Practical Perfect Hashing

G. V. CORMACK,*R. N. S. HORSPOOL{ AND M. KAISERSWERTH{

School of Computer Science, McGill University

A practical method is presented that permits retrieval from a table in constant time. The method is suitable for large
tables and consumes, in practice, O(n) space for n table elements. In addition, the table and the hashing function can be
constructed in O(n) expected time. Variations of the method that offer different compromises between storage usage and

update time are presented.

1. INTRODUCTION

This paper presents a practical method for building
perfect hash tables. A perfect hash table is a table from
which any element may be retrieved in constant time. In
addition to allowing constant retrieval time, the tables
described here can be updated in constant expected time,
and can therefore be built incrementally in time
proportional to the number of elements, n. The tables
carry some extra information, but their overall size is also
linear in n. The method presented is suitable for tables of
arbitrary size.

Hashing is a popular technique because the expected
retrieval time is effectively a constant. Unfortunately,
hashing is often avoided in real-time applications because
the worst-case retrieval time is proportional to n,
implying that some retrieval operations may be unaccep-
tably slow. For these applications, perfect hashing
schemes are desirable. Such schemes have, to date, been
suitable only for small, constant tables. This is because
they require either tremendous computational effort to
construct the table, or require much more storage than
that required to actually hold the elements in the table.

Recently, Fredman et al.* have shown that perfect hash
tables of linear size exist, but do not give a practical
algorithm for constructing them. In addition, they state
that the tables may consume many times more storage
than is necessary to store the elements. Updating the table
is not discussed. The research described here was
motivated by this paper.

The following sections present the data structures that
represent the hash table, the retrieval algorithm, and the
algorithms for insertion and deletion. The speed and
storage consumption of the method are discussed.
Variations that improve the speed of insertion at the
expense of some storage are presented. Finally, empirical
results are presented that show the actual construction
time for the table to vary little from the expected time.

2. RANDOM HASH FUNCTIONS

In order to construct the hash tables we require a family
of hash functions, {h;(k, r)}, each of which accepts a key
value, k, and a range size, r, and returns a value within
the range 0 to r— 1. Each 4; should provide a different,
random mapping from the set of possible keys to the set

* Present address and address for correspondence: Department of
Computer Science, University of Waterloo, Waterloo, Ontario
N2L 3Gl.

t Present address: Department of Computer Science, University of
Victoria, Box 1700, Victoria, B.C. V8W 2Y2.

1 Present address: Universitdt Erlangen, IMMD IV, Martensstrasse
3, 8520 Erlangen, Federal Republic of Germany.

54 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

of range values. Knuth? discusses various criteria for the
selection of appropriate hash functions, and concludes
that remainder on division works well, subject to some
constraints on the divisor. For the experimental work
described here, the following function was found to work
well:

h;(k,r) = mod (mod (k, 2i+ 100r + 1), r).

In the actual implementation, the value of 2i+100r+1
was manipulated directly, rather than the value i which
appears in the following algorithms. It is implicitly
assumed here that k > 2i+ 100r + 1. If this is not the case,
the range of key values should be shifted by adding a large
number to k.

3. THE HASH TABLE

The hash table consists of two parts: a dense or nearly
dense table, D, containing the actual data elements, and
a header table, H, which contains information for the
calculation of the address of a particular data item in the
dense table. The header contains O(n) elements, but does
not contain any key or data. The retrieval algorithm
consists of extracting one element from H, based on the
value of the key, and then using that information to
calculate the exact address in D of the appropriate data
item, if it exists. Existence of the data item in the table
must be verified by checking the key found at this address.

D contains the data items along with their associated
keys, and nothing else. If the data elements are of variable
size, they must be stored with one extra level of
indirection, thus resulting in one additional storage
reference per retrieval.

Each header element contains three fields: an index p
into D, and two small integers, i and r. The header size
s is chosen such that n = ps, where p is a constant with
a value near one; p represents a loading factor for H.
Choosing an appropriate value for p will be discussed in
section 6.

4. THE RETRIEVAL ALGORITHM

In order to find the record with key k, we perform the
following steps:

Compute x = h(k, s)
Extract {p,i,r) from H[x]
If r = 0 then there is no record with key = k in D
Otherwise:
Compute y = p+h;(k,r)
Extract {(key, data) from D[y]
If key = k then the record is found
Otherwise there is no record with key = k in D

Figure 1. Retrieval algorithm

¥202 I4dy 01 uo 1senb Aq $90891/¥S/1/82/2I101e/|ulwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



PRACTICAL PERFECT HASHING

Some specific details of the algorithm for the actual
implementation follow. For the first step, we chose s (the
header size) to be a prime number, and used A(k,s)
= mod(k, s) to ensure a reasonable distribution. In the
fifth step, we used the definition for A; in section 2. Note
that any retrieval requires at most two probes: one to the
header and, probably, one to the dense table. Each probe
involves retrieving a fixed amount of contiguous storage
and performing a simple calculation. Therefore, the entire
retrieval takes constant time. If the tables are on
secondary storage, as is likely the case for very large
tables, the retrieval requires no more than two physical
input operations. This number is likely to be more
significant than the amount of computation performed.

5. BUILDING THE TABLE

The hash table can be built incrementally. Each header
element is initialised with p =i =r = 0. A record to be
inserted is denoted by <k, d), where k is the key value and
d is the associated data. The algorithm for inserting this
new record is as follows:
Compute x = h(k, s)
Let {p,i,r) be H[x]
If r = 0 then

Let y = the index of any free slot in D

Store (y,0, 1) back into H[x]

Store <k,d) into D [y]
Otherwise:

Let Ckj, dj) be Dip+j] 0<j <r

Search to find an m such that the r+ 1 values h,, (kj,r +1)0<j<r

and h,, (k,r+1) are all distinct

Let y = the index of the first of r+ 1 consecutive free slots in D

Store (y,m,r+1) in H[x]

Store (k,d) into D[y +h, (k,r+1)]

For0<j<r

Move {kj,d;» to D[y+hy (kj,r+1)]
Mark the r slots D[p]...D[p+r—1] as free

Figure 2. Insertion algorithm

The first hash calculation, h(k, s), determines a group
of records in D. All records that hash to the same value
in the calculation of h(k,s) are stored as a contiguous
group in D. For each group, the H table entry records the
starting index for the group (p), the size of the group (r),
and a parameter (i) to select the second hash function. A
group may be placed at an arbitrary position in D.

The second hash calculation, A;(k,r), is required to
yield the offset within the group of the desired record. As
new records are inserted, the groups grow in size. Each
time the size of a group increases, we must find a new hash
function, A,,, and we must find new storage in D for the
group. Details of this storage management are omitted
from the algorithm. In principle, groups could be shifted
down to make space where it is needed. However,
movement of large numbers of records in secondary
storage is liable to be expensive. A better approach is to
permit a little space in secondary storage to be wasted and
use a storage allocation and de-allocation strategy, such
as first fit or best fit.2

6. HOW LONG DOES IT TAKE?

The insertion algorithm may, potentially, be quite slow.
The statement beginning Search can test an arbitrary
number of hash functions before finding a suitable #,,.

Each attempt requires up to r+1 trial computations of
the hash function before being accepted or rejected
because of a collision. There is no upper bound on the
amount of time required to do a particular insertion. We
can, however, compute the expected time to perform an
insertion.

The first key in a group of size r+1 will hash to an
unoccupied location with probability 1; the second key
with probability r/(r+1); the third key with probability
(r—=1)/(r+1), and so on. Taking the product of these
probabilities for all r+ 1 keys, we see that the probability
of a particular 4,, being appropriate (perfect) is given by:

r+1)!
(r+ 1+t

The average number of 4,, that need to be tested is simply
the reciprocal of this expression. Clearly, this search can
take a long time for a large value of r. It remains to be
seen that such large r occur sufficiently infrequently for
our hashing scheme to be feasible.

As insertions into the table are made, the sets of keys
that hash to the same group of slots in D will tend to grow
in size. The expected cost of each insertion will grow as
the table fills up. Let us consider just the cost of the last
insertion, when the nth record is inserted into a table that
already holds n— 1 records. Now, assuming that all s»—1
combinations of h(k, s) values were equally likely for the
n—1keys in the table, the probability P, that a particular
group holds exactly r records is given [Ref. 3, exercise

6.4 (34)] by:
(": 1) (5= 1yn-r-1

s‘n—l

P =

If the nth key should hash into this group of size r, the
expected cost of performing the insertion is, at worst,
given by:
(r+ 1)r+1
r

We say ‘at worst’ because we have assumed that each trial
hash function requires r+1 computations before it is
accepted or rejected. Our cost measure is simply a count
of how many trial computations of hash functions are
performed. The expected cost of an insertion, C, is
therefore limited by:

n—1
. . (s_l)n—r—l
C< zl(r+l)+l< r > .

ro !

sn—l
Rearranging and using the fact that s—1/s < 1, we have:
n—1 1 r+1 _1 |
e =)
o P2 (n—1=r)!s"

Further weakening the bound, and substituting p for n/s,
we arrive at:

n—1 (r+1)r+1
C< —p"
ey P

Since we are interested only in a bound on C, we can
extend the upper bound on the summation to give:
®© (r41)r+1 .

C<Z

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 55

¥202 I4dy 01 uo 1senb Aq $90891/¥S/1/82/2I101e/|ulwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



G. V. CORMACK, R.N. S. HORSPOOL AND M. KAISERWERTH

The ratio between the k—1th and kth terms in this
summation is p(k+ 1)*+1/k*¥*2, Since this ratio tends to
zero as k — oo, the summation must converge. In other
words, the expected cost of an insertion into the table is
constant.

We note, however, that decreasing the ratio n/s would
decrease the expected cost. This ratio, p, can be used to
make a trade-off between insertion time and storage
usage. It should be noted, however, that only the size of
H is directly affected by p, and that these header elements
may well be much smaller than the data elements in D.
Thus, the storage overhead associated with using a small
value of p may, in fact, be negligible. The retrieval time,
of course, is unaffected by the choice of p.

Finally, we note that the Poisson approximation yields
a value of C that is less than our bound by a factor of
e?. This approximation has been found to be very
accurate in predicting the distribution of group sizes and
insertion costs.

7. USING MEMORY TO DECREASE
INSERTION TIME

While the average insertion time is not large, a particular
insertion could take a long time, especially if a large group
is involved. It is possible to use storage in D to reduce
expected insertion time. Previously, we assumed that a
group of size r must occupy r consecutive slots in D. If
we use more than r slots for this group of r records, there
is more chance that we can find a suitable hash function.
In fact, by using sparsely populated regions in D for the
groups, the average number of 4,, tested can be made
independent of the group size. The result is that the
overall insertion time is decreased, while the expected size
of the table is increased.

If we insert r elements into a table of size ¢ using a
random hash function, the probability, n(t, r), of the hash
being collision-free is

r—1

n(t,r) =11 l—;.

i=1

This formula is similar to that derived in the previous
section, where r = ¢ held, and is derived in the same way.
In order to minimize the search time, we can choose ¢ to
be some function of r, f{r) say, where f{r) > r. The
expected amount of space consumed for a group is

(e

z - ).
r=0 s
This sum is bounded by some constant, independent of
n, for any polynomial f{r). Since there are s groups, the
total amount of storage used for groups in D must,
therefore, be proportional to s and, hence, proportional
to n. Thus, we can choose a polynomial f{r) in order to
improve insertion time while still maintaining storage
consumption proportional to ». v

In order to find an appropriate f{r), let us re-express
the probability of a particular hash function being
collision-free in terms of its logarithm:

log (n(t,r)) = El log (1 —%)

i=1

56 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

Using the Taylor series for log (1 — x), we have

r—1 oC i/t J
log (n(t,r)) = 3 % — L
i=1 j=1 J
e o) r—1
=-X 5 X il
j=1Jt =1
If t = f{(r), and we choose f{r) such that
lim f{r) < r?,
then r—.w
lim log (n(r)) = — o0,
and hence
lim z(r) = 0.

(Note: we omit the ¢ parameter from 7 when ¢ has been
bound to a particular function of r.) If
lim f{r) > r2,

r—oo

then
lim log (n(r)) = 0, and

r— 0

lim n(r) = 1.
r—00

Finally, when

lim f{r) = r?, lim log (n(r))
r—o0

r— 00

converges to a constant. In particular, if
SAr) =r? lim log (n(r)) = —0.5,
r—00

and
lim z(r) = 0.606.
r—00

Thus, if we pick f{r) = r2, we have at least a 0.606
probability of a particular random hash function being
appropriate, regardless of group size. If we assume p = 1,
the amount of storage consumed in D is doubled by
choosing f{r) = r?, as compared with f{r) = r.

With this choice of f{r) = r?, the number of attempts
to find a suitable hash function for a group is made
largely independent of the size of the group. Thus, we can
optimize storage consumption by varying p.

Other functions, even discontinuous functions, can be
used for f{r). One such function is:

fn =1

if ¢ = 2, we achieve a large reduction in table size with
little increase in insertion time. For larger values of ¢, the
trade-off is less pronounced. More time is spent and the
storage saving is smaller. Experimental results for various
choices of p and the ¢ parameter in this f{r) function are
presented in section 9.

r if r<e
rr if r>c’

8. STORAGE MANAGEMENT

During the construction of the table, contiguous groups
of slots in D of various sizes are allocated and freed,
potentially wasting storage and time due to external
fragmentation.2 However, the number of discrete sizes is
small, and the method of keeping a list of available groups
of each size works well. Since the number of groups with
r members varies inversely with r!, groups of any
particular size are consumed faster than they are created,
as long as p < 1. Thus we expect to find very few groups

¥202 I4dy 01 uo 1senb Aq $90891/¥S/1/82/2I101e/|ulwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



PRACTICAL PERFECT HASHING

in any availability list. The experimental results presented
in the next section include storage wasted due to our use
of this memory-management strategy.

When elements are deleted from the table, the
availability lists will grow. This freed storage cannot be
reclaimed (for another purpose) without compaction.
However, the storage is available should the table grow
again.

9. EXPERIMENTAL RESULTS

The hashing method was implemented in the C language
ona VAX 11/750. A dictionary of approximately 25,000
English words was used as the set of keys. The program
was run for all combinations of p = 0.5, 1, and 2, and
c=1,2,3,4,5, and oo, where c is the parameter of the
Sr) function suggested in section 7. All combinations
performed reasonably well, and we must conclude that
the appropriate choice depends on the intended applica-
tion. The time to construct the table was measured by
counting the number of calculations of h; for each
insertion. The amount of storage consumed by D was
measured by the number of storage slots allocated. Other
samples of various sizes were also used and, in all cases,
the time and storage consumption varied from the figures
presented in this paper by less than two per cent.

For finite values of ¢, the following optimisation was
performed. Whenever an insertion was made into a sparse
group (i.e. a group that contained unused slots), the
existing h; was evaluated for the new key, and if no
collision resulted the key was inserted into the existing
group without expanding its size to f{r+1). This
optimisation caused the construction time and space to
be noticeably less than was predicted in section 7.

Fig. 3 shows the average time per key required to
construct the table. This cost is presented as a function
of c. The three curves represent p = 0.5, 1 and 2, from
bottom to top. Note that the larger values of ¢ are more
costly, but for small values of p, the difference is not
large.

‘Strategy
Figure 3. Time to construct hash table

Fig. 4 shows the number of storage slots (per key)
required in D for each strategy. Again, the values of p are
ascending from bottom to top. There is a clear trade-off
between time and space, as seen by comparing the slopes
of the lines in Figs. 3 and 4. If an optimal choice of ¢ is
desired, the relative values of time and storage would have
to be evaluated, and the two costs added using suitable
weights.

2.5

Strategy
Figure 4. Storage consumed by hash table

The storage needed for H has not been included in this
figure as there is no direct relationship between the length
of the elements of H and those of D. In many cases this
storage will be insignificant. In other cases, such as when
the header is to be stored using a different medium, its
length may be of paramount importance.

Another consideration in the selection of the appro-
priate values is the variance in insertion times. If the table
is being constructed incrementally in real time, the fact
that the average insertion time is short will be less
significant than the fact that there may be occasional
anomalous transactions that take hundreds of times
longer.

Figs 5, 6 and 7 give the distribution of insertion times
for p = 0.5, 1 and 2, respectively. Each figure shows the
minimum amount of time required for the most expensive
n per cent of the insertions as a function of n. The five
curves represent ¢ = 1, 2, 3, 4, 5 and oo, from bottom to

128

64

w
S}
1

Time exceeded
o
1

100 10 1 0.1 0.01
Percentage of insertions

Figure S. Distribution of insertion times for p = 0.5

512
256
128 A
64
324
16
8 c=1
4
5

Time exceeded

1 T T T T
100 10 1 0.1 0.01
Percentage of insertions

Figure 6. Distribution of insertion times for p = 1

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 57

¥202 Iudy 01 uo 1senb Aq $90891/¥S/1/82/2101e/|ufwoo/wod dno-olwsapede//:sdiy wolj papeojumoq



G. V. CORMACK, R. N. S. HORSPOOL AND M. KAISERWERTH

S SR
AROMARRARA
1 L1 1 1

128 1
64
324
16
8 c=1
4
2_

Time exceeded

1 T T T
100 10 1 0.1 0.01
Percentage of insertions

Figure 7. Distribution of insertion times for p = 2

top. The best combination is p = 0.5, ¢ = 1 where only
1 per cent of insertions require more than seven
evaluations of ;. The worst is p = 2, ¢ = 0o, where 1 per
cent require 250 evaluations.

10. CONCLUSIONS

The method presented here is practical. The implementa-
tion is hardly any more complex than other hashing
methods, such as hashing with external chaining. The
retrieval cost of two storage probes is competitive with
the average cost of other methods. In this case, however,
it is the worst case as well. Since the retrieval algorithm

REFERENCES

1. L. Fredman, J. Komlés and E. Szemerédi, Storing a sparse
table with O(1) worst case access time, Proceedings of the
23rd Symposium on Foundations of Computer Science, IEEE
Computer Society, 165-168, (1982).

58 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

has no loops, it is particularly suitable for implementation
in hardware.

The appropriate choices for the parameter p and the
function f{r) depend on the particular application. It
appears to be desirable to make p as small as possible,
whatever is chosen for f{r). When choosing ¢ values for
the f{r) function suggested in section 7, small values
reduce construction time but increase storage consump-
tion. In addition, large values of ¢ give rise to a small
fraction of very expensive insertions. These anomalies are
of little consequence when constructing a static table, as
was done for these experiments. They could be significant
in a real-time application, where insertions and deletions
are performed dynamically. We note that it is possible to
build the table using one choice for f{r) and to use another
when doing further updates.

Finally, the table can be constructed in linear time even
if the number of elements is not known in advance. One
can pick an arbitrary header size and begin building the
table. When p exceeds the desired value, the table is
rebuilt with double the header size. The total time will not
exceed double that to construct the final table.

Acknowledgement

Funding for this research was received from the Natural
Sciences and Engineering Research Council of Canada
under grants A4333 and A5485.

2. D. Knuth, The Art of Computer Programming, vol. 1, second
edition, Addison-Wesley, Reading (1973).

3. D.Knuth, The Art of Computer Programming, vol m
Addison-Wesley, Reading (1973).

)

¥202 I4dy 01 uo 1senb Aq $90891/¥S/1/82/2I101e/|ulwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



