Labelling and Implicit Routing in Networks

NICOLA SANTORO
Distributed Computing Group, School of Computer Science, Carleton University, Ottawa, K1S SB6, Canada

RAMEZ KHATIB
Département d’Informatique, Université d’Ottawa, Ottawa KN 5SB4, Canada

The routing problem in networks is solved by either maintaining at every node detailed routing information for all
destinations (explicit routing) or by exploiting the information implicit in an a-priori labelling of nodes and links (implicit
routing). Efficient implicit routing algorithms are known only for networks modelled by graphs having special topologies
(e.g. ring, hypercube). In this paper, a labelling scheme for graphs of arbitrary topology is presented, and an implicit
routing algorithm is derived. The proposed algorithm is shown to be optimal for acyclic graphs, and to exhibit a worst-case
complexity which is within a factor of two from the optimal solution for graphs of arbitrary topology. Limitations to the

applicability of the proposed solutions to communication networks are discussed.

1. INTRODUCTION

A computer communication network (e.g. Tanenbaum?)
can be represented as a connected graph. Each node in
the graph is uniquely identified by a name (or identity)
and can distinguish the incident arcs by unique /abels (or
port numbers). When sending a message from one node
to its destination, a decision has to be made as to which
neighbour (i.e. through which incident arc) the message
must be sent. The routing problem is the problem of
choosing such a neighbour; associated to this problem are
usually certain communication costs (e.g. time delays,
number of message exchanges) which will measure the
efficiency of a solution algorithm.

Solution algorithms can be classified into explicit and
implicit ones. In explicit solutions, names and labels are
arbitrary and some detailed routing information for all
destination is maintained at each node; depending on
how this information is determined and maintained,
explicit solutions can be further classified as static and
dynamic, centralised and decentralised, etc. (e.g. see
references 4, 6, 7).

In implicit solutions, no detailed information is
maintained; instead, names and labels are assigned
according to a scheme so that the information implicit in
the labelling can be used to choose the neighbour to which
a message should be sent. Unlike explicit mechanisms,
implicit solutions are always static and decentralized.
This paper focuses on implicit routing algorithms.

It is not difficult to develop implicit routing algorithms
when the graph has a regular topology. For example, for
rings, an algorithm is easily obtained by naming the nodes
clockwise with consecutive integers, and labelling an
incident arc by the name of the other end node: the node
named i will send a message with destination node j
clockwise if and only if [j— ilmed n < [i—/lmod n» Where n
is the number of nodes. Furthermore, this routing
algorithm is optimal in the sense that a message always
travels through the shortest path (assuming equal time
delays on each are) between i and j. Analogously, optimal
solutions can be found for meshes, hypercubes,? chordal
rings,2, etc. -

For arbitrary graphs, the known non-explicit solutions
(e.g. flooding,” daisy-chaining®) are far from being
optimal. Their intrinsic inefficiency derives from the fact

that, while not explicit, they do not use any implicit
information either. In this paper, it is shown that an
implicit routing algorithm can be devised also for
arbitrary graphs. Namely, a labelling scheme is presented
and is shown that the corresponding implicit routing
algorithm is optimal for acyclic graphs, and exhibits a
worst-case complexity which is within a factor of two of
the optimal solutions for arbitrary graphs.

The paper is organised as follows. In the next section,
the framework and the efficiency measures are defined. A
labelling scheme and the corresponding routing algorithm
are presented and analysed in Section 3. Finally, in
Section 4, the feasibility and the limitations for a practical
application of the proposed solutions are discussed.

2. THE FRAMEWORK

A computer-communication network can be described as
an undirected graph G = (N(G), A(G)), where N(G) is the
set of (computer) nodes, and A(G) = N(G) x N(G) is the
set or arcs representing direct bidirectional communi-
cation links between nodes; if (x, y) € 4(G), nodes x and
y are said to be neighbours. Each node xe N(G) has a
unique name n(x) and a distinct label /(x,y) for every
neighbour y in G; it can send a message M to a neighbour
y by the ‘send M to I(x, y)’ directive.

The communication complexity of an implicit routing
algorithm is measured in terms of both number of
message exchanges and total execution time (i.e. the delay
between the time a processor starts the routing and the
time the message reaches its destination). Because the
network may be asynchronous and transmission and
queuing delays may be unpredictable, an estimate on the
total execution time is obtained by measuring the idea/
execution time, i.e. the total execution time experienced
if the network was synchronous and transmission and
queuing delays were unitary.

Let My(x, y) and T4(x, y) denote the minimum number
of message exchanges and time units, respectively, needed
to route a message from x to y in G; then

M(G) = max{Ms(x,)| x,y € N(G)}
and
T(G) = max {T5(x, y) | x, y € N(G)}

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 5

¥202 Iudy 60 U0 1sonb Ag 9¢6/91/S/1/82/2101e/|ulwoo/woo dnoolwapede//:sdiy woly papeojumo(q

NICOLA SANTORO AND RAMEZ KHATIB

represent lower-bounds on the number of message
exchanges and time delays, respectively, needed in the
worst case to route a message to its destination in G. Let
d(x,y) denote the distance between x and y in G (i.e. the
number of arcs in the shortest path from x to y); and let

d(G) = max {dg(x, y)| x,y € N(G)}

denote the diameter of G. Then, the following relations
trivially hold:

Lemma 1 For any G
(i) M(G) = T(G) > d(G),

(ii) for all x, y e N(G), Mg(x,y) = Te(x,y) = dg(x,y).

Given a labelling scheme ¥ and an implicit routing
algorithm A(%) which uses the properties of Z, let
M (A(Z), x,y) and T;(A(Z), x, y) denote the number of
message exchanges and time units, respectively, required
by A(Z) to route a message from x to y in G; and let

M (A(ZL)) = max {M(A(Z), x,y)| x,y € N(G)}
and
To(A(2)) = max {T(A(Z), x, y) | x, y € N(G)}

be the algorithm worst case message and time complexity
respectively.

Definition 1

An implicit routing algorithm A(%) is optimal for G if for
all x, ye N(G)

(l) MG(A("g)’ x’y) = MG(x’y) and
(“) TG(A($)9 x,}’) = TG(xay)

That is, an implicit routing algorithm is optimal if it
always routes a message exchanging the fewest number
of messages and requiring the fewest number of time
units.

Definition 2

An implicit routing algorithm A4(%) is a-efficient for
G,a>1,if

(i) M(A(L)/M(G) < a,
(i) T(A(£))/T(G) < a.

That is, the worst-case message and time complexity of
an a-efficient implicit routing algorithm is within a factor
of a from the worst-case message and time complexity of
the optimal solution.

In the next section, an implicit routing algorithm which
is optimal for acyclic networks and 2-efficient for
arbitrary networks is presented.

and

3. LABELLING SCHEME AND ROUTING
ALGORITHM

In this section, a scheme for naming nodes and labelling
neighbours, and an implicit routing algorithm which uses
the properties of this scheme are presented. The scheme
is based on the well-known technique for post-order
traversal and numbering of rooted trees.!

6 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

Labelling scheme
Step 1 (Assigning names to nodes)

(i) start from any node in N(G), and construct a
minimum-distance spanning-tree T of G rooted in
that node;

(ii) traverse T in depth-first style, and assign a distinct
integer to each node when it is reached for the first
time during the traverse;

(iii) integers are assigned in decreasing order.

For each node x e N(G), let S;(x) and Pp(x) denote the
set of successors and the predecessor of x in T,
respectively; and let n(x) and Z denote the name assigned
to x and the set of all names assigned by Step 1,
respectively.

Step 2 (Assigning labels to neighbours)
At each node x € N(G) assign a label I(x, y)e Z U {A, 5} to
each neighbour y of x in G as follows:

(i) assign label /(x, y) = min{n(z)|ze T[y]} to each y,
y € Sp(x), where T [y]denotes the directed subtree of
T rooted in y;

(ii) assigned label A to Pp(x);

(iii) assign label d to the other unlabelled neighbours of
x, where 6 > w for any we Z.

The labelling scheme & has the following properties:
Lemma 2. For any xe N(G) and any y e Sp(x)

n(x) > n(y) = Ux, y)

Proof. By construction (Step 1 (iii)) #(x) > n(y) for all
y€Sry(x); also by construction (Step 1 (ii) and 2 (i))

n(y) 2 min{n(z)|ze T[]} = i(x,).[]
From Lemma 2 the following relations trivially hold:

Corollary 1. For any x, ye N(G), y is in T[x] if and
only if

n(x) = n(y) = min{l(x, z) | ze Sp(x)}.

Corollary 2. Given xeN(G), let Sp(x) ={z,,..., 2z},
where I(x,z;) < l(x,z;,,) for 1 <i < k. Then, for all y in
T'[z;] and for all w in T[z,,,]n(y) < n(w)

A routing algorithm 4(.%¥) which uses the properties of
labelling scheme % is now presented. Assume that a
message (d, msg) whose destination is the node with name
dis at node x; such a message has either been originated
at node x or has been sent to x by one of its neighbours.
Let Sp(x) ={z,, ..., z;}; without loss of generality, let
I(x,z;) < I(x,z;,,) for 1 <i<k.

Routing algorithm A(.%¥)

If d = n(x) then the message has reached its destination.
endif
If (d > n(x) or d < I(x, z,)) then
send (d, msg) to /(x, Pp(x));
else find r such that I(x, z,) < d < l(x, z,,,);
send (d, msg) to /(x,z,);
endif

Theorem 1. Algorithm A(e) is optimal for acyclic graphs.

Proof. Let G be acyclic. Consider the message to be routed
from node x to node y. Let z(x,y)=(Q;---,0n)

¥202 Iudy 60 U0 1sonb Ag 9¢6/91/S/1/82/2101e/|ulwoo/woo dnoolwapede//:sdiy woly papeojumo(q

LABELLING AND IMPLICIT ROUTING IN NETWORKS

be the sequence of nodes in the shortest path in G from
Q0,=x to Q,, =y. Let the message be at node
Q;en(x,y),1 <i<k; and let Sp(Q;) ={zy...,2}
where [(Q;, z;) < (Q;, z;4,) for 1 <j < k. If n(y) = n(Qy),
since names are unique then i = m and the message has
reached its destination; thus, algorithm A(%) correctly
routes the message. If n(y) > n(Q;) or n(y) < (Q;, z)
then, by Corollary 1, y is not in T[Q;]; therefore
Qi1 = Pp(Q,), and algorithm A(%) correctly routes the
message. Finally, if (Q;, z;) < n(y) < Q;, z;4,) then, by
Corollary 2, y is in the subtree T'[z;] rooted in z;,,; that
is, Qi+, = z;, and the message is correctly routed by 4(%).
Therefore, the total number of message exchanges

required to route the message from x to y will be -

|n(x,y)| —1 = d(x,y). Since x and y are arbitrary nodes
in G, it follows that M (A(Z),x,y) = d(x,y) for all
x,y€ N(G). From Lemma 1 and Definition 1, it follows
that A(%) is optimal for acyclic graphs. []

Let G be an arbitrary graph. Given xe N(G), let
re(x) = max{dg(x,y)|y € N(G)}; a node Ce N(G) is said
to be a centre of G if for all xe N(G)rg(C) < rg(x). If C
is a centre of G then rg(C) = r(G) is called the radius of
G. For the centre of G, the following well-known property
holds:

Lemma 3. For all x, ye N(G)
dg(x,y) < 2r(G).
Theorem 2. Algorithm A4(Z) is 4-efficient.

Proof. Let T be the minimum-distance spanning-tree of
G constructed by Step 1 (i) of labelling scheme ¢, and
let x be the root of T. From Lemma and the fact that T
is minimum-distance with respect to x, it follows that for
all y,ze N(G)

dp(x,y) < 2rp(x) = 2rg(x) < 4r(G).
Therefore, by Lemma 1,
4r(G) = M (A(ZL)) =2 M = d(G) = r(G);
that is

M (A(Z£))/M(G) < 4. Analogously, it can be shown
that
T(A(£))/T(G) < 4; therefore A(Z) is 4-efficient. []

The above result can be improved by modifying Step 1 (i)
of so to choose a centre a G (instead of an arbitrary node)
as the root of the spanning tree 7. Let ¥’ denote the
modified scheme and A(%’) the resulting routing
algorithm.

Theorem 3. Algorithm A(¥’) is 2-efficient.

Proof. Let C be the root of T, with ry(C) = r(G). Then,

by Lemma 2 and 3 and by the fact that T is

minimum-distance with respect to C, it follows that
2r(G) = M(A(Z")) = M(G) = d(G) = r(G);

that is, M4(A(ZL"))/M(G) < 2. Analogously, it can be

shown that T (A4(£"))/T(G) <2; that is, A(Z’) is

2-efficient. []

4. NETWORK CONSIDERATIONS

In the previous section, a labelling scheme for arbitrary
graphs has been presented; based on this scheme, an

efficient implicit routing mechanism has been developed.
It should be stressed that the proposed mechanism is
static and fully decentralised. When implementing this
mechanism in an actual network, several factors must be
taken into account; in this section, two factors (i.e. traffic
load and changes in network topology) are addressed.

4.1. Traffic load and reliability

The addressing mechanism %’ proposed for networks
modelled by arbitrary graphs has one major limitation.
Given a node x € N(G), let y, ze Sp(x); then any message
sent from a node in T[y] to a node in T'[z] will have to
pass through node x, even though there might be another
(possibly shorter) route in the network. This fact can
create a ‘ bottleneck’ situation by increasing the message
trafficload at a node beyond the node’s processing
capacity; thus, effectively increasing the time delay. This
situation could be avoided in part by having more than
one ‘route’ available; that is, by having more than one
tree available (recall, in A(¥) and A(Z’) messages are
always sent along only one tree). In fact, we can construct
two spanningtree (possibly edge-disjoint), and rank them
according to some ordering. Every time a node x, wanting
to send a message to y, detects an ‘overload’ situation
(e.g. no acknowledgement is received after a pre-
established quantum of time) at neighbour z in the path
from x to y in the Ist tree, it will switch to the 2nd tree
and send the message to the neighbour w in the path from
x to y in this tree. If the two trees are edge-disjoint, then
z # w (unless there are multiple links between nodes). In
this way, a quasi-adaptive routing mechanism can be
obtained.

The overhead involved by this strategy is that (i) every
node has two numbers (one for each tree); (ii) every
neighbour of a node, has two labels (one for each tree)
at that node; (iii) every message must specify both
numbers for the source and for the sink, and must contain
an indication of which tree is being used. The number of
available alternative routes can obviously be increased by
increasing the number of spanning trees; this however will
increase the overhead described above.

The additional advantage in having alternative routes
is that it increases the reliability of the system. In fact, if
a link or a node is temporarily disconnected from the
network, it can be bypassed by switching to a different
tree. Again, it is important that the alternative trees are
as much edge-disjoint as possible.

4.2. Topology changes

In an actual network the topology may vary in time; in
particular, nodes or links may be added or deleted. In this
section, it is shown how such changes can be handled
within the proposed solutions.

If a leaf node w (i.e. a node connected only to one
existing node, say y) is added to the graph, then the only
modifications to be made are the following: name the new
node by p (not necessarily an integer) such that
n(y) > p >gq, where g =max{n(z)|zeS,(y)}; and set
I(y,w) = p and I(w,y) = A. If w is not a leaf node (i.e. it
is connected to y,, ¥, ...,Ym>,m > 1), then do the
following: choose the predecessor of win T'to be a y; such

that)]
dr(c,y;) = min{dp(c,y)|1 <j < mj};

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 7

¥202 Iudy 60 U0 1sonb Ag 9¢6/91/S/1/82/2101e/|ulwoo/woo dnoolwapede//:sdiy woly papeojumo(q

NICOLA SANTORO AND RAMEZ KHATIB

name w as in the previous case; and set /(y;, w) = p,
l(w,y;) = 4, and Iw, y;) = l(y;, w) = 6 for j = i. If more
than one tree is being used (see section 4.1), in all these
trees a predecessor must be chosen using a similar
procedure.

The addition of a new arc between existing nodes y and
z will have the only effect of making y and z neighbours
in the network (not in the tree(s)). Therefore, we must
only label y at z and z at y by .

If there is a temporary disconnection of a node or of
a link, then no changes are made in the addressing
mechanism except for the switch to alternative route to
bypass (if possible) the disconnected component (see
section 4.1). Permanent disconnections may, however,
cause major problems. In fact, if the disconnection of a
link or node breaks the connectivity of the tree, a new tree
(and therefore new numbers and labels) must be
constructed. In case that more than one tree (see section
4.1) is disconnected, this reconstruction process must be
done for all of them.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley;
Reading, Mass. (1974).

2. B. W. Arden and H. Lee, Analysis of chordal ring network.
IEEE Transactions on Computers C-30, 291 (1981).

3. R. G. Gallager, P. Humblet and P. Spira, A distributed
algorithm for minimum-weight spanning trees. ACM
Transactions on Programming Languages and Systems 5, 66
(1983).

4. J. Hagonel and M. Schwartz, A distributed failsafe route
table update algorithm. Proc. 3rd Int. Conf. Distributed
Computing Systems, 755 (1983).

5. E. Korach, D. Rotem and N. Santoro, Distributed algor-
ithms for finding centers and medians in a network, ACM

8 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

5. CONCLUSION

In this paper, it has been shown that a simple and efficient
implicit routing mechanism can be constructed for
networks of arbitrary topology. Since the labelling
process, on which this mechanism is based, is typically
done at design time, only a ‘centralised’ description of
the labelling scheme has been given. However, a
decentralised labelling algorithm can be easily devised
using a combination of the existing decentralised
algorithms for finding the centre® and constructing a
spanning-tree.?

Acknowledgement

The authors would like to thank the referee whose
remarks have helped improve the presentation of the
paper. This work has been supported in part by the
Natural Sciences and Engineering Research Council
under grant A2415.

Transactions on Programming Languages and Systems,
6, 380 (1984).

6. J. M. McQuillan, I. Richer and E. C. Rosen, The new
routing algorithm for the ARPANET. IEEE Transactions
on Communications COM-28, 711 (1980).

7. A. S. Tanenbaum, Computer Networks, Prentice Hall,
Englewood Cliffs, N.J. (1982).

8. R. H. Thomas, A majority consensus approach to concur-
rency control for multiple copy databases. ACM Trans-
actions on Database Systems 4, 180 (1979).

9. L. D. Wittie, Communication structures for large networks
of microcomputers. IEEE Transactions on Computers C-30,
264 (1981).

¥202 Iudy 60 U0 1sonb Ag 9¢6/91/S/1/82/2101e/|ulwoo/woo dnoolwapede//:sdiy woly papeojumo(q

