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Quadtrees appear attractive as an alternative to fixed-cell-size representations for areal entities in geographic
information systems. This paper considers some aspects of use of linear quadtrees in such applications. Compaction
(reduction of a quadtree to its maximal leaves) is desirable to Qrinimise space requirements and to simplify some basic
operations. An algorithm for compaction as an adjunct to quadtree-generating processes is presented, with analysis
showing it to be linear with the sizes of the input and compacted quadtrees. Some simple forms of set operations are also

described.

1. INTRODUCTION

The quadtree'? is a form of cellular region representation
found effective in such fields as graphics'® '® and image
processing.1®-® It can be viewed as a variant of the usual
fixed-cell-size representation which offers high compres-
sions in the number of cells required to represent an
image® while retaining the simplicity of operations on
cellular representations. The quadtree representation is
based on a regular hierarchical decomposition of a square
region into subquadrants with the decomposition
conveniently shown as a tree of outdegree 4 with each
node corresponding to a subquadrant of side length 2-™,
where m is the depth (or level) of the node designating
the root (the whole) region as level 0. A binary-coded
image can be mapped by colouring each node black if the
corresponding subquadrant lies wholly within the image,
white if wholly outside and grey otherwise. Clearly if a
node is black or white all its descendants must be of the
same colour and the node is treated as a leaf. In practice
it is usual to truncate the tree at a level L, where 2L
corresponds to a desired precision of representation.

Quadtree concepts have received a certain degree of
attention in geographic information systems (GIS).14.17
Their usage has largely been restricted to providing
mechanisms for addressing spatially defined entities by
location. For example, Tamminen!’ forms subsets of
entities with each subset (of not more than a specified
number of entities) contained within a subquadrant.
However, use of the quadtree to represent the entities also
appears attractive as a means of providing an equivalent
set of facilities to a fixed-cell-size representation, while
retaining the quadtree’s greater efficiency in usage of
storage and some operations.

While a number of design choices appear open, a direct
application is to represent a spatial entity by one quadtree
for each value the attribute can take. That is, an attribute
taking p values over the region could be held as a set of
p binary-coded quadtrees so that each quadtree cor-
responds to a mapping of a value for an attribute over
the region. The quadtrees could be accessed by keys
derived from the attribute name and the value and
possibly by a form of locational key such as that proposed
by Abel and Smith.?

The linear quadtree®- 2 appears to be a suitable form of
the quadtree under this approach. This form essentially
represents the quadtree as a list of its black nodes, with
anode identified by a unique key derived from its ordered

list of ancestors and with the list of nodes sequenced by
that key. The formulation of the key is chosen to enable
the keys of nodes bearing adjacency (neighbour) and
ancestor/descendant relationships to a given node to be
evaluated by arithmetic operations on the key of the node.
Examination of a node is then equivalent to determination
of its colour. This can be performed by searching the list
for the node or an ancestor (with the node black if it is
present) with inference required to determine if a node
absent from the list is white or grey. Abel?? offers
formulations for a set of elemental operations on nodes
and on linear quadtrees.

The linear quadtree appears more attractive than a
pointer data structure for the GIS proposed. Gargantini®
presents an analysis showing the linear quadtree to be
more economical in its space requirements. Where
disk-resident quadtrees must be considered, the linear
quadtree can be readily indexed by a B-tree® to provide
efficient access to nodes for such elemental operations as
examination of neighbours of a given node. While the
combined space requirements of the B-tree and linear
quadtree can then exceed those of the pointer data
structure, the B-tree’s worst-case query cost in disk
accesses is 0(log N), where N is the number of black nodes
in the linear quadtree. In contrast the pointer data
structure is unsuited to disk-resident quadtrees and has
worst-case costs of some elemental operations of 2L.1¢-1
While encoded forms of quadtrees!! are more space-
efficient than the linear quadtree, these suffer the same
disadvantages as the pointer structures when disk storage
is required and are essentially oriented towards sequential
operations on the whole quadtree.

This paper considers two aspects relevant to the
generation and management of areal entities represented
by quadtrees in a GIS. First, a process for compacting?
a quadtree is presented. Some processes do not necessarily
generate a quadtree whose leaves are of maximal size. For
example, if a quadtree is generated by performing a union
of two quadtrees, the quadtree might include the four
sons of a node, all of the same colour. It is clearly more
efficient in terms of space to replace the fours sons by their
father. Additionally some operations on linear quadtrees
are made more complex if internal (non-leaf) nodes are
permitted to be black, white or grey rather than grey only.
If all internal nodes are grey, then a node absent from the
list and with no ancestor appearing in the list must be
white or grey, with these conditions distinguished by the
presence of descendants of the node in the list (in which
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case the node is grey). If absent nodes can be black, and
if some descendants of the queried node appear in the list,
then all those descendants must be examined to prove or
disprove the node as black. The process of reducing a
quadtree to its maximal leaves is termed ‘compaction’ by
Hunter.2 Woodwark!® refers to an analogous process as
‘reassembly’ while Gargantini® terms the process
‘compression’.

Secondly, the paper also considers some set operations
(union, intersection and difference) on quadtrees. These
are of particular importance as such GIS operations as
overlaying can be framed as combinations of these set
operations.!> While algorithms for some of these have
been reported,® ! the algorithms proposed here have some
advantages in their simplicity.

2. DEFINITIONS

While it will later be suggested that the algorithms can
be used with alternative forms of keys and linear
quadtrees, for simplicity of presentation the linear
quadtree will be assumed to be implemented using the
form of key defined by Abel and Smith.? Under this keys
are defined recursively as follows. Let k be the key for a
node of level m, where m is non-zero and the key for the
ancestor of k at level (m—1) be k’. Then k is given by

k = k'+ S(k) p(m)

where
S(k) = 1if k is the SW son of k’
= 2 if k is the NW son of k’
= 3 if k is the SE son of &’
= 4 if k is the NE son of k’
and

P(m) = 5L-m

Figure 1. Three-level decomposition with locational keys to
base 5.
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The key for the node of level 0 is taken as P(0). A key
thus has the general form

k=X S;(k)P(), S;€(1,2,3,4) V;(1<j<m),
j=0
S, = 1.

Fig. 1 shows keys assigned to nodes from a quadtree
decomposition with an L of 3. Note that key values have
been given to base 5; this convention is followed
throughout this paper where numeric key values are
given. The values of S will be referred to as the ‘digits’
of the key for a node.

This form of key imposes a pre-order traversal sequence
on a list of nodes held in ascending sequence by key. That
is, a node is followed immediately by its descendants.

3. COMPACTION

The algorithm presented here performs an extended form
of compaction. The usual form assumes the quadtree is
presented in a valid form. In terms of the linear quadtree,
a quadtree is valid if a node may not appear in the same
quadtree as any of its descendants. Compaction of this
style is usually performed after definition of the quadtree
by a procedure such as union which might yield the
quadtree in a valid but uncompacted form. The form
presented here allows the input quadtree to include any
set of black nodes provided that the nodes are passed
serially in ascending sequence by key. The quadtree
output is in a strictly correct form and consists of the
minimal set of black nodes which together cover all nodes
of the input set and no node not covered by members of
the input set. For example, two valid input sets of nodes
are (1310, 1320, 1330, 1340, 1410) and (1300, 1320, 1410);
both yield (1300, 1410) as the compacted quadtree.
Ramifications of this extended form will become
apparent in consideration of the set operations.

The algorithm conceptually assembles maximal nodes
in a buffer defined by two items only: a tentative node
(denoted by LANC in the Appendix, derived from largest
ancestor) which is the largest able to be formed from the
nodes passed to the buffer since the last flush together
with nodes possibly following, and the last node
(LNODE) added to the buffer. At any stage, the strict
interpretation of the buffer contents is the descendants of
the tentative node through to and including the last node
under a pre-order traversal. The buffer is established by
setting its two nodes as null. The following observations
provide controls on operation of the buffer. Let the
incoming node be k. Note that kK must have a key value
greater than LNODE as nodes are presented in ascending
sequence by key.

If k is a descendant of the last node passed, then k can
be discarded as implicitly included in the nodes in the
buffer.

If the buffer is currently empty, then the largest node
to be formed from k is the largest node of which k is a
direct SW descendant. (For example, if k is 1211, then its
largest direct SW ancestor is 1200.) Clearly any larger
ancestor must also be an ancestor of nodes already
considered or which are white by virtue of their absence
from the input list of nodes. If k is identical to the
tentative node, then & can be passed directly to the output
quadtree and the buffer retained as empty. Otherwise the
buffer is established.
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The buffer must be flushed when the tentative largest
node is proven grey. This arises when absent (white)
nodes can be detected between the last node added to the
buffer: thatis, when a pre-order traversal beginning at the
last node added and continuing to k passes through nodes
of which k is not a direct SW descendant. The flushing
process requires extraction of the descendants of the
tentative node beginning with the SW descendant of that
node and proceeding to the last node added to the buffer.
The traversal can be performed by progressing through
the siblings of the SW son of the tentative node to the
node which is an ancestor of the last node added or the
last node added itself. In an ancestor of the last node
added is encountered, the traversal is recommenced with
its SW son, and so on. When the last node added has been
reached the buffer is treated as empty and k used to
establish it.

The tentative node is proven black (i.e. complete) if
there are no white nodes between the last node added to
the buffer and k, and & is not a descendant of the tentative
node. The tentative node is then passed to the output as
asingle node and k acted upon as if the buffer were empty.

The Appendix gives a formal statement of the
algorithmasthe Pidgin ALGOL* procedures COMPACT,
FLUSH and INITBUF. Implementation requires a
number of elemental operations. Abel? presents formula-
tions for evaluation of the level of a node given its key,
for determining the son of a node in a given quadrant and
for testing a node as a descendant of another. Abel and
Smith? show that the next node in a pre-order traversal
is given by adding 1 to the digit corresponding to the level
of a current node. (That is, 1244 is followed by 1300 and
1300 by 1400.) The largest ancestor of which k is a direct
SW descendant can be evaluated by replacing any trailing
1s of the key of k by 0s. Thus for kK = 1211 the required
ancestor is 1200, and for k = 1342, 1342. The presence
of white nodes between the last node passed and k can
be tested by comparing the next node from the last node
with the largest node of which k is a direct SW
descendant; if these nodes are not identical then white
nodes are present.

The algorithm can be shown to have average solution
costs which are 0(/+ N) where I is the number of black
nodes in the input quadtree and N the number in the
compacted quadtree. We observe that, with the exception
of evaluation of the largest node of which a given node
is a direct SW descendant, the required operations require
constant time to execute provided the level of the node
isknown. Determination of the level requires examination
of the (L—m+1) digits of the key of a node of level m.
As there are 4™ nodes of level m, T the number of nodes
of all levels is trivially 222+2/3. D the total number of
digits examined in evaluating the level for all possible
nodes can similarly be shown to be 42L+3 for large L. If
all nodes of all levels are assumed equally likely to occur,
then the average number of operations to evaluate the
level of a node is T/ D, which is a constant.

A similar analysis shows the average number of
operations to evaluate largest ancestors is 4. The total
compaction process thus has average solution times linear
with 7 and N and is independent of L.

4. SET OPERATIONS

A number of subregion-subregion (i.e. area—area)
operations in a GIS can be framed as combinations of the
set operations of union, intersection and difference.
Consider, forexample, a GIS database of 20 binary-valued
linear quadtrees modelling mappings over the region of
soil types 1-10, rainfall ranges A-F and altitude ranges
1-4. A representative query could be to display the areas
suitable for wheat growing. If an area is taken to be
suitable for wheat growing if the soil type is 1 or 2, if the
rainfall is within range A and if the altitude is within
range 1, then the entity ‘area suitable for wheat’ could
be evaluated as

((soil type 1 U soil type 2) n rainfall range A)
N altitude range 1)

The ability of the extended compaction procedure to
accommodate lists of black nodes without restrictions on
the presence of descendants allows union to be performed
simply as a merge of two input quadtrees, with the nodes
from the merge passed serially for compaction. Thus a
union of the quadtrees (1200, 1310, 1320, 1330, 1410) and
(1120, 1220, 1300, 1420, 1430, 1440) would be formed by
serially forming the nodes list (1120, 1200, 1220, 1300,
1310, 1320, 1330, 1410, 1420, 1430, 1440) with com-
paction generating the quadtree (1120, 1200, 1300,
1400).

This procedure requires space only for a current
member of each of the input quadtrees, the compaction
buffer and the current node of the output quadtree. The
merge component is clearly simpler than a union forming
a valid quadtree through avoiding the need to test pairs
of nodes as a node and a descendant. While an ancestor
test is made within compaction for each incoming node
from the merged list, such a test must be made even for
the restricted sequences of nodes from a full union.

Intersection can be simply performed by extracting the
nodes common to the two input quadtrees or nodes which
are descendants of nodes in the other. This can be easily
performed as a serial process. We note that intersection
always yields nodes of maximal size, if inputs are already
compacted.

The difference of two linear quadtrees will be
recognized as the list of nodes not common to both and
with no descendant or ancestor in the other quadtree,
together with the difference of a node in the one list and
its descendants in the other. The first set of nodes can be
readily derived; attention here centres on evaluation as
a set of maximal nodes, the difference of a node and one
or more of its descendants. Evaluation can be performed
as a tree traversal in a similar way to the buffer flush for
compaction.

Let K be a node from the first quadtree and M a node
from the second, where K is an ancestor of M. Assume
for the moment that there are no other nodes in the
second quadtree which are descendants of K. The
difference between K and M can then be evaluated by a
traversal beginning at the SW son of K and continuing
until M itself or an ancestor of M is encountered. If an
ancestor of M is met, then the traversal recommences at
that ancestor’s SW son, and so on. When M is met, the
traversal recommences at the next sibling of M until a
node not a descendant of K is encountered. If there are
more descendants of K in the second quadtree, then the
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traversal is interrupted when the next descendant or one
of its ancestors is encountered, and so on.

The evaluation of the difference of two nodes will be
recognized as closely related to the inference of the white
nodes between two black nodes. The procedure advanced
here is somewhat simpler than that described by
Gargantini® for this operation. Additionally the set of
maximal nodes are generated serially in ascending
sequence by key, rather than as two distinct sets, one in
ascending sequence and the other in descending sequence.

5. DISCUSSION

The algorithms presented appear able to be modified to
accommodate different forms of keys and definitions of
the linear quadtree with only minor alterations. Clearly
the elemental operations required can be framed for other
key forms. Trivial changes would be needed where both
black and white nodes are to be represented explicitly in
the linear quadtree. Essentially a colour must be asso-
ciated with the tentative node with changes in the colour
of incoming nodes triggering a flush.
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procedure COMPACT (K):

(* COMPACT acts upon the next mode K *)

integer K, LANC, LNODE;

begin

(* If the buffer is currently empty, insert K *) Pass if
LANC = NULL then INITBUF (K)

(* Only act on K if an ancestor of it has not previously been
presented. Any such ancestor must be LNODE *)

else if ANCESTOR (K,LNODE) = FALSE

(* Flush the buffer if LANC is complete or proven grey *)
then if (ANCESTOR (K,LANC)# TRUE) or (INCR
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(LNODE) # MAXFF (K))

then begin

FLUSH (LANC, LNODE);

INITBUF (K):

end

(* Otherwise update the end of the black descendants of
LANC*)

else LNODE : =K;

end;

procedure INITBUF (K, LANC, LNODE):

(* INITBUF establishes the buffer after a flush with K as the
next node *)

integer, K, LANC, LNODE;

begin

LANC : = NULL;

LNODE : = NULL:

if K = MAXFF (K)

then PASS_TO_OUT (K)

else begin

LANC : = MAXFF (K);
LNODE : =K;

end

end;

procedure FLUSH (LANC, LNODE):

(* FLUSH identifies the maximal descendants of LANC to and
including LNODE¥*)

integer LANC, LNODE, K, K2;

begin

(* Consider the case where LANC can be passed as a single
node *)

if (LNODE = LANC) or (ANCESTOR(INCR(LNODE),
LANC) = FALSE)

then PASS_ TO_OUT (LANC)

else begin

(* Perform tree traversal by sons until an ancestor of LNODE
is reached *)

LEVK2 : = LEVEL(LANC)+1;

K2 : = SON(LANC, ‘SW’);

until (ANCESTOR(LNODE,K?2) = TRUE do

begin

PASS_TO_OUT (K2)

move to sibling of K2

end;

FLUSH (K2, LNODE);

end;

end;
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