Pad Structures for the Rainbow Workstation

B.A.STYNE, T. R. KING anD N. E. WISEM A N*

University of Cambridge, Computer Laboratory, Corn Exchange Street, Cambridge CB2 30G

The Rainbow Workstation is an experimental device built to evaluate a method of supporting windows by dynamically
mapping memory to video. The main features of its architecture have been published elsewhere. In this paper a software
interface between the workstation and its driving programs is described. The interface provides simple facilities that
assist in setting up a virtual terminal system in the workstation and in addition some novel and powerful graphics effects
JSor sophisticated host programs to call upon. The use of lookup table indirections in conjunction with the mapping of
memory to video enables some picture manipulations to be achieved very quickly. For example, object silhouettes of any
shape can be clipped to one another as quickly as they can be repositioned on the screen. The blending of an anti-aliased
image against its background can also be done, as the image moves about, with no time penalty. The basic system design
is given in outline, as the background to these techniques, but the method of recomputing the screen is described in more

detail.

1. INTRODUCTION

A previous paper! describes the architecture and some of
the basic systems ideas of the Rainbow Workstation.
Only a brief overview of these aspects is presented here
to introduce the central theme of this paper, which is the
functional interface between program and terminal. The
workstation is regarded as a unit of hardware with some
microprogrammed functions and a program that works
the display, keyboard, pointing and picking devices and
the communications network. The program accessing
these facilities may be the workstation manager, or some
special applications code that is loaded by the workstation
to serve a particular need. We have tried to make the
interface easy to drive without compromising either the
performance or the flexibility of the workstation itself.

The Rainbow Display configuration is shown in
outline in Fig. 1. Keyboard, mouse, tablet and display
comprise the actual devices which the workstation may
present as an assortment of virtual devices to one or a
number of host computers on the network. The output
streams are directed at logical units of potentially
viewable images called ‘Pads’, and the hierarchy of pads
with its associated data comprises the pad structure
abstraction described here. All output functions are
controlled through the pad structure. We describe first a
simplified structure which illustrates the basic idea but
which falls short of the thing we have actually
implemented. Suppose that each output stream from a
host computer is allocated one rectangular pad and that
these are arranged on the screen in some way so that some
part of each pad is visible (Fig. 2). A single level of
hierarchy in the pad structure controls what we see (Fig.
3), where the nodes represent pads and the arcs show their
position and relative priority. The screen is itself a pad
composed from the cluster of pads which it owns in the
pad structure, and the priority and position data on the
arcs specify the screen arrangement and how pads
obscure one another. By writing different values for these
quantities into the pad structure the program can cause
the pads to move about on the screen and alter their
ordering. A library of procedures is provided for doing
this sort of thing, and for building and dismantling pad
structures themselves. Thus:

* Primary author for correspondence.

68 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

pad: = CN.create (type, xextent, yextent, bits-per-
pixel, starting-plane)

will create a pad of specified size in video memory to hold
an image.

arc: = CN.insert (pad, owning-pad, xposition, yposi-
tion, priority)

will build an arc joining two pads expressing the owning
relation and carrying position and priority values.

CN . move (arc, xposition, yposition)

will reposition a pad by changing the appropriate arc
values, and so on. (More details are given in section 3.)
Each call to such a procedure will modify the pad
structure in some respect but the screen is only brought
up to date to match it when the call

CN . display ()

is made. Thus any number of structural changes can be
amalgamated into a single screen change. The way it
works is explained later.

It is a particular feature of the hardware design that
reorganizing the screen image should be rapid, whatever
the size, disposition and content of its components.
Numerous pads, with several (up to 8) bits per pixel in
each are allowed, the pads can overlap one another and
the screen edges (the screen is itself a pad), and assorted
cursors may be moved about by the input tools or by
program commands. Pads which overlap can, under
certain conditions, interact with (rather than just
obscure) one another, giving rise to a variety of new
effects.

2. BASIC FACILITIES OF THE DISPLAY

The monitor adopts the UK broadcast TV standard of
625 lines 50 Hz field interlaced. The aspect ratio is 4:3
landscape, and since the standard specifies 576 unblanked
lines per frame we therefore need 768 pixels along each
line to make them square. The RGB signals are derived
from D-A converters fed with 8 bits for each colour from
the lookup table (Fig. 4). There are 4096 entries in the
look-up table and the 12-bit index is derived from the
pixel values in memory by a unit called the Context Unit
which augments each pixel by forcing and mixing in up

¥20¢2 I4dy 60 U0 1senb Aq 960891/89/1/82/2I01e/|ufWwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



PAD STRUCTURES FOR THE RAINBOW WORKSTATION

to 8 context bits with an offset. The context bits are
associated with each pad and can change only at pad
boundaries. A slice unit aligns the words read from
memory with the pad boundaries and pixel number space,
thus allowing any rearrangement of planes and bit offsets
to be achieved. Two buses are shown in Fig. 4. One of
these (rbus) conveys control signals between the different
units. The other (obus) carries the time-multiplexed
memory words which are en route to the slice unit. This
bus cycles every 32 nanoseconds.

As the scan proceeds over the displayed raster, the
appropriate areas in graphics memory are selected to
position the pads where they are wanted on the screen.
This is done by reference to a series of horizontal strips
previously computed to cover the screen in such a manner
that each strip contains only visible vertical pad edges.
This data, known as the ‘Band Structure’, controls the
sequencing of memory reads from graphics memory. The
graphics processor plants the control information into the
relevant memory registers and then the memory units
cycle and step until the next visible pad boundary. Up to
around 10 visible boundaries per scan line can be
accommodated before the graphics processor fails to keep
up with its job of reloading memory registers. Changing
the band structure is also a time-critical job which
influences the speed of picture update. The amount of
work 1nvolved varies with the number of bands which
change and the number of pads encountered in each. It
is done in the M 68000. The construction of images in
graphics memory and the maintenance of the pad
structure itself are also handled by this processor,
although some functions are speeded up by calling on
assist procedures in the graphics processor — colouring
rectangles for example (there are many opportunities for
assist procedures to speed up image generation which we
have not yet tried). The M 68000 may also run
application-specific programs and offers remote procedure
calls to host machines for all essential operations to do
with pad structure maintenance and tool operation.

3. THE PAD STRUCTURE ABSTRACTION

The pad structure is a rooted acyclic directed graph. The
root represents the screen pad itself (although the struc-
ture is such that it would be possible to associate the
screen node with any node in the system). Nodes are pads
which are potentially viewable rectangles of picture data.
A leafnode (terminal pad) is a raster of data in graphics
memory with a specified number of bits per pixel (from
1 to 8). A clusternode (non-terminal pad) represents a
collection of transformed nodes clipped to the pad
boundary. Associated with each leafnode is an area of
look-up table with sufficient entries to define the
rendering of each pixel value. For example a 2-bit deep
raster would be entered in a leafnode carrying a 4-entry
look-up table. It is also possible to create a leafnode with
0 bit per pixel. Such a node cannot be written to or read
explicitly, but can serve as an area of uniform colour for
backgrounds. When a pad is constructed, by the
procedure CN.create quoted in section 2, its type is
specified to be leaf or non-terminal. For a leafnode the
number of bits per pixel and a memory allocation strategy
must also be given so that an appropriate area in memory
can be reserved for the raster attached to this leaf. For

a non-terminal, there is no memory allocation to be done,
so these parameters are not needed.

A leafnode requires an associated area in look-up table
to be allocated and filled with the colour definitions for
each pixel value in the raster on that leaf. This is achieved
with the procedure

CN . setLUregion (leafnode, region),

where region is a bit of lookup table previously allocated
and filled, or ready to be filled, with the colour values
needed. A fairly generous amount of lookup table
(4096 x 24) is available for allocation, so it is usually
possible to recolour pads independently of one another
by giving each pad its own region.

Arecs are used to collect nodes into clusters, the parent
node being a non-terminal which clips all its progeny to
its own boundary, and each offspring is either a terminal
or non-terminal node whose data is mapped by the
attributes of the joining arc. These attributes are an X &
Y offset, a relative priority and an on/off condition. The
offset repositions the offspring with respect to the parent,
the priority determines how the different offspring
obscure one another in the parent pad and the on/off
switch enables or disables the arc. The CN.insert
procedure builds an arc of this sort and sets its switch on.

3.1. Pad visibility

It will normally be the case that arcs leaving a given parent
will carry different values for their priority attributes. The
software will than arrange for the hardware to read only
the visible parts of the relevant rasters while making
video, selecting the data which belongs to the arc of higher
priority when overlap occurs. However, provided the
rasters are held in disjoint planes of memory, two (or
more) arcs may carry the same priority, and in this case
the hardware will read from both (all) of the relevant
rasters in the overlapping areas. The pixel values from the
constituent rasters are combined and used to index an
additional look-up table, unique to that particular
overlap. If, say, three pads A, B and C have arcs of equal
priority in some common parent, then a separate look-up
table can be set up for A-B overlap, A-C overlap, B-C
overlap, and A-B-C overlap (as well of course as for the
three pads alone). This gives a comprehensive facility for
defining the effects desired in the areas of overlap. We can
make pads seem transparent to one another, one can
recolour another, or even behave as if in front of another
for some pixel values, and behind it for other pixel values.
For want of a better word, we refer to all of these as
‘transparent’ pads. As pads move over one another,
transparency causes the well-known effects? obtainable
from look-up table indirections to be given a new lease
of life. For example, clipping arbitrary polygons against
one another can be achieved as quickly as pads can
move — much faster than the clipped result could be
computed by geometry. It is even possible to do away with
the z-buffer for handling visibility in three dimensions,
putting instead the obscuring rule in the look-up table.
However, the size of this table (4096 entries) on the
Rainbow Display precludes this use for anything other
than demonstration-sized pictures.

The pad structure as described allows many different
effects to be produced. Consider Fig. 5, which illustrates

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 69

¥20¢2 I4dy 60 U0 1senb Aq 960891/89/1/82/2I01e/|ufWwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



B.A.STYNE, T. R.KING AND N.E. WISEMAN

a form of schizophrenic pad ordering. Two non-terminal
pads each show translated and clipped views of the rasters
in pads C and D. However, D obscures C in one case,
whereas D is obscured by C in the other.

Fig. 6 shows how pads may interfere. Suppose we set
up look-up tables for the two pads as follows:

~A & ~B=0,
~A & B=Pb,
A& ~B=Pa,
A & B = f(Pa, Pb),

where Pa, Pb refer to pixel values in pads A and B. In
this case f(Pa, Pb) is some combinational function of the
pixel values in A, B. Since the look-up table gives us an
entry for each minterm of the input variables (if there are
m, n bits per pixel in A, B respectively then the look-up
table will be of 2m+n entries), every possible interaction
between A and B can be specified. In particular, suppose
that A contains an image anti-aliased against its (null)
background, and that A is to be moved over B with its
soft edges correctly blended with the differing colours in
B. All we have to do is set f(Pa, Pb) to be the required
blending function, such as:

A & B= FPa+(l1—F)Pb

(F could, for example, be the pixel value in A normalized
to cover the range 0-1). This idea seems rather good
because the anti-aliasing computation is done just once
and the blending is automatic (and therefore immediate).

Using the same idea we can arrange to support pads
of non-rectangular boundary. Consider Fig. 7, where A
and B represent the rasters of data to be displayed and
I is a mask pad fully overlapping with A and containing
a one-bit-deep raster carrying a filled polygon of the shape
desired. The lookup tables are organized thus:

~A& ~B=0

~A & B=Pb

A& ~B=Pi=0->0, Pa

A & B=Pi=0—>Pb, Zb>Za— >Pb, Pa

The values Za and Zb refer to the desired priorities for
the masked pad A and pad B. Note that in this case they
are not the values carried by arc attributes in the pad
structure, but are used to specify the lookup table
contents. Note also that the pad A and its mask pad I will
always totally overlap (they will be moved about in
unison), so there is no need to specify lookup tables for
A & ~Ior ~A & 1. The effect achieved is of a pad with
arbitrary shape — that of the mask I. Of course the mask
can be several disjoint polygons, or an inverted thing
which cuts holes of an arbitrary shape in the underlying
raster A.

4. PAD STRUCTURE MAINTENANCE

A variety of cluster manipulation procedures are
provided by the interface for the purpose of reconfiguring
the pad structure so that nodes of the structure may be
moved about, resized or reconstructed by a client
program. The processing involved in taking a pad
structure update into a corresponding screen update is
described below and consists of three operations. The first
operation is a recompilation of the ‘source band
structure’ which is a data structure maintained in the

70 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

M 68000 main memory and which essentially is a list of
the bands that are present in the picture. The second
operation is the generation from this list of a new ‘object
band structure’ which is in a convenient form for the
display processor to interpret and which is constructed in
the graphics memory of the display processor itself. The
third operation is the display processor interpreting the
new band structure.

4.1. Recompilation of the source band structure

Once a cluster manipulation procedure has changed the
pad structure it must cause the source band structure to
be altered accordingly. It does this by considering the
picture update to be a sequence of simple operations on
single pads of the type insert, remove, move, and
recalculate context value. Since the response time of the
screen update is to a large extent dependent on the speed
with which this can be done, efficiency of code is
important.

The basic philosophy which was adopted is that, since
bands are represented as linked lists which are
computationally quite expensive objects to construct and
that, since a typical screen update may well only affect a
minority of the bands present, then bands should be
allowed to persist until directly affected by a screen
update. Moreover, a band should be re-used whenever
possible such as, for example, when it expands or shrinks
or is split up. A table of pointers is maintained which
maps the top and bottom lines of clusters on the screen
into the linked list which represents the bands they fall
across so that it is a simple matter, given a pad to be
inserted or removed, to find the bands which need to be
adjusted.

4.2. Regeneration of the object band structure

All the structural changes having been completed, a call
to CN.Display is made in order to cause the new
picture to be put on the screen. This procedure scans the
source band structure and produces as output a list of new
band descriptors, each band descriptor itself consisting of
a sub-list of rectangle descriptors.

A rectangle descriptor defines a rectangular area of
screen upon which is shown an image formed by the
parallel composition of up to eight planes of contiguous
bit-map. It holds pointers to the areas of graphics
memory contributing to this rectangle and a value
representing the number of bits by which the data
extracted from these areas of memory should be offset,
with respect to their word-alignment in memory, in order
for the image correctly to be aligned on the screen.
Information relating the physical location of a memory
plane in which an image resides with the logical
bit-position in a pixel for which it is responsible is also
stored here, as is a value, known as the context word,
which augments the pixel values for this rectangle in a
particular way. A field representing the width of the
rectangle in pixels completes the rectangle description.

A band descriptor is completed by having two more
fields, one saying how many scan lines high the band is
and one saying how many rectangles it contains. Two lists
of this kind are maintained in the graphics memory to
double-buffer the updates. One is the band structure

¥20¢2 I4dy 60 U0 1senb Aq 960891/89/1/82/2I01e/|ufWwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



PAD STRUCTURES FOR THE RAINBOW WORKSTATION

currently being interpreted by the display processor and
the other is the new band structure currently being
generated by the CN.Display() procedure. When
construction is complete CN . Display() updates a band
structure root pointer so that it refers to the new
structure.

4.3. Interpretation of the object band structure

During normal operation the display processor is running
one of eight possible tasks as described in ref. 1. Two such
are the frame flyback and video tasks. The frame flyback
task runs once at the end of each frame time and takes
a copy of the band structure root pointer. When the video
task is awakened at the start of the next frame it uses this
copy to find the correct band structure to interpret.

When the first band is found its height is copied and
thereafter, at the start of every subsequent line of video
shown, the copy is decremented until it reaches zero, when
it is time to look for the next band. If the last line of the
band is the last of an even field then no more rectangles
are interpreted until the next frame time.

At the start of each scan line within a band the first
rectangle descriptor for that band is read out, the control
information is dispatched to the display hardware and the
width information used to determine for how long the
video for this rectangle should be generated until the next
descriptor is read out. When the last rectangle descriptor
for this band has been interpreted in this way the video
task suspends itself until the next line time.

S. PERFORMANCE

To attempt a quantitative comparison of the display
dynamics with that of other systems is very difficult. Some
screen images favour the Rainbow hardware and appear
very responsive — these are not the same images which
would work best on a different architecture. It seemed to
us that a single set of tests should be reported to give an
impression (no more) of what the system can do, and to
rely on the reader’s judgement of how the speed,
flexibility and power balance has turned out.

The band structure computation tends to dominate the
display update time, and this is simpler for fewer numbers
of pads, however big or deep they may be. Using a
raster-op (bitblt) approach the bigger deeper pads would
take the longer time, so our best case for comparative
performance is one large pad of 8-bit-deep pixels moved
over a blank screen. Our worst case for comparison is,
conversely, moving a small pad through a sea of other
small pads, for which a raster-op method would be better.
In Table 1 we compare the time in field ticks (fiftieths of
a second) to move a pad of the stated size along an
oblique line stretching over the whole screen height (576
pixels) in single pixel steps. The screen also carries an
array of the stated number of stationary pads of a similar
size spaced along a screen diameter. All pads are square
and 8 bits deep.

The equivalent raster-op would in the most favourable
(for us) comparison require some 100 Mbytes per second

Table 1
Pad size
No. of pads 50 200 500
1 165 164 149
2 181 194 174
3 222 306 313
6 312 577 653

of data movement in memory. In the test there was no
waiting for a frame tick interrupt before starting the
recomputation, so all figures less than 576 would, in
practice, be replaced by 576. One does not update the
screen twice in a single field!

The remaining illustrations (Figs 8—14) show examples
of the effects of ‘transparency’ and give some idea of the
image quality. The use of anti-aliasing (not shown)
improves the visibility of fine detail and makes for a more
restful and steady picture. Many visitors are surprised
that the standard TV line rates and resolution can look
so good.

6. CONCLUSIONS

The basic facilities needed to establish a comprehensive
workstation function are complete. Working these
facilities into a production quality suite of programs is
presently under way, and will, it is hoped, form the basis
for a further publishable paper. The intention is to form
links between host and terminal through remote pro-
cedure call and remote tasking, and a version of the
library for supporting the pad structure remotely in this
way is already beginning to work.

The Rainbow Workstation was designed to experiment
with the particular method described for mapping pads
in memory to their screen positions. It is not well
equipped to generate image data in pads very rapidly and
for general high performance it perhaps should have both
bitblt and mapping hardware. The earlier paper about it!
is more specific on these issues. Nevertheless, the
equipment is able to function as a workstation of unusual
power and flexibility and, through collaboration with our
colleagues in industry, we expect that improved versions
will be built which retain the major features of the design.

Acknowledgements

Besides our colleagues in the department, we would like
to record thanks to David Otway and Arthur Foster at
GEC Hirst Research Centre for their support and GEC
itself for assistance with the cost of colour printing the
illustrations for this paper and for financial support for
the continued development of the project. One of us
(BAS) was supported by the ICL Research Studentship
and a grant from the Committee of Vice Chancellors &
Principals.

THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985 71

¥20¢2 I4dy 60 U0 1senb Aq 960891/89/1/82/2I01e/|ufWwoo/woo dno-olwspede//:sdiy Wolj papeojumo(q



B.A.STYNE, T.R.KING AND N.E. WISEMAN

REFERENCES
1. A.J. Wilkes, D. W. Singer, J.. Gibbons, T.R. King, P.

Robinson and N. E. Wiseman, The Rainbow Workstation.
The Computer Journal 27, 2 (1984).

. C. P. Thacker, E. M. McCreight, B. W. Lampson, R.F.
Sproull and D. R. Boggs, Alto: a personal computer. In
Computer Structures: Readings and Examples (edited
O. Siewiorek, G. Bell and A. Newell). McGraw-Hill, New
York (2nd edition 1981).

. PERQ ~ A Landmark Computer System. Three Rivers
Computer Corporation, Pittsburgh, Pa. (1979).

72 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

4. Apollo Domain Architecture. Technical Report, Apollo

5.

Computer Inc., Chelmsford, Mass. (1981).

A. Bechtolsheim and F. Basket, High-performance raster
graphics for microcomputer systems, Proceedings SIG-
GRAPH 80 . In Computer Graphics 14, 3 (1980).

. Xerox’s Star, The Seybold Report 10, 16 (1981).
- I. Pageand A. Walsby, Highly dynamic text display system.

Microprocessors and Microsystems 3, 2, 73-76 (1979).

- R. Pike, Graphics in overlapping bitmap layers. ACM

Trans. Graphics 2, 2 (1983).

. J. D. Foley and A. van Dam, Fundamentals of Interactive

Computer Graphics. Addison-Wesley, London (1982).

¥20¢ I4dy 60 U0 1sonb Aq 960891/89/1/82/2101e/|ufWwoo/woo dno-olwspede//:sdiy wolj papeojumoq



