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In a typeless language such as BCPL, data structures may easily be defined by means of an indirection operator. This
useful way of defining data structures is here extended so as to apply to a type-rich language.

Each structure is defined by its structure graph, which is built at compile-time according to certain rules that are
explained. A structure built in this way is called a hybrid data structure. Examples are given to show how these structures

may be used in programming.

1. INTRODUCTION

In this paper I shall describe what is meant by a hybrid
data structure and examine how such structures can be
used for programming. The syntax used here is not the
most compact that could be developed, but is corre-
spondingly easier to define and more self-explanatory. It
is an example of what might be done, not a prescription
of what should be.

In a similar non-prescriptive spirit, I shall describe a
simple implementation on a conceptual bit-addressable
machine, while ignoring modifications that would
improve efficiency or that would be needed to deal with
alignment problems on a word-addressed machine.

To illustrate the nature of hybrid data structures,
consider a data structure with two types of component:
a series of vector components all of the same type, and a
series of list components of diverse types. Such a structure
may be used for example to represent a string (Fig. 1).

int Ichar lchar ‘ ; ,

Figure 1. A string that knows its length.

Here the vector components represent the characters of
the string and are held in consecutive 1-byte cells. There
is here just one list component, an integer representing the
length of the string, held in (say) a 2-byte cell.

The components of such a structure S will be accessed
by the following notation. Each vector component will be
denoted by an expression S:n, where n is an integer. Each
list component will be denoted by an expression S.id,
where id is an identifier that has been associated with this
component. Now S itself will denote a cell containing a
memory address; and the colon in S:n and the period in
S.id are indirection operators, to be evaluated by the
following algorithm:

examine structure graph of S to determine offset

associated with n or with id;

add offset to value held in S;

result is address of component.

The structure S, accessed by indirection operators in
this way, is now a simple kind of hybrid data structure.
The way that a hybrid data structure is defined by a
directed graph, its structure graph, is detailed in sections
2 and 3 of this paper. Section 2 deals with a particular
kind of structure whose structure graph is always a tree;
section 3 deals with the general case.
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In so far as data structures are defined by indirection,
the method of data structuring described here is a
generalization of that found in the language BCPL (see
Ref. 1). In BCPL, an untyped language, there is no need
to examine structure graphs to evaluate the indirection
operator, since all objects appear to the compiler to have
the same structure. By using structure graphs we shall
instead be able to define indirection operators appro-
priate to a type-rich language.

The construction described here is one that allows all
type-checking to be done at compile-time, as is discussed
in section 4. The way that hybrid data structures are
passed as arguments to procedures is discussed in section
5: this leads to a consideration of procedural classes and
data abstraction.

2. SCALARS AND TREE STRUCTURES

The core of our conceptual machine is a sequence of
addressable locations each containing one bit. Data
storage in this bit-addressable memory is in cells, where
a cell contains a certain number of consecutive bits. The
type of a scalar object says what size of cell it uses (e.g.
32 or 16 bits) and how the bit-pattern in such a cell is to
be interpreted by the programming language (e.g. as a real
number or as an integer). I shall assume that a sufficient
set of elementary scalar types has already been defined;
for simplicity I shall assume these types are int(eger), real,
char(acter), and bool(ean), each with their defined
representation conventions and cell sizes (measured in
bits) intsize, realsize, charsize, and boolsize.

Now to implement indirection we need a type whose
value (after its bit-pattern has been interpreted) is a
memory address. This type will be called loc, with size
locsize. For reasons that will become clear, loc is an
internally used type, not encountered by the programmer.
Instead he will encounter two types link and ref which are
held in cells of size locsize. The use of type ref is
postponed to the following section, therefore we shall
work now with the scalar types int, real, char and bool,
and the non-scalar type link.

The following syntax is used to declare scalar variables:

identifier is type
where type is int, real, char or bool. Following such a
declaration the compiler arranges for one cell of the
appropriate typesize to be allocated to store the variable.
Assignments to the variable will then change the contents
of this cell.

The declaration for one-level tree structure is in two

¥20¢ I4dy 60 U0 1senb Ag 80891 /¥¥/1/82/2101e/|ufwoo/wod dnoolwspede//:sdiy Wolj papeojumoq



HYBRID DATA STRUCTURES DEFINED BY INDIRECTION

stages. First we declare the identifier to be of type link.
Next we declare what it points to, by a declaration taking
the form:

identifier pointsto (componentlist)
where componentlist contains zero or one items of the
form vec i thru j type (in which i, are integer constants
representing the subscript bounds), followed by zero or
more items of the form identifier is type. Fig. 2a shows
such a declaration for the tree structure STRING to hold
a variable-length string up to 80 characters long. The
syntactic effect of this declaration is that we can
subsequently use STRING: : » for suitable # to denote the
nth character of the string, and STRING.LENGTH to
denote an integer that will (presumably) be used by the
programmer to hold the string length.

To implement this declaration for STRING the
compiler will build the structure graph shown in Fig. 2b
and will organise the allocation of loc, int, and char cells,
and initialization of the loc cell, to give the run-time
structure of Fig. 2c.

(a) Declaration

STRING is link
STRING pointsto (vec 1 thru 80 char, LENGTH is int)

(b) Structure graph

ik | 9|

STRING

IL_ENGTH int lvec 1 80 char]
(c) Run-time storage

STRING

L+ ]

.LENGTH y:1 :2 : 80
Iint |charlchar] 7 ’

Figure 2. The hybrid data structure: STRING.

The declaration of multi-level structures follows a
similar principle. For each non-scalar component one
specifies first that it is a link and next what it points to.
Fig. 3 illustrates this for a structure called BUFFER and
Fig. 4 for a rectangular real array MATRIX. Since all the
components MATRIX:1, ..., MATRIX:100 point to a
similar structure, the keyword amy is used in the
declaration to denote an arbitrary integer within the
required range.

At run-time the loc cells MATRIX:I,...,
MATRIX: 100 will in effect form an Iliffe vector (see
Ref. 2, p. 141) through which the scalar components
MATRIX:i:j are accessed. In the absence of bracketing,

the BCPL convention is used of evaluating the leftmost
indirection first: thus MATRIX:i:j is interpreted
as (MATRIX:i):j and BUFFER.FILENAME:3 as
(BUFFER.FILENAME): 3.

Now to declarations for variables one should attach
(explicitly or implicitly) a specification of the scope and
lifetime of the variable. The details will depend on other
features of the language. We can ignore this matter since
it does not affect the shape of the structure graph.

Structure graphs will be shown here as being built from
an abbreviated version of the character-strings used in the
declaration. With each link node is associated a pointer
to the appropriate list of structural components. The
items of this list appear in the reverse order to their
occurrence in the declaration. The link pointer points to
the leftmost (last-declared) item. In the absence of a
vector component the keyword vecnull marks the end of
the list.

The following terminology is used. A node is a run-time
or compile-time object denoted by an expression
legitimately formed from a variable by indirection
operators. Formally the set of run-time nodes is the
smallest set such that:

(1) If X is the declared identifier for a variable then X
is a node.

(ii) If X is a node of type loc that points to one or more
vector components, then X:1 is a node whenever I
is an expression of type int whose value is in the
declared subscript range.

(iii) If X is a node of type loc that points to one or more
list components, then X.id is a node whenever id is
the declared identifier for such a component.

Here type loc includes types link and ref.

For example BUFFER, BUFFER.FILENAME,
BUFFER.FILENAME:1 and BUFFER.FILENAME:
(I+17J)are run-time nodes — assuming I + J evaluates to an
integer between 1 and 32 — whereas 1+J is not a node.
These run-time nodes map on to the compile-time nodes
BUFFER, BUFFER.FILENAME, and BUFFER.
FILENAME :any of the structure graph.

Any run-time node is also a cell, but a cell need not be
a node - for example intermediate results from the
evaluation of an expression may be held in appropriately
sized cells but these cells cannot be accessed by the
programmer using indirection expressions.

A compile-time node of loc type is said to be resolved
if its associated pointer points to another compile-time
node that has already been built. After the declarations
above the broken line in Fig. 3a have been processed by
the compiler, that part of the structure graph above the
broken line in Fig. 35 is present. The compiler will detect
that the declaration is so far incomplete by the presence
of unresolved link nodes. One requires that when a new
link or ref node in the structure graph is built, its pointer
is initialized to a recognizable ‘nil’ value that does not
point to anything.

The details of evaluating indirections are as follows.
Let X be a run-time loc node. The value held in the loc
cell denoted by X will be the address of the first bit of
the first vector component that X points to. Given the
declaration:

X pointsto (vec i thru j typev,

idl is typel, ...,idr is typer)
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(a) Declaration

BUFFER is link

BUFFER pointsto (vec 0 thru 1023 char, LENGTH is int,

FILENAME is link, STATUS is link)

BUFFER . FILENAME pointsto (vec 1 thru 32 char, LENGTH is int)

BUFFER . STATUS pointsto (EOF is bool, ERR is bool)

(b) Structure graph

BUFFER link

4

STATUS link L4 FILENAME link * LENGTH int vee O 1023  char

4

ERR bool EOF bool vecnull LENGTH int vec 1 32 char

(c) Run-time storage
BUFFER
[loc e |
. STATUS . FILENAME . LENGTH y 0 1 2 11023 »
L loc [ 4 l loc 4 l int char ] ] ] 2 g I
. ERR . EOF l . LENGTH 1 :32
SN T R
Figure 3. The structure BUFFER.

then X:n has address (X+offsetv) where offsetrv =
(n—i)*typevsize; and X.idk has address (X+ offsetk)
where offsetk = — (typelsize+ typelsize+ ... + typeksize).
The offset associated with a list component is negative
and the list components are stored at run-time in the
reverse sequence to that occurring in the declaration.
When a tree structure is created, it is intended that the
structure remain in force throughout the lifetime of the
variable. Therefore the only cells of a tree structure that
may be altered after allocation are the scalar components
of the structure, corresponding to the leaf nodes of the
structure graph. Consequently we shall insist that the
left-hand side of an assignment statement must be a node
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of scalar type. (A less rigid rule could be introduced, but
is not discussed here, in which assignment to a tree
structure is interpreted as multiple assignment to its leaf
nodes.)

Once the link nodes for a structure have been resolved,
the compiler can proceed to arrange allocation for the
whole structure, including code to initialize the contents
of link cells. Each run-time link cell will point to the first
vector location in a block of consecutive storage
containing list and vector components. The constraints
on consecutivity of storage are precisely those that arise
from the method just given for evaluating indirections.

A tree structure, namely any structure that may be built
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(a) Declaration

MATRIX is link

MATRIX pointsto (vec 1 thru 100 link)

MATRIX : any pointsto (vec O thru 4 real)

(b) Structure graph

MATRIX link

Y

vec 1 100 link

vec 0 4 real

(c) Run-time storage

MATRIX

loc g I
1

¥y MATRIX :1

MATRIX : 2

MATRIX : 100

loc ’ loc

: 5

]

) MATRIX :1:0

[res | :

, MATRIX:2:0

[ | 3

MATRIX:1:4

§ e ]

MATRIX:2:4

P e ]

y MATRIX:100:0

:

MATRIX:100:4

t |

Figure 4. The structure MATRIX.

as described in this section using link and pointsto
declarations, is seen to have the following properties:
(1) the structure graph is necessarily a tree;
(2) the values held in loc cells of the structure cannot
be changed after allocation;
(3) space for an instance of the structure is allocated
as a result of its declaration.
The next section explains how structures may be built that
do not have these properties.

3. REFERENTIAL STRUCTURES

To declare a referential structure we shall use ref in place
of link in its declaration. A node of type ref is regarded
as a scalar, and its value may be altered by assignment.
In other respects its function is similar to that of a link
node. The resulting mechanism has clear similarities to
the indirection mechanisms in BCPL, of which it is
essentially a generalization; but differs markedly from the
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way that ref is used in Algol-like languages. In particular,
coercions (referencing and dereferencing) do not occur.
(See Ref. 3, p. 36).

Fig. Sa shows the declaration for a referenced string
R. The syntactic effect of this declaration is as follows.
Suppose STRING is an actual string for which space has
been allocated as in Fig. 2. Then the assignment
R = STRING causes R to point to the same space, by
altering the value held in the loc cell R. Following this,

(a) Declaration

R is ref
R pointsto (vec 1 thru 80 char, LENGTH is int)

(b) Structure graph

[ ]

l LENGTH int veec 1 80 char

(¢) Run-time storage

R

[

Figure 5. A referenced string.

(a) Declaration

STRING is link

STRING pointsto (vec 1thru 80 char, LENGTH is int)
R is ref

R pointslike STRING

(b) Structure graph

ETRING Iinkl PJ R ref | ¢

IENGTH int lvec 1 80 char:l

(c) Run-time storage

STRING R
-
|
|
it Johar] ¢ [ohar] |
|
| |
| |
L - |

The dashed arrow shows
the effect of the
assignment R = STRING

Figure 6. Alternative declaration for referenced string.
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assignments such as R:12=°2" or
R.LENGTH = R.LENGTH+1 will cause the corre-
sponding components of STRING to be altered. This
follows automatically because the structure graph of R,
from which the offsets are computed, is identical to that
of STRING. The space allocated for the structure R is
just the loc cell needed for the ref node itself.

Since a variable that references an object is useless
unless an actual object of that type exists, it will often be
convenient to declare the latter first and to use the
abbreviation pointslike as shown in Fig. 6.

The way that reference declarations are compiled is as
follows. The compiler sets up a structure graph just as it
would for a tree structure. A pointsto declaration causes
the next level of the graph to be built, as before, whereas
a pointslike declaration shortcircuits this process by
making the ref node point to a part of the same.or
different structure that has already been built. —

Now any structure that can be completely declared
using link, ref, pointsto, and pointslike in the manner
described in this section is a hybrid data structure. The
declaration of a hybrid data structure is complete once
all link and ref nodes in the structure graph have been
resolved.

Let X be a hybrid data structure, or more generally any
compile-time node. The reduced structure tree of X is the
tree with X as root obtained by resolving all link nodes
but not resolving any ref nodes. Each leaf of the reduced
structure tree is of a scalar type. A tree structure is one
containing no ref node, and in this case the reduced
structure tree and the structure graph coincide. The space
allocated for a hybrid data structure is only that needed
by the run-time nodes that are represented in its reduced
structure tree.

A ref node may occur at any level of a hybrid data
structure as a list or vector component.

The declaration X pointsto (componentlist) is equally
valid whether X is a ref node or a link node.

The declaration X pointslike Y is legal provided that:

Either Case 1

X is a node of type ref;

Y is a node of type ref or link;

Node Y has been resolved.

(Nodes below Y do not need to have been resolved;
node Y itself must have been resolved since X is to
be made to point to whatever Y points to. Later
additions to Y’s structure graph will apply to X
automatically, and vice versa.)

Or Case 2

X is a node of type link;

Y is a node of type link;

Y and all link nodes below it have been resolved, i.e.
Y’s reduced structure tree has been built.

(The purpose of including Case 2 is merely to allow
the convenient and efficient abbreviation. The
restriction on Y ensures that any structure built using
link and pointslike is equivalent to a tree that could
instead have been built using pointsto.)

If X is a node of type ref and Y a node of type either
ref or link, then the assignment X =Y is legal.

A hybrid data structure can be self-referential. Fig. 7
illustrates the use of ref to create a self-referential
structure graph for a data chain with forward and
backward pointers. The use of this structure is
exemplified in Fig. 8, a program that unlinks element X
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(a) Declaration

CHAIN is link

CHAIN pointsto (vec 1 thru 1000 link)

CHAIN : any pointsto (vec 1 thru 128 char, F is ref, B is ref)
CHAIN : any . F pointslike CHAIN : any

CHAIN : any . B pointslike CHAIN : any

(b) Structure graph

CHAIN link ’
vec 1 1000 link *
B ref ’ F ref 4 vec 1 128 char
(c) Run-time storage
CHAIN

[Ioc ® j
lCHAIN:1 CHAIN: 2

loc ® lloc

CHAIN: 1.F

CHAIN:1.B )

R N S I N

CHAIN : 2.F : [

: 1000

The dashed arrows illustrate
the effects of assignments
within the program

Figure 7. A data chain with forward and backward pointers.
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X is ref
Y is ref
X pointslike CHAIN : any
Y pointslike CHAIN : any
Lis int; J is int

{comments will be shown in curly brackets}
X = CHAIN:I; Y = CHAIN:J

{Now we shall unlink X from chain and reinsert it before Y}
X.B.F =X.F; X.F.B=X.B

{...close gap that will be left by X}
XB=Y.B;YBF=X

{...link X to precedessor of Y}
YF=Y;YB=X

{...link X to Y}

Figure 8. Using a self-referential structure

from the chain and reinserts it before Y. A similar BCPL
program is given in Ref. 4. More subversive uses of ref
are discussed in the next section.

The absence of coercion implies that if X is a variable
of scalar type (as distinct from a node of scalar type within
a structure) then there is no way to create a reference to
X or to alias X legitimately by another node. The proof
of this is simply that no loc node has been allocated to
hold X’s address. If the programmer wishes to mani-
pulate references to a single scalar value, he must
hold this value from the outset not in a scalar but in a
structure —say a vector of length 1. This is no hard-
ship; the restriction here (as compared with Algol-like
languages) is a syntactic rather than a practical
limitation.

4. COMPILER-TYPING

The language developed here is a compiler-typed
language, or a language with the compiler-typing
property, defined as follows:

The type of any legal expression can be determined at

compile-time.

For example, after the CHAIN declarations of Fig. 7
the compiler is able to deduce, by tracing through the
indirections on the structure graph, that the expression
CHAIN:4.F.B.B.F.B:3 is of type char. What makes this
always possible is the condition given for the completeness
of a declaration, namely that all link and ref nodes of the
structure graph have been resolved.

Since the compiler can determine types at compile-time
we are at liberty to insist that it must do so. A compiler
satisfying this requirement will be called a strong
compiler. Such a compiler will determine the offsets and
cell sizes needed to evaluate indirections, and will
determine which type-dependent code to load for
arithmetic operations — in short, the structure graphs are
not needed at run-time and can be discarded once
compilation is complete.

If a strong compiler is not used, then the structure
graphs have to be preserved at run-time and inspected
each time it is necessary to determine the type of an
expression. This is likely to cause a severe drop in run-
time efficiency. (Nevertheless one may sometimes have
good reason to prefer such an implementation, for
example to do interactive debugging.)

The property of being compiler-typed is so valuable
that I shall wish to preserve it when making an extension
to the language. The discipline that this imposes on
procedure declarations is the subject of the next section.

Two caveats are in order. Firstly, suppose that E
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pointsto (vec 1 thru 50 real) and that I is a variable of type
int. On encountering the expression E:I the compiler
deduces: if this expression is legal then it is of type real.
The legality of the expression cannot be decided until
run-time, since only then will it be known whether I lies
between 1 and 50.

It is possible, given its access to the structure graph, for
the compiler to generate code for run-time range checks
whenever a subscripting operation occurs. Novice
programmers and their teachers usually desire such an
option to be available; experienced programmers and
their paymasters usually do not desire this option to be
compulsory.

9a: legal
E is link
E pointsto (I is link, R is link)
E.I pointsto (vec 1 thru 50 int)
E.R pointsto (vec 1 thru S0 real)

9b: illegal
E is link
E pointsto (vec 1 thru 50 int, vec 51 thru 100 real)

Figure 9. Legal and illegal ways of forming a structure with real
and integer components

Anyway, at compile-time the best that can be done is
to classify the expression as ‘legal provided subscript is
in range’. As far as type-determination is concerned the
expression behaves just like one that is unconditionally
legal.

Suppose we wish to have a structure E composed of 50
integer values and 50 real values. There is no difficulty in
defining such a structure, as shown in Fig. 9a. Suppose
instead that the principle of hybrid data structuring had
been extended to allow the structure of Fig. 94, so that
E:1,...,E:50 are of one type while E:51,...,E: 100 are
of another. In this case the compiler encountering the
expression E: I would not only fail to know whether it was
legal but would also fail to determine its type. This
illustrates the fact that the compiler-typing property is not
trivial, but is sensitive to the exact definition of what data
structures are allowed.

The second caveat is to do with reference structures.
According to the rule already given, any assignments of
the type ref =ref or ref =link are legal. This rule
deliberately makes no mention of the structures that are
pointed to. It is expected that all uses of ref will be
restricted to experienced programmers. Once self-
referential structures are allowed, it is difficult to design
a general algorithm for detecting structural compatibility.
Therefore it has been left to the programmer, rather than
the compiler, to ensure that his particular use of ref is
appropriate. A second reason for allowing licence in the
use of ref is to enable storage to be reallocated at run-time,
which in some circumstances is a useful technique. The
simplest use of the technique just causes two vectors to
occupy the same space, regardless of their types, by means
of the assignment ref = link as in Fig. 10. For multilevel
structures this goes wrong since the loc cells of the new
structure will hold incorrect values. The technique
becomes more general if address calculations can be done

A is link; A pointsto (vec 1 thru 100 int)
B is ref; B pointsto (vec 1 thru 50 real)
B=A

Figure 10. Overlaying two vectors
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R is ref; R pointsto (vec 1 thru m char, LENGTH is int)
{The value of m is irrelevant. The declaration could be omitted
if we are willing to let the compiler deduce it from the allocation
assignment which occurs below.}

M is int

{Assume now that M has been assigned a value, and we wish to

allocate run-time storage for a string of maximum length M.}
R = alloc (vec 1 thru M char, LENGTH is int)

{This is the allocation assignment, which the compiler will

translate into the following sequence of run-time operations:

STACKPTR = STACKPTR + intsize

R = STACKPTR

STACKPTR = STACKPTR +Mz=charsize

if STACKPTR > MEMORYLIMIT) deal with error fi}
Figure 11. Run-time allocation of a structure.

explicitly in the programming language, or alternatively
if suitable kinds of allocation operators are made
available. Fig. 11 illustrates an extension to the language
that enables objects to be allocated at run-time on an
upward-growing stack. (It is easy to arrange for
deallocation to be done automatically on exit from a
procedure; or instead of this, for deallocation to be done
under the control of the programmer, in so far as this is
consistent with the stack discipline. Much more difficult
would be the provision of a method for garbage
collection.)

5. PROCEDURES AND CLASSES

As usual, a procedure is a block of code that acts on zero
or more arguments stored outside the procedure itself; a
procedure may be either a subroutine or a function, the
difference between these being essentially a matter of
syntax.

Suppose a structure is passed as argument to a
procedure. We must ensure that the declaration for this
structure is equally available to the called and the calling
procedure. One way of doing this is to pass a description
of the structure as well as its address. This implies that
the structure graphs must be preserved and inspected at
run-time, and violates the compiler-typing property.

The strategy to be described here preserves compiler-
typing as well as having other useful features. In part it
resembles the strategy adopted by the language Ada (see
Ref. 5).

The first thing to do is to place declarations for the
called procedure and its arguments in a part of the
program that is within scope of both the called and the
calling procedures. Several different kinds of scope rule
occur in programming languages, but since the detailed
rules are irrelevant here I shall make the following
simple-minded assumption: there is a part of the program
text, known as a globunit, which at compile-time is within
scope for all other parts of the program. In the globunit
we shall place declarations of the form:

identifier is subroutine

identifier actson (arglist)
or

identifier is function

identifier actson (arglist) &returns returnarg
Here arglist is a list of arguments whose structures have
already been declared in the globunit. The returnarg of
a function is required to be of a scalar type, in line with
the restriction that only a scalar may appear on the
left-hand side of an assignment.

12a: Square-root (SQRT) function
X is real &noalloc
SQRT is function
SQRT actson X &returns X
12b: CHAINSHIFT subroutine
L is link &noalloc
L pointsto (F is ref, B is ref)
L.F pointslike L
L.B pointslike L
CHAINSHIFT is subroutine
CHAINSHIFT actson (L,L)
Figure 12. Procedure declarations

subroutine CHAINSHIFT (X,Y)
X.B.F=XF; X.F.B=XB
XB=Y.B; YBF=X
XF=Y;YB=X
Figure 13. Subroutine CHAINSHIFT.

The details are illustrated in Fig. 12. Note the indicator
&noalloc appended to argument declarations: this
instructs the compiler to build the structure graph but not
to allocate any storage.
We can next write the subroutine shown in Fig. 13.
Since the globunit is in scope, the arguments do not need
to be declared anew within the subroutine body. The
compiler will complain if it finds any inconsistency
between the body of a procedure and its declaration. The
arrangements needed for separate compilation of
procedures are discussed in Appendix 1.
The argument-passing method most natural with
hybrid data structures is the following. If the argument
is of scalar type, including ref, then its value is passed to
the called procedure, and the possibility altered value
resulting from execution of the called procedure is
returned to the calling procedure. If the argument is of
type link, then the value held in the link cell is similarly
passed ; but since it cannot legally be altered does not need
to be returned. (This mechanism, for scalar types, can be
described unambiguously as ‘call by value/result’; for
link type, the usual terminology becomes ambiguous, and
the mechanism could with equal justification be described
as ‘call by value’ or ‘call by reference’.)
The next thing to investigate is what compatibility is
required between the procedure declaration and a
procedure call. (As for the compatibility between scalar
arguments certain questions arise, viz. type-conversion
and passing of expressions, but since these issues are
peripheral in the present context they will be ignored and
the discussion will centre on the passing of arguments of
type ref and link.) The simplest and most stringent
requirement is to insist that the arguments passed are
identical in their structure to the arguments declared. This
stringency is unnecessary and a different policy will be
found advantageous.
Let C, D be two nodes. I shall say that C is a refinement
of D, in symbols C > D, if the following condition holds.
(The definition is by induction on the height of the
reduced structure tree for D.)
Either Case 1
C and D are both scalar types other than ref, and
the type of C is identical to the type of D.

Or Case 2
C is of type ref and D of type either ref or link.

Or Case 3
C and D are both of type link. In this case we require
furthermore:
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If D has vector components, so does C, and these

components satisfy
(C:any) > (D:any).

If D has s > 0 list components, then C has r > s
list components. The identifiers id1, ..., ids that name
the list components of D are identical to, and occur
in the same order as, the identifiers that name the first
s list components of C. For each list component id
of D, the relation

(C.id) > (D.id)
holds with the corresponding component of C.

Now let (DECI, ..., DEChn) be the arglist occurring in
a procedure declaration, and let (CALI, ..., CALn) be the
corresponding list of arguments used in a procedure call.
We shall require firstly that the same number of
arguments occur in both lists. (A relaxation of this
requirement is possible but will not be discussed here.)
The remaining condition for legality of the call is that
each call argument CALk is a refinement of the
corresponding declared argument DECk. Compiler
typing is preserved because the refinement relation can be
checked at compile-time; therefore the compiler can issue
warnings about erroneous procedure calls.

The formal requirements stated above can be
understood as follows. For CAL to be a refinement of
DEC it is necessary that CAL contain the reduced
structure tree of DEC as a substructure. If CAL is passed
as an argument to a procedure, the procedure may well
have been declared to use only part of this structure,
namely the substructure DEC. The refinement relation
CALL > DEC is necessary and sufficient for the correct
interpretation by the procedure of the substructure that
it uses — subject to the usual licences regarding subscript
ranges and ref. These licences, analagous to those
discussed in section 4, arise as follows. Case 2 requires no
compatibility between the structures pointed to. Case 3
requires no compatibility between subscript ranges.
Therefore the programmer, who is assumed to know what
he is doing, can write a subroutine that operates on a
vector of unknown size, the actual size being determined
by other arguments passed (or by other components of
the same argument). Note that a link value must not be
passed to a procedure that uses it as a ref, since a ref value
may be altered while a link value may not. This has been
taken care of in the definition of the refinement relation.

Now BUFFER declared in Fig. 3 is a refinement of
STRING declared in Fig. 2. We may have a procedure
COPY whose declared arguments are (STRING,
STRING); then we may call COPY (STRING,
BUFFER), and this call will operate on the ‘string’
substructure within BUFFER while ignoring the other
bits and pieces that are attached to it.

If X is any structure, let the dataclass of X be the class
of all structures that are refinements of X. Procedures can
be considered to act on dataclasses rather than on
structure types. For example CHAINSHIFT (declared in
Fig. 12 and defined in Fig. 13) operates on the dataclass
L (declared in Fig. 12) which is the class of ‘abstract’
chain elements with forward and backward pointers. We
may issue the calling statement CHAINSHIFT (CHAIN:
I, CHAIN:J) where CHAIN:I and CHAIN:]J as in Fig.
8 are ‘concrete’ chain elements that contain data as well
as pointers. The subroutine shifts the pointers while
ignoring the data, just as it should do.

I shall define a procedural class to consist of a dataclass,
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or collection of dataclasses, together with a collection of
procedures that act on these dataclasses. The declarations
present in a globunit reflect just such an organization.
Indeed, if we are now allowed to split our globunit into
several globunits, each containing the argument and
procedure declarations appropriate to a particular
procedural class, then the notion of procedural class is
reflected in the language exactly. This is the sense in which
hybrid data structures lead naturally to a class concept.

One deficiency in this concept should be noted. The
refinement relation > is not a lattice ordering. If X and
Y are two structures, it is in general not possible to find
a structure Z that is a refinement of both X and Y.

I shall comment now on what happens if we wish to
pass a procedure PCAL as argument to another
procedure Q. Suppose PDEC is the procedure that occurs
as the corresponding argument in the declaration for Q.
Suppose PCAL is declared with arguments
(CALL,...,CALn) and PDEC with arguments
(DECI, ..., DECn). The condition for legality of the call
Q(...,PCAL,...), as far as this argument is concerned,
will still be written as PCAL > PDEC; this holds if and
only if DEC1 > CALL,...,DECn > CALn. The reversal
of the refinement relation that occurs here should be
carefully noted. I do not give the full proof of this result,
but the method should be clear from Appendix 2, which
demonstrates the result in a particular case. (Behind this
phenomenon of refinement reversal can be discerned the
fact that procedures and data structures are not ‘similar’
objects but are ‘dual’ objects in a certain mathematical
sense.) Similar considerations are needed if one wishes to
extend the language to include procedural variables, i.e.
variables whose values are procedures.

One final point about procedures. The language
described here is basically one in which storage
requirements are determined at compile-time. Neverthe-
less, it is easy to arrange a stack discipline for the
allocation of procedural data frames. Therefore pro-
cedures could be used recursively, and data storage would
then be dynamic in so far as it is controlled by procedure
calls.

6. CONCLUSIONS

This paper describes how hybrid data structures are
defined by indirection and gives examples of their use.
Hybrid data structures are implemented by the use of
structure graphs, which are built by the compiler and
discarded at run-time. This allows indirection operators
to be defined which are appropriate to a type-rich
language.

The mechanism can be extended to deal straight-
forwardly with procedures and procedural classes.

A elegant and practical syntax can be developed; the
actual syntax could be more concise than that used here.
The concept appears well suited to a small but powerful
general-purpose language.

APPENDIX 1
Separate compilation of procedures

Suppose fileI contains the source text for a main program
and file2 contains the source text for some procedures that
will be called from filel. The programmer must place
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copies of the relevant globunits in both files. Each file is
compiled, and the checking of passed against declared
arguments is done in the usual way.

It is not until the files are brought together that any
check can be made that the globunit declarations in the
two files are in fact consistent with one another. It is
desirable to make this check — particularly since the files
may have been written by different people — otherwise
annoying errors will occur. Now loaders are commonly
designed to be independent of the language from which
the compiled code was produced: this is a right and
proper modularization. Therefore it is not reasonable to
expect the loader to check the consistency of globunit
declarations.

So we need to introduce a language-dependent
‘vetting’ step in the sequence compile-vet-load which
performs this check. The structure graphs produced by
the _.ompiler are used by the vet step, and are then thrown
away.

APPENDIX 2

Demonstration of the reversed refinement relation for
procedural arguments

The proof is given here for the particular case of a
subroutine APPLY (S, X) in which S is a subroutine and
X is a data structure.
Given the following declarations:

SA is (data structure)

TA is (data structure)

X is (data structure)

S is subroutine

S actson (SA)

T is subroutine

T actson (TA)

APPLY is subroutine

APPLY actson (S, X)
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and the following subroutine definition:
subroutine APPLY (S, X)
S(X)
end
and the following call in the main program:
APPLY (T,Y)
then the situation is as follows.

Firstly, the necessary and sufficient condition for
APPLY to compile successfully is that the call S(X) is
valid, i.e. X> SA.

Now we seek the condition denoted by T > S which is
the weakest condition such that:

APPLY (T,Y) is a valid call whenever (T > S and

Y > X and APPLY has compiled successfully).
Equivalently:

T(Y) is valid whenever (T > Sand Y > X and X >

SA);

ie. (T>SandY >SA) implies Y > TA;
ie. T>S implies (Y > SA implies Y > TA);
ie. T>S implies SA >TA;

and since the weakest condition is sought, this gives
T>S ifandonlyif SA >TA
completing the demonstration.

The general proof needs to deal with procedures having
arbitrarily many arguments. However, since the present
demonstration has established the necessity of SA > TA
in one case, it remains only to show that SA > TA is
sufficient in every case.
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