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A large number of non-parametric clustering algorithms from a wide range of applications in the social sciences, earth
sciences, pattern recognition, and image processing, are critically appraised. These algorithms all have the common
property of seeking to use a relational — usually contiguity — constraint, in addition to proximity information. The
constraint is necessary in many applications for the visualisation of clustering results. The primary objective of this
survey is to sketch out the major algorithmic paradigms in current use, with a view towards Sacilitating the task of

algorithm design in this area.

1. INTRODUCTION

One major theme in clustering research over the past two
decades has been the automatic classification of
quantitatively described objects, without any constraint
as to which pairs of such objects might ultimately find
themselves in the same class. A second major trend in
clustering work has been where there is such an inherent
or an imposed representational constraint. This second
area of clustering arises naturally in the analysis of point
patterns, and lately it has become of increasing interest
in the analysis of data in the geo-sciences. Even though
the objectives of contiguity-constrained clustering algor-
ithms may differ in pattern recognition, image processing,
urban and regional studies, psychometrics, and so on,
underlying principles are often shared, and valuable
lessons may be learnt from other disciplines for the design
of new algorithms. In this article we review general-
purpose algorithms from these different areas. All of the
algorithms have the function of segmenting (or regional-
ising or zoning) a set of objects, each described by a
descriptor vector; or alternatively the algorithms use
contiguity information, and so can be easily adapted for
the foregoing problem. The algorithms are discussed
under three major headings but it is not to be thought that
they are only applicable in the application-areas chiefly
described (social sciences and earth sciences in Section 2;
pattern recognition and image processing in Section 3;
again, social sciences in Section 4). On the contrary, the
aim of this paper is to collect together and contrast
algorithms, any number of which might be suitable for
a given application.

Contiguity-constrained clustering uses proximities
between objects, defined in descriptor space, and also
takes into account contiguous neighbourhoods. Depend-
ing on the application, the contiguous neighbourhood is
defined in different ways (references to the various
definitions to be described can be found in the context of
the algorithms discussed below). In image processing,
where the image consists of pixels characterised by
grey-level intensity values, the eight neighbouring pixels
(east, north-east, north, etc.) are suitable candidates.
Similarly with agricultural data, the terrain which is
characterised by crop yields or chemical constituents may
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be subdivided into square parcels and the neighbourhood S

of a parcel may be defined as its eight adjacent parcels.
With point patterns, a radius may be used to define the 2
neighbourhood of point i:N(i) = {jld;; < r}, and j is said 5§
to be contiguous to i. In order to remove the influence =
of scale, a neighbourhood may alternatively be defined as =
the k nearest neighbours of an object. In general, when Z
the objects do not comprise the squares of a regular grid, §
it is convenient to express the contiguity relationship as &
a binary matrix, with a contiguity value ¢;; €10, 1} defined %
on all pairs of objects. Such a matrix can be externally o)
defined by the user, for example, in the case of ®
contiguities between bordering countries (characterized, S
perhaps, by socio-economic attributes) or other basic
spatial units.

One final approach to defining contiguity is described
in Section 2; this is where a continuous contiguity
measure is used, rather than the discrete 0—1 alternative.
In this case, the contiguity matrix may be defined as the
dissimilarites between objects in the representational
space (usually the Euclidean plane).

In Section 2 general contiguity-constrained algorithms
will be described. It will be assumed that the contiguity
relation is given here by a binary matrix, unless otherwise
mentioned. The principal algorithms discussed in this
section include the single and complete linkage hierarchi-
cal clustering methods and Ward’s minimum variance
method.

In Section 3, even though analysis of point patterns
raises very different problems from the multidimensional
clustering problem, its implicit use of contiguity
information (especially in its use of neighbourhoods)
makes it valuable for suggesting possible algorithms. As
will be seen, many of the algorithms in this area are
related to the single-linkage hierarchical clustering
method. More precisely, they construct subsets of a
minimal spanning tree, the definition of which is first
generalized for asymmetric dissimilarities. The possibility
of using algorithms motivated by those used for point
pattern analysis in other areas is further discussed in the
Conclusion.

Although the algorithms discussed for the analysis of
interaction data in Section 4 appear in practice not to
require an explicit constraint, the problems for which they
are designed share many aspects of the contiguity
problem. In particular they require geographic represent-
ation. One feature of this area is that centroid-based
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have been widely used, and this section therefore provides
an interesting case-study where the hierarchic centroid-
based algorithms of Section 2, and the single linkage-based
procedures of Section 3, have both been profitably
applied to the same problem.

2. CLUSTERING SUBJECT TO
CARTOGRAPHIC REPRESENTABILITY

One approach to the problem of contiguity-constrained
clustering is to take traditional algorithms which have
proved their worth in other areas and to enforce
geographic or planar representability by incorporating
contiguity. We will consider suggested hierarchic (and,
briefly, non-hierarchic) algorithms which work on both
objects’ coordinates in descriptor space and their
contiguity relation in (planar) representation space.
Specialised optimisation algorithms can, of course, be
designed, but contiguity-constrained algorithms which
are applicable to a wide range of types of data and
application areas will be chiefly focused on. Constraints
other than contiguity (or a similar relation) have also been
suggested. A constraint on the maximum number of
members in a cluster, for example, which is mentioned
below, may however be replaced by the a posteriori choice
of suitable clusters from a hierarchy. The problem of a
linear constraint on objects to be clustered (e.g. events in
time, or depth of geological samples) has also been
directly addressed by some authors,!3 and a solution to
this problem can be sought using the more generally
applicable techniques described in this and the following
sections.

Hierarchic, agglomerative algorithms construct a series
of partitions of the object set. With each partition, some
(possibly suboptimal) value of a compactness or
connectivity criterion is associated. If the stepwise
agglomerations are constrained to be between contiguous
clusters, the problem of inversions (reversals or non-
monotonic increase/decrease in cluster criterion value) is
likely. Thisis whend(p U q,r) * d(p, q), for three clusters
P> q and r, where p and g agglomerate to form p U ¢, and
where the measure of compactness is related to the
dissimilarity, d, between clusters. Inversions tend to be
prominent in contiguity-constrained agglomerative me-
thods since a previously forbidden merger between two
very similar classes may be permitted by changes in the
contiguity relation. The presence of inversions in a
hierarchy is disadvantageous: it makes difficult the
interpretation of partitions, and the definition of
dissimilarity between classes (see Fig. 1). Only two of the
traditional hierarchic clustering methods (many of which
may be specified in terms of the Lance-Williams
dissimilarity update formula;* see Jambu and Lebeaux?
for an extended formula) can be amended to permit
agglomerations between contiguous clusters, and simul-
taneously guarantee that no inversions will arise. These
methods are the single and complete linkage methods.

The contiguity-constrained single linkage method® is as
follows: at each agglomeration, fuse together the two
clusters of least interconnecting dissimilarity, such that
this dissimilarity is between a pair of contiguous objects.
Initially all clusters are singletons. Each agglomeration in
this method is necessarily between a pair of contiguous
objects. Therefore, given the contiguity graph where each
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Fig. 1. Alternative representations of hierarchy with an inversion
(reversal) in cluster criterion values.

edge connecting a pair of contiguous objects is weighted
by the dissimilarity (in descriptor space) between the
objects, it is seen that the minimal spanning tree of the
weighted contiguity graph may be obtained and
subsequently transformed into the single-linkage hier-
archy. A simple proof that the contiguity-constrained
single-linkage hierarchy cannot present inversions is to
replace the dissimilarities between all pairs of non-
contiguous objects by some arbitrarily large value. The
construction of the single-linkage hierarchy on this
amended set of dissimilarities is well defined (in the sense
that at all stages the traditional algorithm can be
employed and, assuming the contiguity graph is
connected, infinite dissimilarities will never be used as
cluster criterion — connectivity — values). As in the case of
the usual single-linkage method, it has been found that
this method has a pronounced tendency to ‘chain’, i.e.
to successively agglomerate singletons to one, large
cluster in each partition.”® Efficient algorithms for
constructing a constrained single-linkage hierarchy are
available in the O(n?) algorithm of Murtagh,® where 7 is
the number of objects; or if the number of contiguous
edges, m, is significantly less than #2, in the algorithms of
Cheriton and Tarjan'® or Yao!! for minimal spanning
trees. The latter algorithms require O(m log log n) worst
case time, and may be followed by the conversion of the
minimal spanning tree into the single-linkage hierarchy
in O(n) time.!? For the clustering of geographic units,
which implies that the graph will be planar, the time taken
to construct the minimal spanning tree can be further
improved to O(n) worst case time.1°

An alternative approach for contiguity-based agglo-
merative clustering allows agglomeration of any pair of
clusters such that there exists a contiguity link between
at least one member of each of the clusters. Of the major
hierarchical methods, only the complete link method
excludes the possibility of inversions when constrained in
this manner. This is proved by Ferligoj and Batagelj,1?
and an example of application of the constrained
complete linkage method to geographical regionalisation
is to be found in Fischer.8

For practical application, both the single and the
complete linkage methods suffer disadvantages, the
former being over-lax in its criterion for creating classes
and the latter being over-demanding. Ward’s minimum-
variance method has often been favoured as a generally
applicable agglomerative strategy. In the area of
contiguity-constrained clustering, a constrained version
of this method has frequently been proposed in the past
decade. Webster and Burrough! use Ward’s method
in the context of the same definition of contiguity between
classes as was used in the inversion-free constrained
complete-linkage method (i.e. dynamic or weak conti-
guity, as opposed to the strong definition of inter-
class contiguity used in the constrained single-linkage
method). The constrained minimum-variance method of
the last reference was applied to soil parcels. Openshaw!s
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similarly uses a number of definitions of compactness,
related to Ward’s minimum variance. A constrained
Ward’s method, with minor variations, is also used in
Refs. 7, 16-18. Lebart’s algorithm (and Roche’s
application to urban segmentation using sociological
data) employ also a cluster size restraint which, once
achieved, causes the cluster to be entirely removed from
all further stages of the clustering. None of these
algorithms precludes the possibility of inversions.
Ferligoj and Batagelj'? explicitly remove this possibility
by proposing two suitable sets of coefficients in the
Lance-Williams dissimilarity update formula such that
an update formula resembling that of Ward’s method is
arrived at.

All of the proposals for a constrained Ward’s method
(with the exception of the last-mentioned reference) suffer
from the difficulty inherent in interpreting a hierarchy
with inversions. Notwithstanding the greater ease of
cartographic representation, the problem of validating
the results obtained remains difficult. While the com-
pactness of clusters can be.given a precise definition
(variance of a cluster, average within-cluster distances,
etc.), attempting to simultaneously optimize compactness
and contiguity essentially requires user-specification of
the relative importance of these two objectives. This is
especially evident when another approach to incorporat-
ing contiguity information is used: two dissimilarities are
employed — the dissimilarity defined in the descriptor
space, and the geographical (or other relational) distance.
Webster and Burrough!*¢ use various additive and
multiplicative combinations of these two dissimilarities.
Perruchet!®: 20 and Murtagh?! use products of the two, but
with separate recalculation of dissimilarities for each
newly formed class. In all of these approaches, different
relative weightings of the dissimilarities used will,
evidently, entirely alter the resulting -classification.
Despite these inherent difficulties — relating to interpret-
ability, and to the need for user-intervention in
controlling the clustering — the algorithms discussed here
worked adequately for particular data sets. Further
empirical work is called for in order to ascertain which
of these algorithms are to be most recommended for
general-purpose applications.

Finally, mention will be made of non-hierarchic
algorithms. Such methods are based on a preset number
of classes; an arbitrarily defined initial partition (if no
other choice is available); and iterative relocation (or
exchange) of objects between clusters, while the partition
criterion is improved. Note however that the group to
which the object first belonged must not be disconnected;
and that the group which the object is a candidate for
joining must be contiguous to the object. Algorithms of
this type are discussed in Refs. 8, 13 and 22.

3. MODE SEEKING

Hierarchical clustering algorithms and iterative, reloca-
tory algorithms of the k-means type are generally based
on inter-object dissimilarities. In point pattern analysis
inter-point dissimilarities have also been used. Zahn’s2?
approach to distinguishing subgroups of point patterns
used the minimal spanning tree, and a number of
post-processing techniques on the minimal spanning tree
allowed analysis of a comprehensive range of types of
pattern. Two extensions of this approach have motivated
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a good deal of work: on the one uand, the minimal
spanning tree approach has been simplified by the use of
a short(est) spanning path approach which achieves many
of the same results with greater computational ease ;2426
and on the other hand, other graph-theoretic structures
have been used —in low dimensional spaces only — to
which the minimal spanning tree is often related as a
special case.?2’ % One difficulty with distance-based
procedures is that any regularity in the data may give rise
to many identical distances and to subsequent degenerate
or misleading cluster results.

In order to circumvent this difficulty, an alternative
approach has been pursued, especially for the analysis of
point patterns. This makes use of valuations on the points
under examination, with in some cases the additional use
of interpoint dissimilarities. Therefore the algorithms
may be said to be based either on node valuations alone,
or on both node valuations and edge valuations. We will
begin with algorithms in the first category.

Node weights used in pattern recognition, usually
related to a supposed probability density function of
point occurrence, have generally involved an estimate of
density at each point. Among such node weights are the
following.

(1) ING)| where N(i) = {jldy; < r}.

N(i) is the neighbourhood of point i, defined here as the
set of points within radius r of i. The weight of node i is
the cardinality of its neighbourhood (Refs. 31-33).

() 1/k  Z{dylje N@)}

where N(i) is the set of k nearest neighbours of i. The
weight of node i, here, is the average distance to the
k-nearest neighbours; it is a measure of ‘potential’, i.e.
the inverse of density (Ref. 34; see also 35).

3 L{exp(=ay/wili=1,...,n;j #i}

where w is some constant. This weight of node i is defined
with reference to all other points, distant points contribut-
ing very little (Ref. 36; a similar idea is used in Ref. 37).

(4) In a problem not related to point pattern
recognition, nodes corresponding to geographical regions
have associated weights defined by per capita income (an
analogue of point density where income replaces number
of points).38

(5) Inimage processing, nodes corresponding to pixels
may be weighted by the grey-level intensity at that point;
or by a measure of edge gradient at that pixel (the latter
may be useful for contour extraction).3®

The use of dissimilarity d in the above is almost
invariably Euclidean, the most natural choice for visual
patterns of points. Let f; be the weight associated with
node i, using any of the above definitions.

The most straightforward approach to the clustering of
node-valued graphs is to use a single threshold: nodes of
density weight greater (or potential weight less) than the
threshold are members of the same cluster, if they are in
addition contiguous to at least one other member of the
cluster. By decreasing the threshold in the case of
densities, or by increasing it in the case of potential, a
hierarchy of embedded classes is obtained which may be
represented by a generalised skyline plot similar to that
used for dendrograms (Katz and Rohlf3¢ use such a
diagram).

The clustering brought about by thresholding can also
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be expressed in terms of more traditional distance-based
clustering . Define J;; = oo if i and j are not contiguous;
otherwise define d;; = —min {f;, f;} where f'is a density.
As values of f are examined in increasing order of
magnitude, i will be connected to j only if both f; and f;
are greater than the density threshold (not to be confused
with the contiguity threshold of definition (1) above,
which is set prior to the search for clusters). This
clustering method may be viewed as a constrained
single-link method. Clustering by thresholding in the
manner described is a common technique in image
processing (see in particular the related work of Haralick
and Dinstein);*® it has been used for histogram
segmentation (further discussed below);%! and it has also
been used for wealth data for geographical regions.3®

A particular implementation, and alternative output of
the clustering, is employed by Kittler:42-43 starting with
an arbitrary node, this node is connected to a contiguous
neighbour such that -min {f;, f;}, je N(i), is maximised;
continuing from this neighbour node, all nodes in the
given set are successively processed. The succession of
values of the criterion function gives a useful idea of the
presence of modes and valleys in the point density.

The use of node weights (such as point densities,
attributes of populations or states, etc.) is an intuitively
clear starting point from which to carry out the automatic
grouping process. But the use of inter-point distances,
while being fraught with difficulty when many distances
are identical, none the less allows a more fine-tuned
analysis: for example, in the threshold-based clustering
described above, no account is taken as to whether a new
addition to a cluster is closely related to one or to many
of the cluster members. In order to allow for varying
degrees of relationship, a dissimilarity may be re-created
from the node weights. One possibility for this is to
construct directed arcs defined by J;; = f;-f; where i and
J are contiguous. Therefore if f; > f; then J;; is directed
from i to j, while if f; < f; then the arc is negatively
weighted, and so is directed from j to i. Rather than the
difference in densities, as this dissimilarity coefficient is,
the density gradient (difference in density per unit
distance) has usually been peferred.?? 33-3% This is given
by d;; = (f;-f;)/d;;, where d is the Euclidean distance and
J is again an asymmetric dissimilarity. A generalization
of the single-linkage method (or the minimal spanning
tree) has been used for such dissimilarities. It is to connect
i tojif d;; is positive and maximum among nodes j which
are contiguous to i, i.e. to construct components such that
the density gradient is always upwards. It is easily verified
that each such component is a directed tree, so long as
no J;; equals zero. In order to facilitate subsequent
labelling and other processing of the components, cycles
in the directed graph must be prevented, and arbitrarily
directed edges are formed for J;; = 0 following a test that
a cycle will not result. Note that in this approach each
component nominates a unique ‘centre’ or local peak in
density. It has also been proposed that local valleys in
density are equally revealing of structure in the data.3?
Such an alternative viewpoint of the data may be carried
out by simply defining J; as the negative of the
mode-oriented approach.

A similar approach — determining components which
are directed trees — has been used in image processing.
Narendra and Goldberg?® define as a weight at each pixel
(node) a measure of edge gradient (the edge value is the

difference in intensities between contiguous pixels; and
edge gradient is the maximum such value between a pixel
and its neighbours). Having thus a value for f;, the
asymmetric dissimilarity J;; is constructed and the
directed tree formed in the manner described above.
Another very different application of this directed forest
approach has also been successfully employed, as
follows.#4%¢ A histogram of intensities often permits
visually different parts of the image to be distinguished —
different modes in the histogram correspond to distinct,
but significantly numerous, sets of pixel intensities. The
gradient climbing procedure, used in point pattern
recognition, also allows the modes of the histogram to be
determined. Smoothing of the histogram might be
required — using for instance a 3-point moving average —
and Wharton?® suggests an ‘adaptive smoothing’ where
non-mode parts of the histogram (below a user-specified
threshold value) alone are smoothed in this way. For
4-band Landsat data, a 4-dimensional generalization of
this approach has been employed by constructing a
4-dimensional histogram. This is simply a grid of regular
cells in 4-dimensional space, each containing the
frequency of occurrence of associated 4-valued pixel
intensity vectors.

The dissimilarity constructed in the foregoing examples
has been anti-symmetric: d;; = —J;;. A different asym-
metric dissimilarity will be employed in the analysis of
flow data (Section 4). An asymmetric coefficient may also
be constructed for point pattern recognition. Such a
dissimilarity was used by Ozawa:*? J;; = f; exp (—bd;;)
where b is some scale constant. This dissimilarity will yield
different values for d;; and for J;; depending on density
defined at i/ and at j.

4. GEOGRAPHICAL INTERACTION DATA

Transaction flow matrices are square, asymmetric
matrices which arise in many of the social sciences.
Examples of the flows or interactions involved in such
tables are industrial inputs and outputs, journal citations,
internal migrations, occupational mobility and trip
distributions.#® In the last three of these areas of
application, we might wish to relate the clusters found to
the geographic locations of the basic spatial units which
the flows refer to. Therefore contiguous clusters of basic
spatial units are often required. Two types of clustering
problem may be considered. Consider the case of journey-
to-work data, with a given set of zones and associated
numbers of cross-boundary journeys. We may wish to
ascertain nodal or ‘central’ zones (i.e. those that receive
large numbers of workers), or alternatively to carry out a
regionalisation of the given zones into a smaller set of
homogeneous areas. For these two different problems,
two approaches have been suggested. A variant of the
single-linkage method has been proposed for the former
problem - the determining of nodal zones. Faithful repre-
sentation of the asymmetric character of the interaction
matrix is the primary objective, and one disadvantage of
this approach is the ‘chaining’ side-effect of single-
linkage clustering. For the second problem - creating
homogeneous zones — variants of the average linkage
method have been used. A disadvantage here is the con-
flict between the clusters of zones and the often asym-
metric characteristics of these zones (i.e. inflows greater
than outflows or vice versa).
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In both cases a standardisation of the given flows is
carried out, in order to adjust for disproportionate flow
in large zones. In the case of the compact clustering, this
has been achieved by dividing every element of the flow
array by the corresponding row and column sums. In the
case of the directed single-linkage procedure, this
standardisation is iterated — row and column sums are
recalculated until they are equal.

The directed linkage procedure involves one of three
generalizations of the single-linkage method for dealing
with asymmetric proximities (here: the standardized
flows) discussed by Hubert.#® The strong components of
the directed graph are the sets of mutually reachable
nodes (or zones): each node can be reached from another
in the same component if there is a series of consistently
directed arcs from one to the other. As in the case of the
single-linkage method, a dendrogram may be constructed,
corresponding to the components formed at differing
thresholds of proximity. This approach to the clustering
of flow data has been used in Refs. 48, 50-52. An efficient
algorithm for obtaining the strong components at any
given level has been discussed by Tarjan:*® for a
directed graph of m arcs and n nodes, this algorithm
allows the hierarchy to be obtained in O(m log n) time.

For constructing a hierarchy of compact clusters, an
algorithm proposed by Domenges is as follows.* A
symmetric matrix is constructed by summing the (i, j)th
and (j, i)th elements, for all i and j. Next, the symmetric
matrix is standardised in the manner described above by
dividing the (i, j)th element by the product of the
associated row and column sums. Finally the sequence of
agglomerations takes place by successively seeking the
greatest standardised symmetric flow between regions.
Let the symmetric matrix be defined from the given flow
matrix by s;; = f;;+f;;- When an agglomeration takes
place, the (unstandardised) flows to and from the new
region, ¢, equal the sum of flows to and from the
sub-clustersaand b: s, = s, + Sy, fOr any other region,
¢’. If s, and s, are the totals of rows c and ¢’ (or columns:
the matrix has been made symmetric before all
agglomerations), then the agglomerations take place on
standardised values, s*:

s:c' = See'/SeSer
= (sac' + sbc')/scsc'
= (s!zszc' +_sbsgc’)/sc_ .
(simply introducing cancelling terms)

and since s, = s, +5,, the above expression resembles the
Lance-Williams update formula for the average linkage
(group average or UPGMA) method. The ‘intramax’
method used by Masser and Scheurwater®® is similar but
not identical to the foregoing: standardisation is firstly
carried out on the asymmetric data; a symmetric matrix
is obtained from this standardised matrix; following
agglomeration of the two zones of maximum standardised
symmetric flow, the initial asymmetric flow matrix is
updated according to: f,, = foo +for aNd fro = fora +/eps
where ¢c=a U b and ¢ is any other region. The
asymmetric flows matrix (now of row and column
dimensions one less than formerly) is standardised as
previously, made symmetric, and a further agglomeration
carried out. In summary, whereas the algorithm of
Domengeés may be said to consist of the sequence of
operations: make symmetric, standardise, and success-
ively carry out all agglomerations, the algorithm of
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Masser and Scheurwater consists of: standardise, make
symmetric, agglomerate, adjust original matrix, re-
standardise, make symmetric, agglomerate, and so on.
Other alternative formulations of this algorithm have
also been described by Masser and Brown®® and Hirst.??

If required, it would be a trivial matter to incorporate
a contiguity constraint into the directed single-linkage
algorithm. In the case of the variant of the average
linkage method proposed by Masser and Brown,*® a
contiguity constraint was included, but —the authors
state — it was found to have no effect whatsoever on the
resulting hierarchy. Barring possible computational
advantages, it appears that the introduction of a
contiguity constraint is not always necessary in the
analysis of geographical interaction flow data, since most
clusters (whether of the connected or compact type) are
inherently contiguous.

5. CONCLUSION

For general-purpose constrained clustering, the algor-
ithms described in this article fall into two broad classes:
wemay choose a centroid-based agglomerative algorithm,
which attempts to construct compact clusters, but with
such attendant difficulties as interpretability due to
inversions or losing the given asymmetric character of
dissimilarities; or, alternatively, we may use a single-
linkage related algorithm, with the chaining disadvantage.
These approaches might frequently be complementary
since they have somewhat different objectives.

Two illustrative problems and algorithmic solutions,
using the material in this article, are as follows.

Aclearexample of the contiguity-constrained clustering
problem is the grouping of people/areas on the basis of
some given set of socio-economic attributes. It might be
expected that the objects of analysis which come from
major urban areas would be grouped together. Consider
now the presence of a contiguity constraint: the resulting
clustering ought to clearly demarcate the urban areas, and
instead group with them their respective hinterlands. The
image which comes most readily to mind is one of modes
or peaks. Thus the possibility of using techniques
designed for mode seeking (Section 3), through the
conversion of the attribute vectors into real-valued
weights, or through adaptation of the density gradient
dissimilarity.

For taking time into account in a clustering, a
variance-based agglomerative approach (Section 2) with
a contiguity matrix could be employed; so also could a
mode-seeking approach (Section 3), where an asymmetric
dissimilarity is defined between objects which are
contiguous or adjacent in time.

Contiguity-constrained clustering has not been seen
widely to date as an important development in clustering
(a notable exception is Gordon).%® In this article we have
attempted to show that clustering of this kind has been
implicitly used for some time in, amongst other areas,
point pattern recognition. We have also attempted to
show that a fundamental choice in contiguity-constrained
clustering algorithms is between compactness criteria
versus connectivity criteria (in this, we follow Fischer).?
Finally we have attempted to lay out recent work in a
framework which, we hope, will facilitate the practical
choice of appropriate algorithms, and lead to further
theoretical and empirical results in this area.
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Memorial University of Newfoundland

Department of Computer Science
St John’s, Newfoundland, Canada

Faculty Appointments

Applications are invited for several tenure-track faculty positions at all academic ranks as well as visiting
positions. Applications from holders of NSERC Research Fellowships would be especially welcome for
visiting positions. Candidates from all areas of Computer Science will be considered.

Applicants for senior positions should have a Ph.D. in Computer Science or closely related area with
a well established record of research achievement. Applicants for junior positions should have a Ph.D. in
Computer Science or be nearing completion of a Ph.D.

The department is anxious to build a strong research component into a rapidly expanding department.
Applicants will be expected to assist in strengthening an existing M.Sc. programme. In addition to conducting
research and supervision of graduate students, responsibilities will include teaching at the graduate and
undergraduate level. Decreased teaching loads are possible for those applicants who have a strong research
potential.

Departmental computing is primarily supported by a VAX 11/780 and a VAX 11/750 running under 4.2
BSD UNIX Operating System. Graphics facilities include an M68000-based colour graphics workstation
plus a PDP 11/34-based vector refresh graphics workstation, both of which run under UNIX. Two
bitmapped graphics terminals, a colour graphics terminal, a plotter and a line printer/plotter provide
additional support. Our department is a member of the UNIX net, via Datapac. Our microprocessor lab
is centered around the Explorer 8088 microprocessor development system. In addition University Computing
Services offers access to an AMDAHL 470 V6-I1 and an AMDAHL 5860 running MVS, VAX 11/780s
running VMS and UNIX, and a PDP 11/70 and 11/40 running RSTS.

Salary will be commensurate with qualifications. Appointments will begin at the earliest possible date.

To be considered for one of these positions please send your curriculum vitae and the names and addresses
of three referees to: '

Professor J. M. Foltz, Head
Department of Computer Science
Memorial University of Newfoundland
St John’s, Newfoundland
Canada A1C 587

In accordance with Canadian Immigration regulations, first consideration will be given to those applicants
who at the time of application are legally eligible to work in Canada for the period covered by this position.
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