Macro Processors for Enhancing High-Level Languages —

Some Design Principles*

J. M. TRIANCE AND P.J.LAYZELL*%

Department of Computation, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 10D

There is a requirement for users to configure programming languages to meet their own particular needs. This
requirement can be met by a suitable macro processor. In general existing macro processors are unsuitable because they
are not sufficiently supportive towards the popular programming languages.

Alternative design strategies for such a macro processor are examined and a set of design principles is derived.

1. INTRODUCTION

The great emphasis which has been placed on programm-
ing language standardisation has obscured the individual
programming language requirements of users. However
good the standard is it will be unsuitable for all or most
of the users of the language. This point is illustrated by
the COBOL standard, which has received far more
attention thanany other programminglanguage standard.
Despite this there are in existence hundreds of COBOL
dialects supported by different compilers, pre-processors
and installation standards. Their existence is a symptom
of failure of COBOL to meet the individual needs of the
users.

The full extent of this problem and the possible
solutions are discussed elsewhere.'® The main solutions
are source text editing, subroutines, special purpose
pre-processors and macro processors. Of these only
macros offer the power needed to handle all types of
language variation, while at the same time permitting
each enhancement to be implemented independently of
other unrelated enhancements. This independence is vital
if users are to be permitted to choose their own
combination of language enhancements freely.

The use of macros for language enhancement (or
extensibility) is by no means a new concept. 8 11 Most
of the existing schemes have however failed to obtain
widespread acceptance. The reasons for this are that
many users regard the concept as revolutionary, a
significant learning curve is involved in the use of macros
and many existing schemes are low level.

The conceptual barrier is beginning to break down with
the widespread use of pre-processors, including macro
processors such as MetaCOBOL,! Cobra!® and Delta.1’
Solutions to the problems of the learning curve and
low-level macro schemes are sought in this paper.

This paper:

(a) introduces the concept and terminology of macros;

(b) establishes a set of design criteria for language-
enhancement macro schemes;

(c) identifies the major
enhancement;

(d) derives a set of design principles for language-
enhancement macro schemes.

Where examples are used they are drawn from the
language COBOL. This is a good source of examples
because COBOL is a large and varied language which

* Computation Department Report No. 271.
t Correspondence should be addressed to Dr Layzell.

aspects of language

34 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

illustrates most of the problems encountered in other
languages.

2. CONCEPTS AND TERMINOLOGY

This section introduces the concept of macro processing
and the terminology used in this paper. The starting
points for a language-enhancement macro scheme are a
base language: a language which already exists and is
supported (by a compiler or interpreter); and a
requirement to enhance the base language by adding new
syntax, deleting existing syntax or altering the semantics
of existing syntax.

Each enhancement is supported by a macro (or macro
definition) which translates the enhancement into
base-language statements.

For example, Fig. 1 shows a simplified version of the
PERFORM WITH TEST AFTER statement which is
included in the draft COBOL standard.® It could be
supported by a macro which translates it into ANS 74
COBOLZ? (see Fig. 2).

PERFORM procedure-name
WITH TEST AFTER

UNTIL condition
Figure 1. An enhancement

PERFORM FIND-ITEM WITH TEST AFTER

macro call
UNTIL ITEM—NO) ITEM—COUNT

PERFORM FIND-ITEM
PERFORM FIND-ITEM
UNTIL ITEM—NO) ITEM—COUNT

Figure 2. Action of PERFORM WITH TEST AFTER macro

generated text

The input to the macro is a macro call (an instance of
the enhancement). The output is known as generated text.
The language used for the generated text is known as the
target language.

The macro call, in general, contains some static parts
(such as the words PERFORM, WITH TEST AFTER
and UNTIL in the above example) known as delimiters
and variable parts (the procedure name and the

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS FOR ENHANCING HIGH-LEVEL LANGUAGES

] / \]
i\ /1
H macro :
H library H
11
11
1
1
v
enhanced ——p——- macro ! ==<~» base language
language text H processor ! text

Figure 3. Action of the macro processor

condition) which are known as
parameters).

So that the various macro calls can be recognised each
macro must have a description of the syntax it supports.
This description is known as the macro template (or
prototype). Thus in the example above the macro
template would represent the format given in Fig. 1.

The recognition of macro calls is the job of the macro
processor which scans the source text identifying each
macro call and passing it to the appropriate macro. The
macros are stored in a macro library, and by invoking the
macros as required the macro processor translates the
enhanced language text (containing macro calls) into base
language text (see Fig. 3).

arguments (or

3. DESIGN CRITERIA

A set of design criteria for a language enhancement
scheme can be derived from the requirements of its users.
The enhancement of a base language should have no
adverse effect on the language in terms of its consistency,
level of source text validation or portability. In addition
the language used for specifying the enhancements (the
macro writing language) should attain the standards
expected of any modern programming language: it
should be high-level, easy to learn and modular. The
following design criteria can thus be identified.

(1) Consistency of the enhanced language. The enhanced
language should display a consistent style: the macro calls
should blend into the rest of the language. The
applications programmer should ideally be unaware of
the existence of the macro processor.

(2) Full support of enhancements. The enhancements
should be supported to the same level as the rest of the
language. They should also be supported in a consistent
manner to the base language statements. This implies that
the enhancements are fully validated and that any errors
are reported in terms of the source text (i.e. the macro
call) — not the generated text.

(3) Portability of macros. The macro writing language
should be as portable between machines (which support
the macro scheme) as the base language is. Since one of
the major applications of macros is to support portable
dialects of a language it is important that the macro
scheme itself does not hinder portability.

(4) High-level macro writing language. The macro
writing language should allow the various aspects of
macro definition to be expressed in a natural way and at
minimum effort to the macro writer.

(5) Easy-to-learn macro writing language. The macro

writer should not face a major task in learning the macro
writing language.

(6) Modular macro writing language. The macro
writing language should permit enhancements to be
implemented independently of other unrelated
enhancements.

These criteria will be used to establish a set of design
principles for language-enhancement macro processors.

4. ASPECTS OF LANGUAGE
ENHANCEMENT

When designing a macro processor for language
enhancement (subsequently referred to as the macro
processor) the following topics must be considered: the
scope of the macro scheme;; the evolution of the enhanced
language; macro call recognition; specification of the
template; generated text; independence; access to the
symbol table; the macro writing language.

In each of these areas a number of approaches will be
discussed and ‘design principles’ established.

The macro writing language is discussed last because
a choice of language cannot be sensibly made until a list
of requirements has been established. The recommenda-
tion made at that point in the paper is that the base
language (with a few extensions) should be used as the
macro writing language. The reader might find it helpful
to bear this in mind when reading the sections on the other
topics.

5. SCOPE OF THE MACRO SCHEME

The scope of a macro scheme must be defined by
specifying the base languages and the types of enhance-
ment it will support.

This paper argues that the macro processor should be
designed for one base language (or possibly a family of
languages) and that limitations have to be placed on the
type of enhancement supported.

5.1 Language dependent versus language indeperZent

In establishing a strategy for macro processing one of the
following must be chosen:

(a) design a language-independent macro scheme for
use with all programming languages; or

(b) design a language-dependent macro processor for
each programming language (or family of pro-
gramming languages).

Since this paper advocates a general-purpose method

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 35

32

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

J.M.TRIANCE aND P.J.LAYZELL

of language enhancement (the macro) it might appear
that consistency would demand a general-purpose
(language independent) macro processor. However,
generality has to be paid for; there are overheads in
performance and ease of use. The first level of generality
(the macro) is clearly needed because the typical user will
want a variety of language enhancements (e.g. database,
structured programming and screen handling). A user
does not however normally wish to enhance more than
one language —so the second level of generality is a
minority requirement. In more detail the disadvantages
of the language-independent solutions are:

(a) generality normally results in some degradation in
performance — two levels of generality could result
in intolerable degradation;

to provide high-level support for the macro writer
the language —independent macro processor
would have to be separately configured to
understand each base language: for languages with
completely different structures and lexical forms
(e.g. continuation and literal rules) this would be
a significant task.

(b

In the existing world of computing the balance is in
favour of the language-dependent macro processor.

Design Principle 1. The macro facility should be
designed for a single base language.

5.2 Limitations on enhancements

Macros are very powerful mechanisms, and because of
this designers may fall into the trap of placing no explicit
limitation on the enhancements supported by the scheme.
Such a decision would be incompatible with the design
criteria outlined above. Any macro scheme which has the
power implied by this decision would of necessity have
the capabilities, and therefore the complexity of a
compiler.

Design Principle 2. The requirements placed on the
macro processor should be limited.

5.2.1 Specification of style and philosophy of the
enhanced language

For a programming language to be usable, its structure
and the philosophy upon which it is based must be
understood by the programmer. Of course a macro
scheme can support any number of enhanced languages,
but if the scheme is to be easy to use they must all bear
some relationship in structure and philosophy to the base
language. By defining the structure and philosophy which
is common to all enhanced languages the scope of the
scheme, and therefore its complexity, will be limited.
For example, in the case of COBOL the following
aspects could be considered to be invariant, and thus
apply to all enhanced versions of COBOL : data items and
files referenced in the program are all defined in the data
division; each program is made up of divisions, sections,
paragraphs, etc.; the language is free format (within the
constraints of areas A and B); the standard COBOL
conventions apply to the choice of user defined-names.

5.2.2 Specification of permitted enhancements

The design of a macro scheme obviously depends on the
types of enhancement it supports. It is therefore necessary
to make a clear statement of the permitted enhancements.

Most macro schemes would for example support: the
addition of new syntax, the deletion of existing syntax and
new semantics for existing syntax. On the other hand they
might not support new lexical entities and layout-
dependent features.

In the case of COBOL these limitations rule out less
than 109; of the desired enhancements!3:1? but would
significantly reduce the complexity of a macro scheme.

6. EVOLUTION OF THE ENHANCED
LANGUAGE

An enhanced language is supported by producing a set
of macros which will translate the enhancements into the
base language:

enhanced _—
language ———-—»|

base
macro set fo » language

The development of the language will not normally
stop there — further enhancements will be devised and
further macros will be written.

Having produced an enhanced language it would be
foolish to require macro writers to use the ‘inferior’ base
language for the generated text. Why should they be
denied the benefits offered to the applications programm-
ers? Thus the enhanced language (now labelled enhanced
language 1) should become the target language for the
next set of macros.

enhanced
language 2

enhanced
jm———— » language 1

In general each enhanced language becomes the target
language for the next set of macros.

enhanced
language n
|
|
v
T ________ t-____T enhanced
h macro set n | ———==> language n—1 ——»-—T
i
|
————————————— —— < ———————————————————————— ‘_—.—
1
]
| o enhanced
el macro set n—1 1—-» language n—2 —_r——
—— - ———————— . ——)
]
enhanced
-—b» language n—1 ———p———
|
]
|
i
———————— ——————— ‘ ——————————————————————— <———
|
]
: _______________
-—=» macro set | | == base
language

Thus generated text may contain macro calls which are
expar!ded by a lower-level macro set and so on until the
code is converted into the base language.

36 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS FOR ENHANCING HIGH-LEVEL LANGUAGES

Design Principle 3. Each enhanced language should
become the target language for the next set of
macros.

It is the responsibility of the macro processor to
support this principle. It must scan the generated text
from macros in macro set n for macro calls belonging to
sets 1 to n-1. If it matches two such macros the one from
the higher set number is executed. All macro calls take
precedence over base language code.

This principle is not essential to the working of a macro
processor but it is a major step in controlling complexity.
Without it there would be the danger of recursive loops
in which, say, macro A generates a call to macro B which
in turn generates a call to macro A.

This principle rules out the definition of a language
feature in terms of itself. Such features are relatively rare.
However, if the language supported requires recursive
definitions of enhancements then the principle would be
relaxed for those enhancements to permit the generated
text of a macro set n to be written in enhanced language
n.

Recursive definitions of enhancements should not be
confused with nested code. For example, an enhancement
which supports an IF statement which may be nested can
be handled within design principle 3.

7. MACRO CALL RECOGNITION

In existing macro schemes combinations of the following
are used to determine whether or not a piece of source
text constitutes a macro call: the syntax of the piece of
source text; the current context; the existence of a herald;
the level of nesting; the state of the macro (switched
on/off). This section considers each of these criteria for
matching.

7.1 Syntax of the macro call

Four levels of matching macro calls by their syntax can
be identified. They are: matching on trigger word (e.g. ref.
[9]); matching on delimiters (e.g. ref. [4]); matching on
delimiters and class of argument (e.g. refs. [12, 14]);
complete validation of macro call. These strategies will
be illustrated using the COBOL enhancement:

SET condition-name TO TRUE

(1) Matching on trigger word. The criterion for
matching is that the first word of the macro call matches
the macro’s trigger word. All other words are considered
to be arguments whether they are fixed or variable. Thus
the template for the SET statement would be equivalent
to

SET &1 &2 &3

This defines SET to be the trigger word and for each
macro call &1 represents actual argument 1 (the
condition-name). &2 and &3 represent the second and
third actual arguments (which should always be the words
TO and TRUE).

(2) Matching on delimiters. The criterion for matching
is that all the delimiters (fixed parts) in a macro call match
the delimiters in the template. Thus the template for the
SET statement would be equivalent to

SET &1 TO TRUE

In the example SET, TO and TRUE are the delimiters

and in each macro call &1 represents the argument
between SET and TO (i.e. the condition-name).

(3) Matching on delimiters and class of argument. The
criterion for matching is that all the delimiters are
matched and that the class of the arguments is as specified
in the template. Thus the template would be equivalent
to

SET condition-name TO TRUE
The macro call must thus consist of ‘SET’, followed by
a condition-name, followed by ‘TO’, followed by
‘TRUE".

(4) Complete validation of macro call. The criterion for
matching is as in 3 above (all delimiters and classes of
arguments) plus a check that all other ‘syntax’ rules are
obeyed. These other rules are referred to as consistency
rules.

Most rules can be expressed by careful choice of classes
for the arguments and by listing all possible combinations
in the format. One example of a rule which cannot be
readily expressed on this manner occurs with the COBOL
statement

USE AFTER STANDARD EXCEPTION

file-name
PROCEDURE ON ! INPUT

OUTPUT

The rule is that within a program INPUT and
OUTPUT may each occur only once in a statement of this
format.

Design criterion 4 would suggest that the highest-level
strategy for macro matching should be adopted: that is
strategy 4. However, for many languages the consistency
rules are so diverse that any grammar which could
express them all would be complex. This would add
appreciably to the difficulty of learning the macro writing
language (thus offending design criterion 5) for little
return — since in most languages there are few rules which
cannot be accommodated by strategy 3 above.

Design Principle 4. Macro call matching should
involve as much checking as is practical; as a
minimum this should comprise a complete check on
the delimiters and the class of each argument.

Strategies 3 and 4 have the following advantages over
the other strategies: removing the responsibility of macro
call validation from the macro writer; permitting the
separation of logical arguments; permitting a greater
variety of enhancements. Each of these is discussed
below.

(1) Responsibility of macro call validation. For the
following enhancement (a simplified form of COBOL’s
case type statement)

EVALUATE identifier

WHEN literal imperative-statement

[WHEN literal imperative-statement]. ..

END-EVALUATE
the macro processor would not only check for the
presence of the delimiters EVALUATE, WHEN and
END-EVALUATE but would also ensure that the
arguments conformed to the appropriate class (identifier,
literal and imperative-statement).

The complete validation of the macro call is necessary
so that any error message can be expressed in terms of
the original source (design criterion 2) rather than leaving

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 37

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

J.M.TRIANCE AnND P.J.LAYZELL

errors to be detected when the generated text is compiled.
If the macro processor did not perform complete
validation the onus would fall on the macro writer. By
design criterion 4 this is unacceptable: validation of the
macro call, especially the arguments, can be an extremely
tedious job. In fact, in the case when an argument is a
COBOL imperative-statement, it is impractical.

(2) Separation of logical arguments. If the macro
processor is unaware of the syntactic class of the
arguments it would be unable to detect their boundaries.
This task would then fall on the macro writer. In the
enhancement

PERFORM UNTIL condition

imperative-statement

END-PERFORM
finding the end of the condition could prove complex and
error prone, particularly with conditions such as the
following:

(REGION-NO > REGION-COUNT OR SALES
(REGION-NO) = SPACES) AND NOT SPECIAL-
REGION (REGION-NO)

The best solution is for the macro processor to separate
the arguments, thereby enabling the macro writer to refer
to ‘condition’ and ‘imperative-statement’ as distinct
entities.

(3) Increased variety of macro calls. If matching is by
trigger word or delimiters the macro scheme would be
unable to recognize infix macro calls such as:

identifier EQUALS identifier.

7.2 The context of the macro call

The context in which a programming language construct
may appear is normally specified by stating its class. For
example in COBOL the context in which:

SET condition-name TO TRUE
may appear is determined by the fact that it is of the class
imperative-statement.

Since macro calls are to become part of the language
their context should be described in the same way. The
macro processor can then ensure that they appear in the
correct context.

This has the advantage of:

(a) automatic rejection of macro calls appearing in the
wrong context;

(b) the ability of the macro processor to distinguish
between macros with the same syntax but different
contexts (this is relevant for context-sensitive
features);

(c) enabling the macro processor to validate the
classes of all arguments (including those which
themselves contain macro calls).

Design Principle 5. The context in which macro calls
may appear should be specified for each macro. Each
macro call should be matched only in its specified
context.

The implementation of this principle depends on a full
syntax check of the language at macro processing time.
Macros which are matched on the basis of context and
full validation of delimiters and class of arguments are
known as syntax macros. In addition to this type of macro
there is a need for macros which are invoked purely on

the basis of context — these are known as event-driven
macros. An example is a macro of context ‘start of
program’ which does some initialization for another
macro which will be called later in the program.

7.3 Heralds

Many existing macro schemes (e.g. GPM!%) require all
macro calls to be preceded by a symbol known as a herald.

Thus if * was a herald

*SET END-FILE TO TRUE
would be a macro call but

SET END-FILE TO TRUE
would not be.

Heralds are used to avoid ambiguity between macro
calls and in-built constructs and to make macro
recognition more efficient.

With the level of checking performed with syntax
macros no ambiguity can remain (without it also being
ambiguous to the applications programmer). Further-
more, with the macro processor being aware of the
current context of the source program little advantage
in terms of efficiency would be gained by the presence of a
herald.

To be distinguishable by the macro processor the
herald must be inconsistent with the style of the base
language. It thus infringes design criterion 1.

Design Principle 6. Heralds should not be used

7.4 Nested macros

Some macro schemes (e.g. Stage 112°) forbid the nesting
of macro calls.

For most enhanced languages this will be an
unacceptable constraint. For example in the COBOL
statement:

EVALUATE identifier

WHEN literal imperative-statement

[WHEN literal imperative-statement]. . .

END-EVALUATE
imperative-statement may contain further macro calls
including EVALUATE itself.

If nested macro calls were not permitted it would be
necessary to support the enhancement by means of three
separate macros: EVALUATE identifier, WHEN literal
and END-EVALUATE. This would have the
disadvantages:

(a) of being an unnatural way of viewing the
enhancement;

(b) of involving the macro writer in the problems of
matching the corresponding EVALUATEs,
WHENs and END-EVALUATEs (including the
handling of nested EVALUATEs),

(c) of leaving the imperative-statement unvalidated or
partially validated at the source level.

For these reasons nested macros should be supported.

Design Principle 7. Free nesting, including recursive
nesting, of macro calls should be permitted.

38 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS FOR ENHANCING HIGH-LEVEL LANGUAGES

7.5 Switching macros on and off

Most languages contain features which can be switched
on or off by a compile time indicator. Examples are trace
statements or array-bound checks which can be included
or excluded from the object code.

These can conveniently be implemented by a macro (A)
which implements the optional feature and is initially
switched off. Another macro (B) would recognize the
compile time indicator and switch macro A on.

Design Principle 8. It should be possible to switch on
and switch off a macro from within the body of
another macro.

8. SPECIFICATION OF THE TEMPLATE

The template serves two purposes. One is to provide the
macro processor with information about the circumstan-
ces in which the macro is to be executed. The other is to
provide a means of access to the components of the macro
call from within the macro itself. The first purpose was
discussed in the previous section. This section discusses
the second purpose and establishes principles for the
information content of the template and for the method
of specifying the template.

8.1 Access to components of the macro call

Within the macro definition reference is made to
components of the macro call in order to:

(a) transfer part of the call (often an argument) to the
generated text;

(b) discover whether an optional item is present in the
macro call;

(c) discover which of a number of alternatives is
specified in the macro call;

(d) obtain more information about an argument.

These are illustrated by the following examples. In the
case of the macro call format:

PERFORM procedure-name-1

[THROUGH
THRU

WITH TEST AFTER

UNTIL condition
it may be required to transfer the whole of the first line
to be generated text (i.e. PERFORM followed by the first
procedure-name, followed by the THROUGH phrase if
it is specified).
In the case of the macro call format

INITIALIZE identifier-1

[REPL ACING {ALPHANUMERIC}

~— (NUMERIC

DATA BY {1dent1ﬁer—2}]
| literal-1

} procedure-name-Z]

it may be required:

(a) to test for the presence of the REPLACING
phrase;

(b) to discover whether ALPHANUMERIC or
NUMERIC has been specified;

(c) to discover the properties of the data item
referenced by identifier-1.

In general there is a need to reference any component
(elementary or composite) of the macro call. Macro
writers should be free to choose the names for each of the
components which they wish to reference.

Design Principle 9. It should be possible for macro
writers to assign names of their choice to any
component of the macro call.

Most existing methods of specifying templates fall well
short of this requirement. Many allow access to single
delimiters or arguments by reference to their relative
position in the actual macro call. Thus in the above
PERFORM statement argument-1 would be the first
procedure-name. When the format contains options this
could prove to be an inconvenient mode of reference. For
example, in some macro calls argument-2 will reference
the second procedure-name but in others, where the
THROUGH phrase is omitted, it would reference the
condition. This problem is overcome, in the case of
arguments, but not delimiters, by Campbell’ by reference
to the arguments (in the above example) as procedure-
name-1, procedure-name-2 and condition. The language
IMP® goes a step further and allows the programmer to
assign a name to each argument.

A method of fully satisfying the design principle is
discussed below.

8.2 The method of specifying the template

To satisfy the preceding design principles the template
specification must include the names allocated to the
components of the macro call and the full format of the
macro call. The method adopted must thus, for most
languages, permit the specification of options, alternatives,
repeated items and the class of each argument.

The template can be specified in one of the following
ways:

(a) by using a syntactic metalanguage;

(b) by using a syntax diagram;

(c) by using the data structure description facilities of
the macro writing language.

Examples of these are shown in Figs 4, 5 and 6.

Fig. 6 is an informal definition showing how the
statement is repesented as four level 2 data items, some
of which are subdivided further. The REDEFINES
clause is used to represent alternatives. The OPTIONAL
clause has been devised to indicate that an entry may be
optional.

The first two approaches (Figs 4 and 5) are more
readable but they suffer from two disadvantages. They are
unlikely to harmonize with the macro writing language —
neither repesentation is used to repesent structures in
conventional programming languages. The other problem
is that it is difficult with both approaches to allocate
names to components within the structure.

For those languages which do have suitable data-

PERFORM procedure ~name [THROUGH} procedure—name }
THRU

WITH TEST AFTER

UNTIL condition
Figure 4. COBOL syntactic metalanguage

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 39

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

J.M.TRIANCE aND P.J.LAYZELL

—— PERFORM ——— procedure—name THROUGH
EvTHRUj

procedure—name

WITH TEST —» AFTER — UNTIL — condition

Figure 5. A syntax diagram

1 PERFORM-WITH-TEST

2 ‘PERFORM’
2 PROCEDURES-PHRASE
< procedure-

name >
3 THROUGH-PHRASE OPTIONAL

4 SPELLING-1 ‘THROUGH’
4 SPELLING-2REDEFINESSPELLING-]1 ‘THRU’
4

< procedure-

name >
2 WITH-TEST-PHRASE
3 OPTIONAL ‘WITH’
3 “TEST AFTER’
2 UNTIL-PHRASE
3 “UNTIL’

< condition >

Figure 6. Use of COBOL Style Record Structure

structure description facilities the balance is clearly in
favour of using them. In return for some overheads in
verbosity we gain consistency between the representation
of the template and other data structures, and a
convenient method of assigning names to any component
of the macro call.

Design Principle 10. In the specification of the macro
template full use should be made of the macro
writing language’s facilities for describing data
structures.

9. GENERATED TEXT
For each piece of generated text the macro writer must:

(a) specify the text;
(b) specify the destination;
(c) output the test to the specified destination.

This section discusses each of these functions.

9.1 The specification of generated text

A problem with macros is that two sets of source text have
to co-exist in one program: the macro time code and the
generated text. It is thus necessary to clearly distinguish
between the two in order to avoid confusion for anyone
reading the macro definition. The problem is made more
acute if the same language is used for the two sets of
source text.

Design Principle 11. The generated text should be
clearly delimited and the macro writing language
should permit it to be isolated from the rest of the
macro definition.

Many languages permit the manipulation of source
text. COBOL for example embeds it in double equals
signs:

== 1 COUNTER PIC 99. ==

40 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

It is less common for languages to provide the means
for isolating generated text. In COBOL this could easily
be achieved by means of a new Data Division Section (say
the Generated Text Section) for the definition of
generated text.

9.2 The specification of the destination

Many macro processors position all the generated text in
place of the macro call. In regimented languages such as
COBOL there is a need to distribute the generated text.
For example, a procedure division macro call will often
generate a definition of a data item which must be placed
in the data division.

Having introduced the concept of multiple destinations
for generated text it is useful to add a special destination
‘diagnostic file’ for errors in the macro call detected by
the macro definition.

Some of the destinations needed by COBOL would be
current position, diagnostic file, file section, working-
storage section and end of procedure division.

9.3 Outputting generated text

In most macro schemes the generated text is interspersed
with the procedural code and is output as it is
encountered during the execution of the macro. This is
a hangover from the days of simple macros in which the
macro body consisted solely of generated text.

This approach has the disadvantages of: preventing
the isolation of generated text (see design principle 11)
and of being inconsistent with the normal methods
of outputting data from a program.

In COBOL a specially devised statement to output the
generated text would be appropriate. In other macro
writing languages it might be more appropriate to write
it to a file or to pass it to the macro processor as a
parameter (i.e. regarding the macro as a subroutine of the
macro processor).

10. INDEPENDENCE

A simple enhancement will be implemented as one macro.
In more involved cases what is seen by the language
designer as a single enhancement can involve more than
one macro to implement it. For example, a new data type
could be supported by two macros; one macro recognizes
the definition of data items of the new data type and the
second macro recognizes all references to data items of
the new type. A group of macros which supports a single
facility will be referred to as a macro group.

This section investigates the problems of ensuring that
each macro group can be written independently of any
other macro group and that communication between
macros within a group is possible. These questions of
independence and communication affect the macro

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS FOR ENHANCING HIGH-LEVEL LANGUAGES

definition itself and the generated text. Each is discussed
in turn.

10.1 Independence of macro definitions

Within macro definitions independence is required at two
levels: the macro group level (data items used to
communicate between macros in the same group should
not be accessible from any other group); and the level of
the individual macro (data items and procedures defined
within a macro for use in that macro should not be
accessible by any other macro).

Thus there is a need for data items which are local to
a macro and others which are local to the macro group.
There is also a need for data items which are global to
all macro groups. The same arguments apply to
procedures.

Design Principle 12. The macro writing language
should support data items and procedures of the
following scopes: global to all macros; local to a
single macro group; local to a single macro.

The normal method of restricting scope is by means of
procedures or subprograms. In COBOL each macro
could be a separate subprogram. This supports, by
default, local items. Since in COBOL there is currently
no direct means of grouping subprograms with shared
data the macro writing language would have to be
extended to permit ‘external data’ of scope ‘macro
group’ and ‘global’.

10.2 Independence of generated text

Within generated text independence is required at three
levels:

(@) the macro group (e.g. to generate, in one macro,
a data item which is to be referenced by the
generated text from another macro in the same
group);

(b) the individual macro (e.g. to generate, in one call
of a macro, a data item which is to be referenced
by the generated text of another call of the same
macro);

(¢) each call of an individual macro (e.g. to generate
a data item which cannot be referenced by the
generated text resulting from any other macro call).

The macro writer can achieve the desired effect by
generating names for the local items according to
pre-defined conventions. Some macro processors (e.g.
ML/1* and Cobral®) provide registers to assist the
programmer in this task.

The high-level solution is for the macro scheme to
support the desired scopes in addition to generated data
items which are global to the whole program. The same
argument applies to generated procedures.

Design Principle 13. The macro scheme should
support generated data items and procedures of the
following scopes: global to program; local to a single
macro group; local to a single macro; local to a single
macro call.

Those languages which support nested procedures (of
the Pascal type) provide a convenient method of

supporting data items and procedures which are local to
a single call of a macro. They are not, however, so well
suited for the other two levels of local items because the
communication between macro calls cuts across the
structure of the program in which they appear.

10.3 Relationship of macro group to macro set

This section has identified the macro group which
supports a single enhancement. In section 6 the concept
of a macro set was introduced. It is a set of macros which
are added to the language as a single step, all using the
same target language. The relationship of sets and groups
is now considered.

The most powerful arrangement is for sets to be
independent of groups, in other words to allow a group
to straddle more than one level of the enhanced
language. This is only of use when it is desired to code
an enhancement at level n of the language and at some
later stage enhance the enhancement at level n+m. This
arrangement has the disadvantage of being somewhat
complex. It also is anomalous to have communication by
shared data items between two levels of the enhanced
language when no such communication is possible with
level 0 (the base language).

A far simpler arrangement is for each group to be
entirely contained in one set. If this is adopted it is logical
in fact for each set to consist of precisely one group. This
allows the concepts of sets and groups to be merged
without any additional loss of functionality.

11. ACCESS TO THE SYMBOL TABLE

Compilers use the symbol table to validate statements and

to determine what object code should be generated. For

example to implement the COBOL statement
INITIALIZE SALES-TOTALS

the compiler would:

(a) check that SALES-TOTALS is in the symbol table
(i.e. it has been defined);

(b) locate all subordinate numeric data items and
generate code to move zeros to them;

(c) locate all other subordinate data items and
generate code to move spaces to them.

Just as the compiler needs the information in the
symbol table to determine what action to take so also will
macros need this information for some enhancements
(such as a macro to implement INITIALIZE).

In general macros will need all the information about
all the items defined in a program. In COBOL the items
willinclude data items, files, paragraphs and sections. The
information includes all attributes (e.g. for files the
organization, the access methods, etc.) and all the
relationships (e.g. which data items are subordinate to
each data item and file).

In theory this information could be accumulated by
macros. However, this would be a major task. It would
be highly preferable for the macro processor to provide
the information for use by the macro definitions.

Design Principle 14. A comprehensive symbol table
should be made available to the macro definitions.

This principle can be fulfilled with minimum duplica-
tion of effort when the macro processor is embedded in a
compiler.

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 41

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

J.M. TRIANCE AND P.J.LAYZELL

Since the symbol table contains a set of items with their
attributes and relationships it can conveniently be viewed
as a data base. The form of access within the macro
definition will however depend on the nature of the macro
writing language.

12. THE MACRO WRITING LANGUAGE

The macro writing language is required to be as portable
as the base language and easy to learn (design criteria 3
and 5). These criteria would both be satisfied if the base
language was used as the macro writing language. The
first one (portability) is satisfied automatically except in
the rare cases where the base language is not available on
the machine on which the macro processor is run. The
second one (ease of learning) is satisfied because the
macro writer will need to know the base language (or at
least the current enhanced language) in order to specify
the generated text.

The macro writing language must also support the
functions of macro writing: the specification of the
template and generated text, the procedural code needed
to determine the generated text for each macro call, and
the interface to the symbol table. Most high-level
languages provide facilities which could be used for these
functions:

(a) record structures with facilities for repetitions,
alternatives and options, for use in the template;

(b) text-defining facilities; for use with generated text;

(c) procedural statements; for examining data (the
macro call) and outputting data (the generated
text) accordingly;

(d) database, file or array accessing facilities: to
interrogate the symbol table.

Processing a macro call has very much in common with
processing any other data. As a result most existing
high-level languages (with a few extensions to support the
macro functions in a natural way) are well suited to macro
writing. In addition to portability and ease of learning the
choice of the base language as macro writing language
offers the further benefit of being able to use the macro
scheme to enhance the macro writing language.

Design Principle 15. The base language (with a few
extensions) should be used as the macro writing
language.

The way in which the base language will be used and
modified for macro writing will vary from language to
language.

In the case of COBOL, existing language features could
be used as follows:

(a) a COBOL sub-program for each macro definition;

(b) a COBOL record for the template;

(c) a data base for the symbol table;

(d) the MOVE statement to transfer components of
the macro call.

Extensions to COBOL could be made to

(a) define the context of a macro;

(b) define the class of arguments in the template;

(c) support the scope rules;

(d) test for the presence of optional components of the
macro call.

42 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

13. THE PROGRAMMER’S VIEW

The preceding sections have discussed the design of the
macro facility. This section summarises its envisaged use
from the viewpoint of the applications programmer and
the macro writer.

Applications programmers should be unaware of
which language features are supported directly by the
compiler and which ones by macros. The should see only
the original listing (no generated text) and receive one
diagnostic listing in which reference is made only to the
original source (not the generated text).

This implies that the macro calls are fully validated.
The macro writer thus has the responsibility of ensuring
that this happens. This is not however an onerous duty
since, if the syntax is described in full in the template, the
macro processor will do all the checking automatically.
The macro writer would thus, for example, specify:

ADD {numerfc-lfientlﬁer

~ . | numeric-literal

rather than the normal COBOL
identifier

ADD { .
literal

Any consistency checks which cannot be specified in
the template must be supported by procedural code in the
macro and all errors reported in the diagnostic file.

The invisibility of macros to the applications program-
mers demands that the macros are as reliable as the
compiler. They have no way of discovering bugs in
macros and it is not their job to do so.

Macro writers will be able to work at a high level.
Having described an argument or any component of the
macro call they will be able to assume that it satisfies all
the syntax rules and can simply transfer it to the
generated text as required. If an argument is a lexical item,
the symbol table can be used to discover its attributes (the
organization of a file, the size of a data item, etc.). If it
is a syntactic entity there should be no need to dissect it
(indeed it would be reasonable for the macro scheme to
prevent the programmer from so doing). Everything that
needs to be known about an argument should be
discoverable by enquiring about its class (e.g. in the case
of a COBOL condition, whether it is a relational
condition or a sign condition). Thus an argument of any
complexity is always handled as a single item.

} TO numeric-identifier

} TO identifier

14. CONCLUSIONS

The following set of principles for designing macro
schemes for use in language enhancement of high-level
programming languages has been established.

(1) The macro facility should be designed for a single
base language.

(2) The requirements placed on the macro processor
should be limited.

(3) Each enhanced language should become the target
language for the next set of macros.

(4) Macro call matching should involve as much
checking as is practical; as a minimum this should
comprise a complete check on the delimiters and
the class of each argument.

(5) The context in which macro calls may appear
should be specified for each macro. Each macro
call should be matched only in its specified context.

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

MACRO PROCESSORS FOR ENHANCING HIGH-LEVEL LANGUAGES

(6) Heralds should not be used.

(7) Free nesting, including recursive nesting, of macro
calls should be permitted.

(8) It should be possible to switch on and switch off
a macro from within the body of another macro.

(9) It should be possible for macro writers to assign

names of their choice to any component of the

macro call.

In the specification of the macro template full use

should be made of the macro writing language’s

facilities for describing data structures.

The generated text should be clearly delimited and

the macro writing language should permit it to be

isolated from the rest of the macro definition.

The macro writing language should support data

items and procedures of the following scopes:

(a) global to all macros;

(b) local to a single macro group;

(¢) local to a single macro.

The macro scheme sould support generated data

items and procedures of the following scopes:

(a) global to program;

(b) local to a single macro group;

(c) local to a single macro;

(d) local to a single macro call.

A comprehensive symbol table should be made

available to the macro definitions.

The base language (with a few extensions) should

be used as the macro writing language.

(10)

)

(12)

(13)

(14)
15

These principles can be regarded as guidelines (not
absolute rules) for any language enhancement scheme.
They aim to provide the applications programmer with
fully supported enhancements which blend into the base
language without degrading portability. They also assist
in providing the macro writer with a high-level,
easy-to-learn macro writing language which permits each
enhancement to be implemented independently.

The CLEF macro processor'? has been designed, for
the enhancement of COBOL, in accordance with these
principles. A discussion of its design appears elsewhere.!8

Acknowledgements

The CLEF macro scheme and its forerunner MCOBOL
were designed by the British Computer Society’s COBOL
Language Enhancement Facility Working Party. Most of
the design principles were established or reinforced at
meetings of the working party involving Tony Sale, John
Sawbridge, Ken Meyer, Peter Eagling, Ferenc Schustek,
Jim Hamilton, Terry Clayton, Brian Reynolds, Colin
West, Alan Heywood-Jones, Alan Fryer and the authors.

The authors would like to thank Bob Brooks, Alan
Fryer, Jim Hamilton, Alan Heywood-Jones, Ken Meyer,
Ferenc Schustek and Francis Warner for their invaluable
comments on the first draft of the paper.

This paper was made possible by a grant from the U.K.
Science and Engineering Research Council.

REFERENCES

1. ADR, MetaCOBOL Concepts and Facilities. Applied Data
Res. Princeton, N.J. (1976). [Introduces main features of the
MetaCOBOL macropocessor.]

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

ANSI, American National Standard Programming Language
COBOL X3.23-1974. Amer. Nat. Standards Inst., N.Y.
(1974). [Official specification of ANS 74 COBOL.]

. ANSI, Draft Proposed Revised X3.23. American National

Standard Programming Language COBOL, ANSI (1981).
[The proposed standard to replace ANS 74 COBOL.]

. P. J. Brown, The ML/I Macroprocessor. Comm. ACM 19,

10 (October 1967), 618-623. [Discusses main features of
ML/I macroprocessor.]

. P.J. Brown, Macroprocessors and Techniques for Portable

Software. Wiley, New York (1974). [Good introduction to
concepts of macros.]

. P. J. Brown, Macros without tears. Software Practice and

Experience 9, 6 (June 1979), 433-438. [Makes the case
for using existing programming languages for defining
macros.]

. W. R. Campbell, A compiler definition facility based on the

syntactic macro. Computer Journal 21, 1 (February
1978), 35-41. [An example of a syntax macro scheme.]

. C. Christensen & J. S. Shaw, Proceedings of the Extensible

Languages Symposium SIGPLAN, Notices 4, 8 (August
1969). [Describes seven extensible languages and PL/I
macro facility. Also includes introduction to the concept of
extensible languages, the motivation behind them, and
some alternative approaches.]

. M. 1. Halpen, XPOP: A meta-language without metaphys-

ics. Proc. FJCC. AFIPS 26, 57-68 (1964).

Plessey, Cobra Programming Manual, Company Software
and Systems Programming Department, The Plessey
Company plc (1982). [A description of the Cobra macro
processor.]

P. J. Layzell, The History of Macro Processors in Program-
ming Language Extensibility. Computation Department
Report No. 277, UMIST (October 1982).

P.J. Layzell, CLEF Journal of Development. Computation
Department Report No. 258 UMIST, (August 1981). [The
specification of CLEF macro writing language.]

P.J. Layzell & P. Van Der Linden. Implementing the
Proposed 1981 COBOL Standard by a COBOL Language
Enhancement Feature. Computation Department Report
No. 249, UMIST (April 1980). [Analyses capability of
macro schemes to support new features in next COBOL
standard.]

B. M. Leavenworth, Syntax Macros and Extended Trans-
lations. Comm. ACM 9, 11, 790-793 (November 1966).
[Introduces the concept of syntax macros.]

Delta Software Tools Ltd, Delta MA213 Product Descrip-
tion. [Includes a description of the Delta macro processor.]
C. Strachey, A general purpose macro-generator. Computer
Journal 8, 3, 225-241, (1965). [Describes GPM and
introduces ideas used in many subsequent macro pro-
Cessors.)

J. M. Triance, The Design and Evaluation of a Language
Enhancement Facility for COBOL. M.Sc. Thesis UMIST
(October 1981).

J. M. Triance & P. J. Layzell, CLEF — a COBOL Language
Enhancement Facility, Computation Department Report
No. 273, UMIST (December 1982). [Describes and justifies
the design of CLEF.]

J. M. Triance & P. J. Layzell, Choose Your Own COBOL.
Proceedings of BCS 81 Information Technology for the
80’s Conference (July 1981), pp. 16-33, Heyden. [Makes the
case for allowing users to choose their own dialect of
COBOL and investigates the ways of achieving it.]

W. M. Waite, The Mobile Programming System: Stage 2.
Comm. ACM 13, 7, 415-421. (July 1970). [Introduces
STAGE 2 macro processor.]

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 43

¥20¢ I4dy 60 U0 1sonb Aq 920891/¥€/1/82/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

