consolidation of the
more useful ideas developed in earlier macro schemes.
Features included in these schemes are extremely flexible

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 31

¥202 I4dy 01 uo 1senb Aq | L089Y/62/1/82/2101e/|ulwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

P.J. LAYZELL

macro call formats that allow virtually any form of
construct to be specified. For example, macro calls do not
have to begin with a herald or have a unique delimiter.
Alternatives, repetitions and options, as well as the
assignment of a syntactic class to formal parameters, are
also allowed. Finally, there are flexible macro-time
instructions to manipulate generated text and to allow
communication between macros.

It is becoming increasingly apparent that whilst these
generalized syntax macro processors are unlikely to fail
on the basis of a poor macro definition language, they
may well fail on an inability to deal conveniently with
both the fundamental structures of any language and also
its peculiarities.

As a result, a number of single-language orientated
schemes have been developed, in particular for COBOL
and FORTRAN. For COBOL, these include COBRA?
and MetaCOBOL,?® which are both commercially
available COBOL macro processors. MCOBOL,? later
refined and renamed CLEF, 2% 2 isa COBOL extensibility
scheme still under development.

All these schemes offer special, COBOL-orientated
macro processing facilities such as sophisticated text
distribution schemes and, in the case of MetaCOBOL,
MCOBOL and CLEF, comprehensive symbol tables.

The CLEF scheme represents a departure from most
macro processors since it is envisaged to form an
integrated part of a COBOL compiler. It is also a very
high-level, powerful, syntax macro processor. The effect
is to reduce the inherent inefficiencies in existing COBOL
macro processors and to provide a language extensibility
scheme for a widely used, commercial language.

The macro processor MP/13¢ is orientated towards
FORTRAN and, like the COBOL schemes, automatically
handles the formatting of generated text.

Whilst some of these schemes have been in existence for
some time, they have had only limited use, and it remains
to be seen what degree of success the more recent schemes
will have.

4. SUMMARY

The history and development of macro processors in
programming language extensibility has been varied and

REFERENCES

1. J. R. Metzner, A graded bibliography on macro systems
and extensible languages, SIGPLAN Notices 14, 1, 57-68
(1979).

A comprehensive bibliography of macro and extensibility
schemes.

2. P.J. Brown, A survey of macro processors, annual review
in Automatic Programming, vol. 6, Pergamon Press, pp.
37-88 (1969).

A survey of the main macro processors.

3. N. Solntseff & A. Yezerski, A survey of extensible
programming languages, annual review in Automatic
Programming 7, part 5, Pergamon Press (1974).

A comprehensive survey of extensible languages.

4. IBM, IBM Operating System/360: Assembler Language,
C28-6514 (1966).

An introduction to the IBM 360 macro facility.

5. M. 1. Halpern, XPOP: A meta-language without meta-
physics, Proc. FJCC., AFIPS 26, 57-68 (1964).

An introduction to XPOP.

32 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

interesting. In their formative years, macro processors
were simply used to enhance the readability of assembly
language programs. However, this role was outgrown by
the development of high-level programming languages
which meant that there was less need for assembly
language programming. There then arose a need for
language extensibility due to the increasingly diverse
areas of application which in the words of Halpern®
meant that ‘if the universal language is nowhere in sight,
then for a programming system, as for other creatures
competing to survive, ability to change is the first law of
life’.

Attempts to produce extensibility have been made in
a variety of ways. At first there was a move towards new
programming languages with built-in extensibility.
However, a number of factors including the heavy
investment in the already-established languages and the
complex nature of the new extensible languages prevented
their widespread use.

These were paralleled, though not superseded, by
syntax macro processors, some of which are general and
others orientated towards specific programming lan-
guages. Their aim has been, to a greater or lesser extent,
to take advantage of the syntax and idiosyncrasies of the
particular languages that they are trying to extend.

Despite all this activity and the many claimed
advantages, macros still remain outside mainstream
computing — acclaimed by many, but ignored by most.

Acknowledgement

This paper was written with the aid of financial support
from the UK Science and Engineering Research Council.
The author would like to thank Alan Heywood-Jones of
Cobra Systems and Programming and John Triance of
UMIST for their valuable help and comments on this

paper.

6. M. D. Mcllroy, Macro instruction extensions of compiler
languages, Comm. ACM. 3, 4, 214-220 (1960).

Describes the use of macros in compiler extension.

7. C. Strachey, A general purpose macrogenerator, Computer
Journal 8, 3, 225-241 (1965).

An introduction to GPM.

8. W. M. Waite, A language-independent macro processor,
Comm. ACM. 13, 7 (1967).

An introduction to LIMP and STAGE?2.

9. C. N. Mooers & L. P. Deutsch, TRAC — a text handling
language, Proc. ACM. 20th National Conf., pp. 229-246
(1965).

An introduction to TRAC.

10. P. J. Brown, The ML /1 Macro Processor, Comm. ACM. 10,
10 (1967).

An introduction to ML/1.

11. P. J. Brown, Extending High-level Languages by Macros — a
Practical Evaluation, Software 72, Transcripta Books,
95-99 (1972).

Describes extending BASIC using macros.

¥202 I4dy 01 uo 1senb Aq | L089Y/62/1/82/2101e/|ulwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

15.

16.

17.

18.

19.

20.

21.

MACRO PROCESSORS AND LANGUAGE EXTENSIBILITY

. J. V. Garwick, GPL, a truly general purpose language,
Comm. ACM. 11, 9, 634-638 (1968).
An introduction to GPL.

. E. T. Irons, The extension facilities of IMP, SIGPLAN
Notices 4, 8, 18-19 (1969).
An introduction to IMP.

. J. R. Bell, Transformations: the extension facility PRO-

TEUS. Proceedings of the SIGPLAN Extensible Languages
Symposium (1969).

An introduction to Proteus.

T. A. Standish, Some features of PPL, Proceedings of the
SIGPLAN Extensible Languages Symposium (1969).

An introduction to PPL.

T. A. Standish, Extensibility in programming language
design, Proc. SJCC., AFIPS 44, 287-290 (1975).

C. A. R. Hoare, Hints on Programming Language Design,
Stanford Artificial Intelligence Lab., Memo Aide 224,
CS-403 (1973).

Notes on the good design of programming languages.

P. J. Brown, Macros without tears, Software — Practice and
Experience 6, 9, 433-438 (1979).

Describes the problems of using macro processors.

M. M. Al-Jarrah & 1. S. Torsun, An empirical analysis of
COBOL programs, Software — Practice and Experience 9,
5, 341-359 (1979).

Presents some statistics on COBOL programs.

T. A. Standish, PPL - an extensible language that failed,
SIGPLAN Notices 6, 12, 144-145 (1971).

A discussion on the failure of extensible languages.

T. E. Cheatham, The introduction of definitional facilities
into higher level programming languages, Proc. FJCC,
AFIPS 29, 623-637 (1966).

Discusses the use of macros in high level languages.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

B. M. Leavenworth, Syntax macros and extended transla-
tion, Comm. Acm. 9, 11 (1966).

An introduction to the use of syntax macros.

S. R. Greenwood, MACRO: A programming language,
SIGPLAN Notices 14, 12, 80-91 (1979).

An introduction to MACRO.

J. W. Simpson, The STEP Processor, Computation Re-
search Group, Stanford Linear Accelerator Center, CA,
USA (1977).

An introduction to STEP.

Cobra Systems and Programming, 21 Green Hill Road,
Camberley, Hampshire, England, COBRA User Manual
(1982).

An introduction to Cobra.

ADR, Macro facility reference manual, SM2G-01-00.
Princeton, NJ, USA (1977).

An introduction to Meta-COBOL.

J. M. Triance & J. F.S. Yow, MCOBOL - a prototype
macro facility for COBOL, Comm. ACM. 23, 8, 432439
(1980).

An introduction to MCOBOL, a COBOL macro facility.
BCS. CLEF Journal of Development. UMIST, Manchester,
England (1980).

An introduction to CLEF.

J. M. Triance, The design and evaluation of a language
enhancement facility for COBOL, M.Sc. Thesis, UMIST,
England (1982).

An introduction to CLEF, a COBOL macro facility.

I. A. Macleod, MP/1 - A FORTRAN macroprocessor,
Computer Journal 14, 3 (1971).

An introduction to MP/1.

M. I. Halpern, Towards a general processor for program-
ming languages, Comm. ACM. 11, 1, 15-25 (1968).

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 33

cp) 28

¥202 Iudy 01 uo 1senb Aq | L089Y/62/1/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

