Using Semantic Concepts to Characterise Various Knowledge

Representation Formalisms: A Method of Facilitating the
Interface of Knowledge Base System Components

R. A.FROST
Department of Computer Science, University of Glasgow

Currently, there are a number of research groups working on various components for knowledge base system (KBSs). As
example: (a) novel hardware is being developed for mass storage of simple facts, (b) machines are being built to speed
up reasoning with rules expressed in languages such as PROLOG and LISP, (¢) algorithms have been designed for
automatic maintenance of semantic integrity and for deductive question answering, (d) logical systems are being
axiomatised which can accommodate time, beliefs, non-monotonic reasoning and other aspects of knowledge which
cannot be handled by classical truth-functional predicate logic, (¢) methods are being developed to support multiple
user-views of knowledge stored in some canonical form, and (f) some progress has been made in providing
natural-language interfaces to knowledge base systems.

Integration of such components is problematical for a number of reasons, not the least of which is due to the different
terminologies and knowledge representation formalisms which are used by the various components. A possible solution to
this problem is to identify a commonly used set of semantic concepts and then employ this set of concepts to characterise
the type of knowledge which is processed by the various components. An example of a semantic concept is logical negation

(i.e. not). Some knowledge representations, such as those used in classical logic, can accommodate logical negation
whereas those used in conventional database systems are unable to represent logical negation other than by omission in

conjunction with the closed-world assumption.

Choice of an appropriate set of semantic concepts should be based on pragmatic criteria rather than philosophical
argument, otherwise it is unlikely that agreement will be reached on what concepts to include. In this short paper we
present a version (0) set of concepts which was chosen intuitively. We illustrate how this set might be refined by

application to example components of KBSs.

This paper is a revised version of a paper presented at the 2nd Alvey-sponsored Workshop on Architectures for Large
Knowledge Bases (WALKB2) held at Manchester University and organised by Simon Lavington. At that workshop it
was agreed to pursue the approach outlined in this paper by setting up a study group consisting of representatives from
industry and academic institutions. The remit of this group is to refine the set of semantic concepts by application to a
range of knowledge representations including those used in database models, various formal logics, semantic nets,
production systems, logic programming languages, hardware-based systems and so on. The initial output from this group
will be the version (1) set of well-defined semantic concepts which all knowledge base research groups will be encouraged
to use to characterise the particular components which they are developing. The version (1) set of semantic concepts is

scheduled to be available mid 1985.

1. KNOWLEDGE BASE SYSTEMS

A knowledge base is a collection of simple facts such as
‘John works for IBM’ together with general rules such
as ‘all humans are either male or female’. A knowledge
base system (KBS) is a set of resources: hardware,
software, and possibly human, whose collective respon-
sibilities include storing the knowledge base, maintaining
security and integrity, and providing users with the
required input/output routines, including deductive
retrieval facilities, so that the knowledge base can be
accessed as required. Knowledge base systems, as
currently discussed in the literature, are distinct from
conventional database systems in four ways:

(@) knowledge bases contain explicitly represented
rules as well as simple facts;

(b) knowledge base storage structures have low
Structural semantic content compared with database
structures;

(c) knowledge base systems include components for
the automatic maintenance of semantic integrity in
addition to components for syntactic checking as found
in conventional database systems;

(d) knowledge base systems include components
which can make inferences over the knowledge base,
thereby providing a deductive retrieval facility.

112 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

KBSs are also distinct from expert systems which are
typically designed for specific tasks such as mineral
prospecting, medical diagnosis, fault-finding and mathe-
matical theorem proving. KBSs might be used as
components in expert systems. However, their use is not
limited to this. They can be used as general-purpose
sophisticated database systems or as components of
‘special function’ systems such as pattern-recognition
systems.

The distinction between KBSs and fifth-generation
database systems, as defined by Nijssen is not so clear.!
A reasonable solution is to regard fifth-generation
database systems as belonging to a particular type of KBS
in which the rules are relatively few and relatively static.
The notion of conceptual schemas in fifth-generation
database systems reflects the stability of the general rules
and the use to which the rules are put.

2. CURRENT DEVELOPMENTS IN KBS
COMPONENTS

Research groups are currently working on various
aspects of KBSs. These include the following.

(a) Hardware is being developed for the mass storage
of simple facts represented in data structures with low
structural semantic content.? 34

¥20Z Iudy 01 uo 1senb Aq GLyEre/ZL L/Z/8g/e1ome/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

FACILITATING THE INTERFACE OF KNOWLEDGE BASE SYSTEM COMPONENTS

(b) Hardware is being develped to speed up reasoning
with rules expressed in languages such as Prolog and
LISP, ‘

(c) Methods are being developed for the automatic
maintenance of the semantic integrity of knowledge bases
using rules expressed in languages based on first-order
predicate logic.> ¢

(d) Methods have been developed to speed up
deductive retrieval by mixing theorem-proving techniques
from sorted first-order predicate logic with relational
algebraic operations such as division and projection as
used in relational database systems.’-® Extensions to
Prolog are also being investigated. For example, a sorted
logic has been developed by Cohn and is being
implemented as an extension to Prolog,? and a version of
Prolog which incorporates the notion of a schema (called
a model in the paper) has been developed by Babb.1?

(e) The use of logic to express and reason with
knowledge involving uncertainty, beliefs, time, and so on,
is being investigated.!!-12.13

(f) Methods have been develped which allow multiple
user-views (external schemas) of knowledge which is
stored in some standard canonical form.4: 15 Also some
progress has been made in the automatic translation of
statements expressed in natural language to statements
expressed in a canonical form.16.17.18

3. INTEGRATION OF COMPONENTS

Integration of components such as those mentioned
above could result in a KBS with the structure shown in
the diagram below. Such an architecture has much in

- D

4

End-users

Natural language External schema

interface interface
Inference Integrity
engine maintenance
module
Simple facts General rules
Knowledge base in canonical form

common with that proposed by Nijssen for fifth-gen-
eration DBMSs, which is itself an extension of the
architecture published in the report of the International
Standards Organisation.!-1°

4. A PROBLEM

The difficulty in constructing such a system is in
interfacing (and/or integrating) the components and
techniques which have been developed by the various

research groups. Such interfacing will be problematical
for a number of reasons. For example: incompatible
hardware, operating systems and programming languages
will create difficulties. However, the solution to such
problems is relatively straightforward. A greater obstacle
will result from the different knowledge representation
formalisms which are used by the various components.
For example, consider interfacing a sorted first-order
logic theorem prover (such as that described in Cohn)?
with the IFS data store (as described by Lavington).? It
is not at all obvious that such an interface is possible or
even desirable. The compatibility or incompatibility of
these components is obscured by the different termin-
ology which is used to describe them and by the
different notations which they use for the represent-
ation of knowledge.

5. A POSSIBLE SOLUTION

A possible solution to the problem is to identify a
commonly used set of semantic concepts which can be
used to characterise the type of knowledge which can be
represented and processed by particular KBS components.
Note that we are not suggesting that we should try to
identify a best approach for the representation of
knowledge nor are we suggesting that we should try to
identify a universally acceptable set of semantic primitives.
We are simply saying that we should try to identify a set
of comonly used semantic concepts which can be used
to characterise various knowledge representation
formalisms.

What do we mean by semantic concepts?

The term semantic has to do with meaning rather than
form. The word concept is defined as ‘an abstract notion;
a mental impression of an object’. A semantic concept
can, therefore, be thought of as an abstract notion which
can be represented in various ways using syntactically
different notations. An example of a semantic concept
which is relevant to the present discussion is logical
negation, which can be represented in various ways. For
example:

(a) not;

®)

(c) it is false that;

(d) by omission.
The last of these representations involves the closed-world
assumption as described by Reiter.”
Other semantic concepts which might be of relevance
include the following:

propositions (semantically indivisible statements which

are true or false)

truth

falsity

unknown truth-values

uncertainty values

entities (sometimes called objects)

entity-sets

attributes

attribute-sets

relations

relationships (n-tuples, n > 1)

functions

names

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 113

cpJ 28

¥20Z Iudy 01 uo 1senb Aq GLyEre/ZL L/Z/8g/e1ome/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

R.A.FROST

variables (free variables)

universally quantified variables

existentially quantified variables
not (logical negation)

and

or

material implication (-, if...then)

possible worlds

possible truth
necessary truth
strict implication
agent (the ‘knower’ or ‘believer’ in belief logic)
proof (as used in non-monotonic logic)

entity-set membership rules

relation domain cardinality rules

rules which can be expressed as Horn formulas
and so on.

In order to avoid ambiguity, it would be useful to name
and define semantic concepts using some well-established
terminology such as that found in Marciszewski’s
Dictionary of Logic (1981).2¢

The concepts listed above were chosen intuitively. It is
recognised that they will require a good deal of re-working
before a really useful set can be identified. The remaining
part of this short paper illustrates one method by which
the set of concepts might be refined and extended. The
method simply involves using the set on some typical
KBS components and modifying it accordingly. We feel
that this pragmatic approach is likely to be more
rewarding than lengthy philosophical discourse on what
does or does not constitute a semantic concept.

from modal logic

6. THE HIERARCHICAL APPROACH

In the basic hierarchical approach, knowledge is
represented by the use of files, records and fields related
in tree structures. An example of a hierarchical structure
is given in the diagram below.

Note. An instance of a record is only allowed to occur
in one tree and is only allowed to have one ‘parent’ in
that tree. An instance of a field (e.g. welding) may occur
in more than one tree and may have more than one parent
in any tree.

Using some of the semantic concepts mentioned earlier,
we can characterise the hierarchical approach as follows.

Corresponding hierarchical

entity-set

attribute-set

one-to-many relation
between entity sets

many-to-many relation from
entity set to attribute set

record type

field type

record links between father and
son records in files

record-field links

negation (by omission)

static entity-set membership record type structure
rules

static attribute-set member- field format
ship rules

relation domain and counter- field specification, record
domain rules specification

The representation of rules in the hierarchical approach
is embedded in the structure of the files, records and
fields:

(a) entity-set membership rules are implicitly defined
by restricting records to have a particular structure;

(b) attribute-set membership rules are implicitly
defined by restricting fields to have a fixed format;

(c) relation domain and counter-domain rules are

implicitly defined by restricting the type of records
allowed in files and by restricting the types of field
allowed in records.
Negation may only be represented by omission if it is
appropriate to make the closed-world assumption. From
this example, we can see that our list of concepts should
include specific types of rule such as entity-set membership
rules.

7. PROLOG
PROLOG programs are sets of Horn clauses of first-order
predicate logic.?! To run a program, the calculation to be
made (or question to be answered) is made a goal clause
and proved by a lush resolution theorem prover which
uses a depth-first search strategy. Some special predicates
such as the ‘write’ predicate do not use resolution but are
evaluated by separate routines and then deleted.
Using some of the primitives above, PROLOG may be
characterised as follows:
semantic primitives underlying PROLOG
entities
unrestricted n-ary relations (n > 1)+ functions
variables, and, or
material implication
any rule which can be expressed as a Horn clause

} use restricted to —:;

Semantic concept terminology [concept negation by. Of_niss_ion (failure to prove) .
entity record instance Note. No distinction is made between entities and
attribute field value attributes. There is no notion of an entity-set in
(. - - - - - - - - - - - - e _— - - - - - - - _l
File I
Dept # 1 |
l
I
I Record ! I
Emp # 1 | Emp # 2 ecor | |
|
| | |
| \N_ _ _ _ _ _ __ |
)) I Fields | ! |
J. Smith welding | I'| D.Brown Welding |
e 1 | |
- - - - _ ! !
B |

114 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z Iudy 01 uo 1senb Aq GLyEre/ZL L/Z/8g/e1ome/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

FACILITATING THE INTERFACE OF KNOWLEDGE BASE SYSTEM COMPONENTS

‘standard’ PROLOG. Any rule which can be expressed
as a Horn clause can be represented in PROLOG. The
‘not’ operator in PROLOG really means fail to prove.
There is no way of expressing, for example, the fact that
‘John is not married to Sally’ other than by omission of
the fact that John is married to Sally or by introducing
a predicate ‘notmarriedto’.

This example to also demonstrates the need for our list
of concepts to include more specific types of rule.

8. THE FACT MACHINE

The FACT machine is a knowledge storage structure
which is being developed in VLSI.? The knowledge is
represented as labelled binary-relationships where the
label may be used to represent quantification or to
represent the context in which the relationships are
relevant. For example:

F#1 John.isa . fireman
F+#2 Bill.thinks .F#1
F#3 bridges.carry . traffic
F#4 F41.start time .3/4/83
F#5 The Forth Road Bridge . ¢ . bridges
F#6 carry . & . transport

The binary-relationship labelled F # 3 is a ‘ generic’ rule
which may be read as ‘all bridges carry traffic’.
The FACT machine can be characterised by the following
concepts:
concepts underlying the FACT machine
entities
binary-relations between entities and members
of relations (i.e. binary-relationships)
‘generic’ rules such as that given above
negation by omission
Note. Binary-relations are defined over entities,
binary-relationships and binary-relations. As such the
FACT machine can be used to store certain expressions
of higher-order logics. Entity-sets are treated like all other
entities. The ‘ genericrules’ suchas ‘ bridges . carry . traffic’
may be thought of as domain and counter-domain
restriction rules. Negation is represented by omission,
although it could be represented as follows:

F#1 John . employed by.IBM
F#2 F#1 . ¢.negative facts

9. INTERFACING COMPONENTS WHICH
HAVE BEEN CHARACTERISED BY
SEMANTIC CONCEPTS

Suppose that we are wanting to use the FACT machine
as a back-end mass storage structure interfaced to a
PROLOG front-end. From the characterisations given
above, we can see that:

(a) FACT would only be able to readily store a subset
of the knowledge which can be expressed in PROLOG.
In particular, the basic unit of knowledge which can be
represented in FACT is a binary-relationship. In
PROLOG terminology this is a unit assertion clause
consisting of a two-place predicate. The generic rules in
FACT such as ‘bridges.carry. traffic’ are equivalent to
sets of rules expressed in PROLOG, such as the
following, depending on what interpretation of the rule
is required:

carry (X, Y) :-bridge (X), traffic (Y)

traffic (Y) :-bridge (X), carry (X, Y)

bridge (X) :-traffic (Y), carry (X, Y).
Thus FACT could be readily used to store unit assertion
clauses and sets of PROLOG rules such as the set above,
(b) the FACT machine could be used to store some of
the more complex rules which can be expressed in
PROLOG (and some rules which cannot be expressed in
PROLOG) using the fact label, e.g.

F#1X . has . two wheels
F#2X . has . handlebars
F#3F#1 .and .F#2
F#4F#3 .implies .F#5
F#5X . € . bicycles

This is equivalent to the PROLOG clause:

bicycle (X) :- has (X, two wheels), has (X, handlebars)
From such considerations we would obtain an under-
standing of the type of interface which would be viable
between FACT and PROLOG.

10. CONCLUDING COMMENTS

The examples above indicate that a good deal of work
needs to be done in order to identify and adequately
define a set of semantic concepts which would be useful
for the purpose outlined. In particular, we need to be able
to specify types of rule.

In addition we need to be able to describe the types of
knowledge manipulation which KBS components
provide. The above discussion was only concerned with
the types of knowledge which can be readily represented.
Of equal importance are the functions which the com-
ponents are capable of performing. Such functions might
include:

insertion

deletion

amendment

consistency checking

inference, etc.

A small working group is currently applying the
version (0) set of concepts to a range of knowledge-
representation formalisms with the objective of refining
and extending the set to produce a version (1) set of
well-defined concepts. The members of this group are:
E. Babb, ICL Systems Strategy Centre; A. Basden, ICL
Corporate Management Services, Decision Support
Systems Group; R. Frost, Computer Science, University
of Glasgow; R.Scowen, Division of Information
Technology and Computing, NPL; Dr. I. Torsun,
Computer Studies, University of Leeds.

The knowledge-representation formalisms which we
are using as examples include those as used in the
following: (a) IMS hierarchical DBMS; (b) IDMS
network DBMS; (¢) INGRES relational DBMS; (d)
PROLOG:; (e) LISP; (f) various semantic nets; (g)
various frame-based systems e.g. KLONE, KRL,
LOOPS, UNIT; (h) first-order predicate logic (FOPL)
expressed as formulas; (§) FOPL expressed in clause
form; () temporal logic-the Kt system; (k) belief logic as
used in Konolige;!? (/) production systems as used in
expert systems; (m) implication network as described in
Babb;!° (n) the FACT machine;? (o) the intelligent file
store IFS.2 The version (1) set of semantic concepts
together with characterisations of the above using the
version (1) set is scheduled to be available by mid 1985.
The version (1) set will use well-established terminology
and definitions of concepts which agree with definitions
as given in Marciszewski.2®

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 115

8-2

¥20Z Iudy 01 uo 1senb Aq GLyEre/ZL L/Z/8g/e1ome/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

R.A. FROST

REFERENCES

1.

116 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

E. M. Nijssen, From databases towards knowledge bases.
In Databases — a Technical Comparison, State of the Art
Report, edited P. J. H. King (1984).

. S. H. Lavington, M. Standring and G. B. Rubner, A 4

Mbyte associative predicate store. Proceedings of the
Workshop on Architectures for Large Knowledge Bases,
Manchester University (1984).

. D. R. McGregor and J. R. Malone, An integrated high

performance, hardware assisted, intelligent database
system for large-scale knowledge bases. Proceedings of the
Workshop on Architectures for Large Knowledge Bases,
Manchester University (1984).

. R.J. B. Taylor, Relation memory. Proceedings of the

Workshop on Architectures for Large Knowledge Bases,
Manchester University (1984).

. M. Azmoodeh, Automatic maintenance of integrity rules in

a binary-relational database. Proceedings of the Workshop
on Architectures for Large Knowledge Bases, Manchester
University (1984).

. R.A. Frost and S. A. Whittaker, A step towards the

automatic maintenance of the semantic integrity of
databases. The Computer Journal 26 (2), 124-133 (1983).

. R. Reiter, Deductive Q-A on relational data bases. In Logic

and Data Bases, edited H. Gallaire and J. Minker. Plenum
Press (1978).

. D. H. D. Warren, Efficient processing of interactive rela-

tional database queries expressed in logic. In Proceedings
of the 7the VLDB Conference, 272-281 (1981).

. A. G. Cohn, Mechanising a particularly expressive many

sorted logic. Ph.D. Thesis, Essex University (1983).

. E. Babb, The logic language PROLOG-M in database

technology and intelligent knowledge-based systems. JCL
Technical Journal (1983).

11.

12.

13.

14.

17.

18.

19.

20.

21.

G. Mamdani and Gaines, Fuzzy Reasoning and its
Applications. Academic Press (1981).

K. Konolige, Circumscription ignorance. Proceedings of
the Conference on Artificial Intelligence, AAAI-82, Univer-
sity of Pittsburgh, PA (1982).

R. A. Kowalski, Logic databases. Proceedings of the
Workshop on Architectures for Large Knowledge Bases,
Manchester University (1984).

R. G. Johnson and N. J. Martin, Triples as a substructure
for more intelligent databases. Proceedings of the Workshop
on Architectures for Large Knowledge Bases, Manchester
University (1984).

. N. J. Martin, The construction of interfaces to triple based

databases. Proceedings of the British National Conference on
Databases, edited P. Hammersley. Cambridge University
Press.

. T.R. Addis, A relation-based language interpreter for a

CAPS. ACM Transactions on Database Systems T (2)
(1982).

J. Cowie, Building databases from NL input. Proceedings
of the Conference on Applied Natural Language Analysis,
Santa Monica, CA (1983).

K. Sparck Jones and B. K. Boguraev, How to drive a
database front end using general semantic information.
Proceedings of the Conference on Applied Natural Language
Analysis, Santa Monica, CA (1983).

J. J. van Griethuysen, Concepts and Terminology for the
Conceptual Schema and the Information Base. Preliminary
Report, ISO TC97/SC5/WGS (1981).

W. Marciszewski, Dictionary of Logic. Martinus Nyhoff,
The Hague (1981).

W. F. Clocksin and C. S. Mellish, Programming in Prolog.
Springer Verlag (1981).

¥20Z Iudy 01 uo 1senb Aq GLyEre/ZL L/Z/8g/e1ome/|ulwoo/wod dnosolwsepeoe//:sdpy wolj papeojumoq

