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This paper continues analysis of the model of arithmetic stack behaviour set up in Goodwin (1977),' and further
investigated in Goodwin (1980).* It studies a certain type of condition computable at compile time under which an

infinity of program runs may use the stack without underflow.

1. INTRODUCTION

In Goodwin (1977) a model of the behaviour of
arithmetic stack lengths at program execution time was
proposed, and analysis was begun. This was continued in
Goodwin (1980), and a further development is presented
here. While the latter paper discussed conditions under
which an infinity of different strings could all be
accommodated on a stack of finite length, the present
article begins to consider the same question when the
stack may be indefinitely long, but while underflow is still
not permitted.

The author is aware of two applications of the model
under discussion, including arithmetic stack behaviour,
and suspects and hopes that others may be found where
the theory is of more practical use. Essentially it concerns
the fluctuating numeric value of a single scalar quantity
(cf. the number of cells on the stack), as it is affected by
successive elements of a string which is somehow
generated under the rules of a context-free grammar. For
the arithmetic stack application it was shown that a
program written in one of many programming languages
could itself be regarded as a context-free grammar for the
purpose of this work. Thus the examination of grammars
discussed here corresponds to compile-time examination
of the program text. Furthermore, a string generated by
such a grammar corresponds to one particular run of a
program, as it deposits and removes cells from the stack.

2. NOTATION AND CONCEPTS

This paper relies to a certain extent on the concepts and
notation of the previous two, but a brief account of useful
ideas is given here. Theorem and lemma numbers are
continued. Theorems 1-6 and Lemmas 1-4 are in
Goodwin (1977). Theorems 7-16 and Lemmas 5-6 are in
Goodwin (1980).

In the examples of formal grammars and strings,
non-terminals are denoted by capitals, and ordinary
terminals and strings of symbols by small letters.
Ordinary terminals are each deemed to deposit one item
on the stack. The special terminal C removes one item
from the stack. This could correspond to a transfer-to-
store instruction in the run-time arithmetic stack
application, or to an addition or other operation which
combined two items on the stack into one. The particular
grammar under discussion is called G.

A ‘cycle’ is used in the sense of a number of

* Address for correspondence: 2 West Lawn, Bearwood College,
Wokingham, Berks., RG11 5BH.

production-rule applications which together generate uSv
from S, where u and v are strings of terminals and
non-terminals. The ‘length’ of a cycle C is the number
of cells thatuand v together add to the stack. The left-hand
length (1hl) of a cycle is the number of cells that u alone
adds. These lengths may vary depending on the
expansions into terminals of the non-terminals of u and
v. 17(C) and 1h1=(C) denote the lower bounds, if any, of
all these lengths. ‘Basic’ cycles are a finite set of cycles
from which all cycles may be generated.

3. SOME SUFFICIENT CONDITIONS FOR
AN INFINITY OF STRINGS

Theorem 4 states that, if every basic cycle of a grammar
G always has non-negative left-hand and total lengths,
then there is a lower limit of stack length which is always
exceeded by every string of G during its deposition on the
stack. (The possibility of negative stack lengths is
allowed - this could be practical if one string were being
deposited on top of another on a physical stack.)
For example, for the grammar

S —»aSb
Sof

the cycle Cis S — aSb, and the strings generated are a*fb®,
for n > 0. These all have minimum length 1 during
deposition. (This is attained after the first ‘a’ is deposited
on the stack) Here 1hl(C)=1(a)=1, and
1(C) = I(ab) = 2. The whole infinity of strings generated
by G are subject to the minimum length. However, the
conditions of Theorem 4 can be considerably relaxed
without removing the existence of an infinity of
acceptable strings, although not all the strings of G would
then have the property.

One relaxation of the conditions would be to stipulate
just ‘for at least one’ of the basic cycles C of G that
IhI(C) >=0 and 17(C)>=0. Then the example
grammar could be changed to

S - aSb
S—>CS
S—of

and there would still be the acceptable infinity of strings
a"fb", even though there would be others (e.g. the strings
Cnf) with no lower stack bound.

A further relaxation would be that for the particular
basic cycle C the given condition need not apply to all its
terminal derivations. For example,
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S - MSN
M-oa
M->C
N-b
N-CC
S>f.
This grammar has one cycle S - MSN.
I C)=1 if M-a
=—1 if M->C
I(C)=2 if M->a and N -b,
but I(C)=-3 if M->C and N - CC.

Thus while 1hI=(C)=—1 and 17(C) =—-3 are both
unacceptably low limits, nevertheless, if M —a and
N — b, then the cycle still generates the acceptable infinity
afbn, as before.

It is not even necessary for any basic cycle to have both
its length and left-hand length non-negative; for example,

S - aSCC
S - CSbb
S—>d.

Here each recursive rule defines a basic cycle, but neither
satisfies both conditions. However, if applied alternately
they form a non-basic or ‘composed’ cycle which
generates the acceptable strings (aC)® d(bbCC)». This
latter kind of behaviour is the case where the stack is
bounded above as well as below and Theorem 14 applies:
‘G is infinitely stack-bounded in some interval [L,, L,] if
and only if there exists a cycle C, not necessarily basic,
such that 1(C) = 0 and 1hl(C) = 0.” However, while the
conditions 1(C) > =0 and 1hl(C) > =0 are sufficient
when the upper bound is removed, they are certainly not
necessary. The remainder of this paper goes on to discuss
more general sufficient conditions.

4. CO-OPERATING CYCLES

The new conditions can be illustrated in a simple example
obtained by modifying the grammar given above:

S - aSCC
S->T
T — CTbb
T-d.

The terminal strings are a™C"d(bb)* (CC)™, of which
those with m = n are acceptable. It is interesting to
compare the former strings (aC)" d(bbCC)", from the
previous grammar, with the new acceptable strings
anCnd(bb)" (CC)". In the former case the repeating groups
were aC and bbCC, both of zero length, so that as n
increased indefinitely the stack length remained bounded.
However, the new strings begin with a», whose length
increases indefinitely with n. Thus in the new grammar
although the cycles cannot be combined to form a
composed cycle, they nevertheless ‘co-operate’ together
to maintain stack-boundedness below, at the cost of
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unboundedness above. This is despite the fact that neither
cycle has both the properties 1hl(C) > = 0and 1(C) > = 0.

Co-operating cycles arise when they are ‘chained’
together, as in the second rule of the above grammar.
Another example could be

S - aaSCCCC

S->T

T - CTbb

T - eUf

U - CUgg

U-h
with strings (aa)™ C"eCPh(gg)® f(bb)" (CCCC)™, which
do not underflow the stack if m = n+p. Here the Sand T

cycles (rules 1 and 3) are chained together by the rule
S > T, and the T and U cycles are linked by T — eUf.

5. CHAINS OF CO-OPERATING CYCLES

Investigated now is the question ‘What conditions must
be placed on a linear chain of co-operating cycles in order
for it to yield an infinity of acceptable strings?’ Certainly
any such cycle chain has only a finite number of cycles
in it (repeats excluded). This is because the graph G of
any grammar is essentially finite, and the cycles discussed
correspond to disjoint loops in G. Hence each cycle has
different non-terminals of G in it. The general case is
where the relevant parts of the grammar yield the
relationships:

S='>y,lel
N;=u, N,v,
N,=y,N,z,
N,=u,N,v,
Ny=y,N;z,

N3 =u; Nyv,

N,=u,N,v,

N, =w.

Here the y, z, w, u and v symbols stand for strings of
terminal symbols, and also, for brevity and without
undue confusion, for the lengths of those strings. Now let
the ith cycle be repeated x; times. Then the strings
generated are:

V1 U Yo UG Yo UTS ... Y Unn WUTR Zp Uyl Zpy g

Z. xZ
05z 0%z

Now let the desired lowest acceptable stack length be L
(of course this is often zero or one). Consider what
happens at all stages during the deposition of such a string
on the stack. To do this it is only necessary to look at the
stack length at certain critical points, as indicated below
by the vertical bars:

nlufr|y,lugz|...,
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and so on. Hence are derived a set of inequalities which
must all be satisfied:

Y >=1L
Ntupx, >=L
Ntux,+y, >=1L
Vitu X +y,+uy X, >=L
Nntu x,+y,+uy xo+... .. +y,+u,x, >=1L

Nntux;+y,tu, x,+...+...+y,tu, x,+w>=1>L
ntux;+y,tu, x,+...+...
+VatUp+yn) X, +w>=1L
Ntu X, +y,tuy xo+.. 4.
+(Vatza)+ Uy +vy)x,+w>=L

nruxi+.o Uy 0, ) X0
+()’n+zn)+(un+v,,)xn+w> =L

n+z)++o)x+. + Uy +0,-) Xy
+(nt+z)+ U, +v)x,+w>=1L

Now let

py=max(L—y,, L—(y,+y,)

Py =max(L—(y,+y2), L—(y1+y:+3)

i+1

i
pi=max<L—Zy,,L—Z y,), for i<n
1 1

and
n n

DPn = max(L—Z Vp L=X y,—w).
1 1

Also let

n n
9, = max(L—Z Vp—w, L—% y,—w—z,,)
1 1

n n
dn-1 = max(L—Z Yr—=W—2Zp, L_§ yr_w_(zn+zn—l))
1

and
n

n n n
q; = max(L—Z Vr=w—2X z,, L=Y y,—w—X z,),
(3

1 i+1 1

for l=<i<n.

Then, ignoring y, > = L, an obvious pre-condition of any
solution, the inequalities reduce to

U X, >=Dn
Uy Xy +uy x, > =D,
Uy Xy + Uy Xp+ Uy X5 >=p3
Uy X F U X+ ...+ U X; >=p;

Uy Xy t+ug Xg+ ... fu; x;+ .o fu, X, >=pp,
Uy Xy FUg Xo+ ... F U X+ Uy X+ U, X,
> =Pn

Uy X+ Uy X,
+otuyxi oo+ Uy X U, +0,) X,

>={n

Uy X3+ Uy X,
to Uy F0p 1) X+ (g +0y) X,
> ={qp

Uy Xy + (uy +0,) X,
+ooot WUyt ) X+ (U, +0,) X,

>=q,

(4, +0) x;+ (U, +0,) x,
totH(Upy g 1) Xy + (U +0,) Xy

>=gq,.

The u;, v;, p; and g, are integer constants derived from the
grammar and the stack length, while the x; are positive
integer variables, the numbers of repetitions of the cycles
involved. It is well known that, in any one such inequality,
the equality option is only possible if the constant p, or
g; is a multiple of the highest common factor of the
coeflicients of the variables. It is now assumed before
further treatment that all the p, and ¢; have been
incremented until this is true, without loss of generality.

6. TWO CO-OPERATING CYCLES

When investigating this system of inequalities, it is helpful
to consider first the case where n = 2, partly because this
turns out to be a special case, as will emerge later, and
partly because it illustrates the general treatment to
follow. For n = 2, the inequalities are:

Uy X, >=p, 1)
u, x,+ Uy Xy > = P,, 2)
Uy Xy + (U, +0,) X, > = q,, 3)
(u;+0y) X, + Uy +0,) X, > = q,. “4

The co-operation of the two cycles is only being
investigated because there is no cycle for which the length
and the left-hand length are both greater than or equal
to zero. Hence it may be seen at once that if u, > = 0 then
u;+v, <0,andif u, +v, > = O then u, < 0. Co-operation
also implies that the infinity of solution-pairs [x,, x,] that
we seek must be such that both x, and x, are unbounded
in them. Since x, may be indefinitely large, inequality (1)
can only be satisfied if , > = 0, so certainly u, +v, < 0.
The case u; = 0 can also be ruled out, for then v, <0,and
consideration of the four inequalities shows that the
co-operation of the two cycles would then be more
difficult than success of the second cycle on its own.
Furthermore, from (4), u, +v, and u, + v, cannot both be
negative, so that u,+v, > 0. Thus it follows that u, < 0.

Summarising: %, >0, wu,+v, <0

U, <0, wuy+v,>0.
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The ratio v;/u; is used frequently and is negative in almost
every interesting case. Hence define R; = —v;/u;. Ifu, > 0
and u; +v, <0 then R, > 1, and similarly if u, < 0 and
u,+v, >0 then R, > 1 also. Thus whenever R> 1, a
cycle cannot possibly generate an infinity of acceptable
strings by itself.

Lemma 7

If R, > 1, and R, > 1, then there exists an infinity of
solutions [x,,x,] of the four inequalities in the pairs
(uy,v1), (uy,v,) if and only if:

1) u, >0,
and either
(iia) R, <R,

u, <0

or
(iib) R, = R,

(This second condition in (iib) is to ensure there is at least
one solution.)

and py(R,—1)+¢q, =<0.

Proof of necessity

(i) This was argued just before the theorem.
(ii) For any single solution [x,, x,],

1
From (2) Xy <=—(p—t X;).
Uy
From (4) Xy > = at o (9, — (4, +v,) x,].
Hence
1
u_2 (Pa—uy x,) > = Upt 0, g1 — (@, +0v,) x,],

from which
Uy X1 (R, — Ry) > = py(R,— 1) +¢,.

Thus if R, = R,, then the condition 0 > =p,(R,—1)+g¢,
is proved necessary. However, if R, and R, are not equal
and there are now an infinity of solutions, it follows that
x, can be indefinitely large, so that the left-hand side
u; Xx,(R,—R,) is unbounded, and therefore must be
positive. Hence R, < R,.

Proof of sufficiency

Condition (i) implies that u, +v, < 0 and u,+v, > 0. It
is now shown that if either (iia) or (iid) is true then for
x, chosen arbitrarily large it is possible to find x, which
satisfies all the three inequalities in which it occurs.

1
From (2) X, <= . (Pe—uy xy).
2
From (3) X, > = wnto, (g, —u, x,).
F 4 = - .
rom (4) Xg > Uy + 0, [q:—(u, +v,) x,]
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Condition (iia)

For large x,, (3) is always true if (4) is true.
Choose x,; = k(u,+v,), where k is any natural number.
Then (2) requires

Xy < =224 kuy(R,— 1)
Uy

and (4) requires

9
U, + Uy

+kuy (R — 1) = < x,.

Then since R, < R,, k can be chosen sufficiently large for
all requirements to be met whatever the values of the
constant terms.

Condition (iib)

Let R, =R, =R
h = hef (u;, —u,)
H = hef[—(u, +0,), u,+0,]
=(R-1)h.
Then there exist integers j, k such that
P.=jh
and
q, =kH

(because the original p,, ¢, have been increased until this
is true, as discussed before).

The given condition
P(R=1)+gq, =<0
now reduces to k=<—j.

The original inequalities are now shown to be
consistent and to hold for infinitely many pairs x,, x,
under this condition.

Let uy=ch
—u, = ¢, h,
so that c,, ¢, are co-prime positive integers.

Inequality (2) now becomes
1
Xy <=—(cy x,—)),
Ce
(4) becomes
1
— (e, x,+k) <=x,
Ce

while as before (3) is always true if (4) is true.

Then the given condition ensures that the upper and
lower bounds for x, are ordered correctly. It remains to
choose x, so that x, can be an integer — just choose x, so
that ¢, x, = j (mod ¢,) - this is always possible since ¢,
and c, are co-prime. Thus there is at least one solution.
Since there is an infinity of x, with this property, there
is also an infinity of valid pairs x,, x,.

Theorem 17

If two cycles C; and C, can be chained together and if
R, >1 and R, > 1 (so that neither cycle can yield an
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infinity of acceptable strings by itself), then they can
together generate an infinity of acceptable strings if and
only if:

(i) u,>0 and u, <0
and either

(iia) R, <R,
or

(iib) R, = R,, and one acceptable string is known to
exist.

Proof

This is just the numerical Lemma 7 restated in terms of
the grammar. (The strictly numerical version is used as
a tool later.)

7. FINDING SINGLE-CYCLE INFINITIES

In order to place co-operating cycles in their context, the
more general computational problem is now considered
of examining a grammar (or equivalently a program text
at compile-time), to see if an infinity of strings can be
generated. This examination is simplest if the case of
single-cycle infinities is eliminated first. These arise, of
course, where there exists a cycle C such that1hl (C) > =0
and 1(C) >=0.

Assume we have a group of basic cycles with left-hand
and right-hand lengths (u,,v,), (Uy,0y),...(4;0;),. ..
(uy, v;) as above, but now with the property that they can
be used together to compose new cycles rather than be
disjoint. A solution is found at once if a basic cycle is such
that u > = 0 and u+v» > = 0. Otherwise, cycles such that
u<=0andu+v <0,oru <0and u+v <= 0are never
helpful, leaving those for which either »; > 0, u;+v; <0
(call this the i-type), or u; < 0, u;+v; > 0 (the j-type). It
is easy to show that one of each type of cycle can be
successfully combined provided R; <= R;, by an
argument similar to Theorem 17. It is also easy to show
that composing a cycle from several of the basic i-type
cycles produces another i-type cycle whose R value
cannot be greater than or less than the extreme values for
the basic i-type cycles — and analogously for the j-type
cycles. Nothing is therefore gained by combining cycles
in this way, and it is only necessary to inspect the basic
cycles themselves when searching for i and j candidates
such that R; <= R,;.

8. FINDING DOUBLE-CYCLE INFINITIES

A pair of co-operating cycles is only sought when the
procedure above fails to find a single cycle, whether basic
or composed, with the right properties. Now sought is an
i-type basic cycle which chains to (rather than ‘can be
combined with’) a j-type basic cycle, and for which
R; < = R;. This is a simple search which either succeeds
or fails. If it fails the question arises: is it possible to find
a longer chain of co-operating cycles which still produces
an infinity of strings? Rather surprisingly no such longer
chain can exist, and the proof of the result is now
developed and finally stated in Theorem 18.

9. THE CO-OPERATING CHAIN OF
LENGTH n

Now investigated is the set of inequalities for n pairs
(ul’ Ul)? (u2’ Uz)’ AR (urv vn)-

Lemma 8

If R, > 1, and the inequalities for the n pairs (u,,v,),
(4y, 03), ... , (Uy, v,) have a solution [x,, X,, ..., X,], then
the n—1 pairs

(i), o 2. 02
n n n

yield inequalities of analogous form which have a
solution[x,, x, ... , X,_,]. (Comment: In general, of course,
v;/ R, is not an integer, but the above is the easiest way
to represent the new pairs of coefficients. The new
inequalities can be trivially restored to the former integer
style by multiplying each by |v,|.)

Proof

Since>Rn > 1, then u, and u, +v, have opposite signs,
and the p, inequality can be combined with the
Gn>9n-1» --- » 4, inequalities in turn to yield eventually, on
eliminating x,,:

Uy Xy F Uy XgtUg Xg+... ot U_ Xy

1

Up—1
Uy Xyt up Xg+ U Xgt+...+ ity xn—2+<un—1 +R—) Xn—1
n

1
>= R_ [qn—1+(Rn - l)pn]
n

Upn—2 Un—1
U Xyt U Xg+ Uy o +—— | Xpo+ | Up 1 +—F— ) Xny

Ry Ry

1
>= 'R_ [qn—2+(Rn— l)pn]
n

(u1+£1—> xl+(u2+ﬁ> Xo+ ... +<un_1+3"—“> Xn_1

1
n

Now let

P=p, l=<i=<n-2,

1
Poy = max (pucso g Wa+ (Ru=Dpa))
n
and
1 .
Q1=E—[q@+(Rn_1)pn]’ l=<i=<n-1.
n

Then it is established that the following set of inequalities
also hold:
Uy Xy

Uy X, +uy X, >=0P
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Uy X Uy XgFUs Xg+ ..Uy 3 Xy >=P,,

Uy Xty Xo+ug Xg+ ... Fy g Xp ot Up 1 Xny

>=P,,
Up—
Uy Xy + Uy Xg+Ug Xyt ... Uy _y x,,_2+(u,,_1 +%l> Xp_1
n
>=0,,
Upn—2
U Xy tuy Xt ...ty _3Xp 3+ (“n—z +T) Xn—2
n
U,—
+<un—1 +1';_l> Xp1>=0p s
n

u1x1+(u2+&> Xy + ...+(u _2+M) Xp_g
Rn " Rn

v,
+(“n—1+‘;fl) Xpo1>=0,
n

21 Uy Up—2
u1+R— X1+ u2+R— x2+...+ un_2+—R— Xn__z
n n

n

U, _
+(un—1+1n2—1> Xp—1 > = Ql
n

for the pairs
v v Up—
(ul, R—) (14 R_) o (s R_)

Lemma 9

If n > = 2, any set of inequalities (of the form described
above for n co-operating cycles) which has an infinity of
solutions [x,, X,,...,Xx,] contains within that set of
solutions an infinite subset in which either one or at most
two of the x; variables are unbounded.

Proof

The proof is by induction. The lemma certainly holds for
n = 2. Itis just necessary to prove the induction step. Let
n > 2 and assume the lemma holds for n— 1. Then there
are three possibilities, labelled (a), (b) and (c).

(a) There exists i, i = < n, such that y; > =0, and
u;+v; > = 0. Then as x; increases it yields an infinity of
solutions by itself. Q.E.D.

(b) There exists i, such that u; < 0 and u;+v; =<0,
or such that u;=<0 and wu;+v; <0. Then every
inequality involving u; or u;+v; can be written:

[Left-hand side (less mention of x; term]
>=(porq) —ux;
>=(porg)

or similarly

[Left-hand side (less mention of x; term]
>=(por q)—(u;+vy) x;
>=(porg).

Thus this new set of inequalities in the n—1 variables
[Xg5 -+ » Xj—1» Xi415 - - » X»] has an infinity of solutions and
hence the lemma is proved by the induction assumption.

(c) all the R; > 1 for all i=<n. Then R, > 1, the
condition for Lemma 8, and every solution [x,, ..., x,] of
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the n inequalities leads to a solution [x,, ..., x,_,] of the

inequalities for the pairs

<u1, 721—), (uz, %), e (un_l, %)
n n n

Since we are given that there are an infinity of solutions
[x;,...,x,] there are also an infinity of solutions
[x15 .- » Xn—,] Of the derived inequalities. (The only way
there might have been only a finite number of solutions
[x,5 ..., X,_,] of the new set of inequalities would have been
if all of x,, x,, ..., x,,_; had only a bounded set of values
in the original set of solutions [x,, ..., x,] — but this would
have meant that x,, alone was unbounded — and this is
ruled out because R, > 1.)

Consider the new set of inequalities obtained by
eliminating x,,. Since there are only n— 1 unknowns and
an infinity of solutions, Lemma 9 itself can be applied.
There are two cases, as follows.

(1) There exists i <=n—1 such that, as x; alone
increases, it generates an infinity of solutions by itself. In
this case u; >0 and u;+v;/R, >0, so that R; < R,,.
(u; = 0 is ruled out because at this stage it is known that
R; > 1.) Hence either:

(4 u,<0 and wu,+v,>0

Lemma 7 now shows that the pairs (u;, v;) and (,,, v,,) lead
to an infinity of solutions in which just x; and x,, are
unbounded.
or (B) u,>0 and
while also

;>0 and wu;+v; <0 (butyetR; <R,).

u,+v, <0,

It is now shown under these conditions that if
[x1, %95 ... s X4 ..., X,] 1is any solution, then so is
[x1 Xgs «- s X4—15 Xis Xi415 - -+ » Xn_1, 0] fOr some new integer
X;, and that the set of these new solutions is infinite. The
lemma then follows from the inductive assumption. The
argument begins with the inequalities involving x; and /or
Xy

Uy X+ Uy Xo+ ...+ U; X; >=p;
Uy Xy Uy Xg+ oo+ U Xyt Uy Xy > =Din
Uy Xy Uy X+ o U X+ Uiy Xy FUipp Xt

tfupXy >=Ppy
Uy X,y Xog+ .o tuyxp...  +Up+v)x, >=4q,
Uy Xy + Uy Xo+ U X+ (U +0341) X +

vt Uy +0,) Xy > = gy

Uy Xy ty Xo o+ U+ 0) X+ Uiy +0500) Xia + -
F(Upt0p) X >=q;

+ (U)X,
>=gq,.

@ +v) X+ ...+ +v) x;+ ...

It is proposed to increase x; to X;, and to reduce x,, to
zero. This brings no difficulty in any of the inequalities
until

Uux,+...tux;+. Uy Xy Uy Xy > =Py

when u;(X;—x;) > = u, x, is required. Thereafter all
inequalities remain satisfied as long as the coefficients of
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x; and x,, are respectively u; and u,+v,, because u; > 0
and u,+v, < 0. When later the coefficients are respect-
ively u;+v; and u, +v,,, reducing the value of x,, to zero
increases the left-hand side by —(u,+v,)x,, while
changing the value of x; increases the left-hand side by
(u;+v;) (X;—x;). Since the total increase must be
non-negative

—(up+vy) xp + W +0;) (X;—x;) > = 0.
Hence

U, +v u
_u'xn > = Xi_xl > = ‘—n'xn,
u,-+vi u;

which is possible only if

Up+ 0, > = Up

u;+v; u;

’

which is equivalent to R; <= R,,. This is the condition
necessary for the removal of x, to be justified. However
the given condition was R; < R,, which guarantees the
above, and shows that the X; value sought does exist,
certainly for sufficiently large x,,.

Itremainstobeshownthatthe[x,, ..., x;_;, X;, ... , X,_,]
solutions are an infinite set. Suppose not: since x; < X;,
it then follows that the vectors [x,, ..., X;_1, X4, ... , Xp—y]
constitute a finite set, so that the original set of vectors
[xy, ..., x,]is then rendered infinite by the unboundedness
of x,, alone. This is impossible since ,, +v,, < 0, and thus
the [x,, ..., x;_y, X}, X415 .- , X,_,] are an infinite set.

(2) Although there exists no infinity of solutions as in
(1) above, yet there exist i, j = < n—1, i < j, such that the
pairs (4, v;/R,) and (u;, v;/R,) co-operate together to
yield an infinity of solutions, with only x; and x; being
unbounded. Hence R;/R, > 1 and R;/R, > 1 (because
it is known that neither pair yields an infinity by itself),
sothatby Lemma 7 R;/R,, = < R;/R,,u; > 0Oand u; < 0.
Thus, since R,, > 1, it follows that R, = < R;,u; > 0,and
u; < 0, conditions under which Lemma 7 can be invoked
again to show that the original pairs (u;, v;) and (u;, v;) also
co-operate to yield an infinity of solutions, as required.
(In the case R; = R; the additional condition is satisfied
because it is known that at least one solution certainly
exists.)

Theorem 18

If n > = 2, any chain of n co-operating cycles which yields
an infinity of acceptable strings also has either one of its
cycles such that this cycle yields an infinity of acceptable
strings by itself, or two of its cycles which together form
a co-operating pair.

Proof

The proof follows at once from lemma 9 by translating
the wording of the theorem into the numeric style of the
lemma. A separate lemma is necessary because its proof
is inductive and involves the derivation of inequalities
which have no correspondence in terms of cycles of the
grammar.

10. ‘TREES’ OF CYCLES

The procedure for examining a particular program (i.e.
the context-free grammar which corresponds to the

program text), for an infinity of non-underflowing
program runs was shown to be as follows.

(1) Determine whether there is any cycle in the
grammar which generates an infinity of acceptable strings
by itself. It is only necessary to examine each of the finite
number of basic cycles in turn to see if u > =0 and
ut+v>=0.

(2) If this fails then examine the grammar for a pair
of cycles chained together and which are able to generate
the desired infinity by ‘co-operating’. It is sufficient to
examine pairs of co-operating basic cycles C, and C, for
which 4, >0, R, > 1, 4, <0 and R, > R,.

(3) If the above steps fail, it was shown that no longer
chain of cycles could ever be found which would generate
an acceptable infinity. The question arises: ‘Is there any
different, possibly more general, condition under which
an acceptable infinity could still be generated?’

This article gives the answer ‘ Yes’ to this question, and
now introduces the notion of a tree rather than a chain
of co-operating cycles. The whole argument is a
generalization of the development of the theory of
cycle-chains, and the techniques of proof are very similar.
In consequence only very brief sketches of the proofs are
given.

11. AN EXAMPLE CYCLE-TREE
Consider the grammar:
S —» aSCC
S->TT
T - CCTbbb
T-d.

Then the R-value for the S-cycle is 2, and for the T-cycle
1.5. By expanding either the left-hand T or the right-hand
T of rule (2) using the T-cycle of rule (3), the infinities of
strings a™(CC)* d(bbb)* d(CC)™ and a™d(CC)» d(bbb)"
(CC)™ are generated. However, these infinities underflow
the stack, as may be seen by examining these particular
cases, or by applying theorem 17, in which condition (iia):
R, < R, is contradicted. However, consider invoking the
same number of repetitions of the T-cycle (rule (3)) for
each non-terminal T of rule (2). The strings generated are
then a™(CC)" d(bbb)" (CC)" d(bbb)» (CC)™. These cause
no underflow provided that:

m—2n>0,
m—2n+1+4+3n—2n> 0,
m—2n+1+4+3n—2n+1+4+3n—2m > 0.

These conditions are all satisfied if m = 2n+1. Thus an
acceptable infinity is generated if both m and » increase
indefinitely, but always retain the relationship
m = 2n+1. The tree of three cycles ‘ co-operate together’.

12. SOME USEFUL TERMS

Cycle-tree. A finite tree of co-operating cycles which
under suitable conditions generate an infinity of
non-underflowing strings. The cycles are linked
together by the rules of the grammar. (Of course a
chain of cycles is a special case of a cycle-tree in
which there is only one branch at every node.)

Base-cycle. The cycle at the base-node of the tree.
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Cycle-branch. The sequence of cycles encountered on a
path from the base-node to an extremity of a
cycle-tree.

Leaf-cycle. A cycle at the end of a branch of a cycle-tree.

Depth of a cycle-tree. The maximum number of cycles on
any branch of a cycle-tree.

13. FURTHER NOTATION

For a cycle-tree of depth two, let the pairs of lengths for
the base-cycle be (u, v), and (uy, v,), (Uy, V), ... , (Uy, v,) fOT
the branches from left to right respectively.

14. THEOREMS AND LEMMAS

The formal results are now presented. Lemmas 10-12 and
Theorems 19-20 are analogous respectively to Lemmas
7-9 and Theorems 17-18.

Lemma 10

Let there beaset ofinequalitiesin (u, v), (4, vy), ... , (Uy, Vy)
consistent with the form of a cycle-tree of depth two with
n branches, n>=1. If R>1 and R;>1 for all i
1 = < i = < n, then there exists an infinity of solutions
[x, X;, Xy, ... , Xp] if and only if

(i) u>0, and u; <0, foralli
and either

(iia) R<R,R,...R,
or

(iib)) R=R,R,...R,, and at least one solution is
already known to exist.

Proof

By induction, and by eliminating x,, from the inequalities.
The first step in the induction, when n = 1, is proved by
Lemma 7.

The lemma may be restated in terms of co-operating
cycles as follows.

Theorem 19

Let G contain a cycle-tree of depth two with n branches,
n > =1, with length-pairs (u,v), (u;,0,), ..., Uy, v,). If
R > land R, > 1foralli, 1 = < i = < n, then there exists
an infinity of non-underflowing strings if and only if

(i) u>0, and u; <0 foralli
and either

(ila) R< R,R,...R,
or

(iib)) R=R,R,...R,, and at least one acceptable
string is known to be generated by the cycle-tree.

Lemma 11

Consider a set of inequalities consistent with the existence
of a cycle-tree of depth two at least. Let u*, v* be
constants in the inequalities consistent with the existence
of a leaf-cycle C*, where R* = —v*/u* > 1. Let x* be the

REFERENCES

1. Goodwin, D. T. Conditions for underflow and overflow of
an arithmetic stack. The Computer Journal 20, 56-62 (1977).
2. Goodwin, D. T. Partial non-underflow and non-overflow

16 THE COMPUTER JOURNAL, VOL. 28, NO. 1, 1985

associated variable (in the model the number of
cycle-repeats). Furthermore let there be an infinity of
solutions of the inequalities. Then it is possible to derive
another set of inequalities corresponding to just the same
cycle-tree structure, except that:

(1) x* has been eliminated (the chosen leaf-cycle C* has
been removed);

(2) any cycles between C* and the base-node have a
new R-value of R/R*. (Any cycles on the left or right of
C* retain their original R-values.)

Proof

This is by elimination of x*. The only way that the new
set of inequalities need not have an infinity of solutions
is if x* had been the only variable to have an unbounded
set of values in the original inequalities — but this is
impossible because R* > 1.

Lemma 12

Consider a set of inequalities consistent with the existence
of a cycle-tree of any depth greater than two, with an
infinity of solutions. Then either of the following must
apply.

(1) There exists in the set a variable x; and coefficients
u;, v; such that u; > = 0 and u;+v; > = 0, and there exists
an infinity of solutions in which only x; is unbounded.

(2) There exists in the set a subset of variables x, x,,
Xgy ..., Xy, for mn>=1, and coefficients (u,v),
(uy,0y), ..., (uy,v,) which are related by inequalities
corresponding to a cycle-tree of depth two. This subset
also has an infinity of solutions, and is such that
R=<R,R,...R,, where also R > 1, and R; > 1, for all
Lhl=<i=<n.

Proof

The proof is on the lines of lemma 9 — an induction step
is set up using a descent argument provided by lemma 11,
and the using applications of lemma 12 itself. Descent
stops at inequalities corresponding to a cycle-tree of
depth two, and lemma 10 provides the needed result for
n=2.

Theorem 20

Let there be a cycle-tree of depth greater than two, which
generates an infinity of non-underflowing strings. Then
either of the following must apply.

(1) There exists a cycle in the tree for which u > =0
and u+v > = 0, which generates an infinity of strings by
itself.

(2) There exists a sub-tree of depth two for which, in
the usual notation, R > 1, R; > 1 foralli,l =<i=<n,
and R=< R, R, ... R,, for some n > = 1. The cycles of
the sub-tree co-operate together to generate an infinity of
non-underflowing strings.

15. CONCLUSIONS

This concludes study of sufficient conditions under which
an infinity of non-underflowing strings can be generated.
A later article will show they are also necessary.

of an arithmetic stack. The Computer Journal 23, 153-160
(1980).
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