Simplifying Screen Specifications — the ‘Full Screen Manager’
Interface and ‘Screen Form’ Generating Routines

F.J. DIXON*
Scottish Office Computer Service, Broomhouse Drive, Edinburgh**

This paper describes some routines developed to provide ways of defining and accessing Visual Display Unit (VDU)
screen fields which are easier to use than those provided by the manufacturer’s software. Although the details may be of
interest only to those running interactive FORTRAN programs under IBM’s VSPC (Virtual Storage Personal
Computing), the general principles may be usefully applied elsewhere: experience suggests that the long-term benefits of
having good ‘service’ routines available greatly outweigh the initial costs of setting them up. Section 1 provides a little
background, section 2 outlines the screen-control facilities provided by IBM for use by VSPC FORTRAN programs,
section 3 describes the ¢ Interface’ routines developed to facilitate use of IBM’s facilities and section 4 covers some
routines which generate ‘screen forms’ from specifications held in ‘ card-image’ files. Finally, section 5 gives examples
of the kinds of application for which the routines are used and how they have evolved over the years.

1. BACKGROUND

VSPC provides users of terminals connected to a
mainframe with facilities for ‘ personal computing’ (they
can program in, say, BASIC or APL or FORTRAN and
maintain their own files of data), Remote Job Entry
(on-line set-up, submission and, in due course, examina-
tion of the results of batch jobs) and the interactive
running of some packages. The Scottish Office Computer
Service (SOCS) has also used VSPC to develop and install
interactive systems for specific purposes: economic and
statistical models and some small, generally single-user
‘administrative’ systems for use by clerical staff
(other IBM software being more appropriate for larger,
multi-user applications). Good ‘screen form’ data entry
and amendment facilities are required for ‘ record-keeping’
systems and it should be possible to provide them without
excessive programming effort.

VSPC FORTRAN is a dialect of FORTRAN IV and
includes many non-standard features found in other IBM
implementations of FORTRAN IV: it is very similar to
IBM FORTRAN IV Gl1. In addition, VSPC ‘operating
system’ facilities may be invoked from within a VSPC
FORTRAN program using a special routine called
OPSYS (which is provided as part of the language along
with the usual mathematical functions etc.): by CALLing
OPSYS (with the appropriate arguments) various VSPC
commands can be issued while a program is running (e.g.
list all files in the library, create new file called X, allocate
file named Y to unit Z, terminate the session etc.). One
of OPSYS’ other purposes is to allow the programmer
access to the screen-control facilities required to set up
‘screen forms’ — ordinary READ/WRITE statements
alone are insufficient as their input and output march
down the screen, line after line, as if a teletype were being
used.

2. IBM FACILITIES

IBM’s Full Screen Manager (FSM) can be used to specify
the characteristics of fields on an IBM 3270 (or
equivalent) VDU screen:

* Any views expressed by the author are not necessarily shared by
his employer.

** Present address: Scottish Education Department, 43 Jeffrey
Street, Edinburgh.

(a) position — row and column of start of field,
(b) size — length of field in characters,
(c) type of data that may be entered (if any) — fields may
be:
(1) ‘protected’: usercannot overwrite their contents
(e.g. headings and messages),
(ii) ‘numeric’: only digits, decimal points and
minus signs may be entered,
(iii) ‘character’: any available character may be
entered.
(d) type of display — normal intensity or highlighted or
display suppressed (e.g. for entry of passwords).

and transfer data between the screen fields and program’s
internal storage.

After entering any data in the ‘unprotected’ fields the
user presses a control key (such as ‘ENTER’ or one of
the ‘programmable function keys’). FSM can be used to
determine which control key was pressed and the position
of the cursor on the screen at that time, allowing the user
to initiate further processing (e.g. print current screen,
select from ‘menu’, etc.) ‘at the touch of a button’.

FSM can also be used to specify the position of the
cursor on the screen and offers other facilities which are
not described here.

FSM is used from VSPC FORTRAN programs by call-
ing IBM’s OPSYS routine. Unfortunately, complicated
‘control variables’ (containing codes for the field
attributes, etc.) must be set up and the resulting code is
not particularly comprehensible. For example, to display
the message ‘FULL SCREEN TEST’ on the 9th line of
the screen and read a single character field from the 23rd
line, IBM suggest the 13 statements shown in Fig. 1
(about which the less said the better). Clearly, setting up
a more complicated ‘screen form’ with, say, a dozen
different fields, side-headings and messages to the user
would be a major task using the OPSYS routine and the
resulting code would be difficult to maintain.

3. FSMINTERFACE ROUTINES

The facilities offered by FSM are potentially very useful
but the effort required to use them through the IBM
OPSYS routine (and the difficulty of later modifying
programs) prevented them from being exploited at SOCS
until the FSM Interface routines were developed at

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 117

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

F.J. DIXON

10 dimension ictl(18), ictlr(18), idat(8), idatr(8)

20 data ictl/0, 23, 1, 16, 0, 0, 269, 9, 1, 16, 1, 16, 12,23, 1,1, 0, 1/
30 data idat(1)/‘full’/, idat(2)/* scr’/, idat(3)/‘een '/, —
40 idat(4)/‘test’/

50 data ictlr/0, 0, 0, 4,0, 0, 0, 0,0, 0, 0, 0/

60 ictlsz = 18

70 idatln = 16

80 ireq = 64

90 call opsys (‘fsm’, ireq, irtn, irsn, ictl, ictlsz, idat, —
100 idatln)
110 ireq = 32
120 ictlsr = 12
130 idatlr = 32
140 call opsys (‘fsm’, ireq, irtn, irsn, ictlr, ictlsr, idatr, —
150 idatlr)
160 end

Figure 1. IBM example of the use of the ‘OPSYS’ routine. The
example uses the FSM function of OPSYS, together with the
assignment statements needed to assign values to its sub-
parameters, to display the message FULL SCREEN TEST
on the 9th row of the screen, and to read a one-position input
field from the 23rd row of the screen. (Note: the above
program is in IBM free-format VSPC FORTRAN - a dialect
of FORTRAN IV).

SOCS. These routines are written in VSPC FORTRAN
and allow programmers to use FSM’s facilities quickly
and easily. Detailed knowledge of the OPSYS ‘control
variables’ is not required — they are hidden from the
programmer by the Interface routines.

3.1. Clearing the screen and displaying ‘menus’, etc.

The screen is cleared using routines which can set it up
in such a way that either the cursor will automatically skip
over unused or protected areas of the screen (if the user
types in past the end of one field the cursor jumps to the
start of the next unprotected one) or cursor control keys
must be used to move the cursor from one field to the next
(making accidental entry of data in the wrong field less
likely): the choice is up to the programmer. If required,
the initial display can be taken from a text file, simplifying
the task of setting up a ‘menu’ or block of instructions:
the routine just displays the text as it stands. The routines
are listed in Fig. 2(a).

3.2. Specifying individual screen fields

The programmer must specify for each field its
‘attributes’ (type of data — if any — that may be entered
and type of display), the position on the screen at which
the field starts (row and column), its length and the data
to be displayed in the field. This is done by calling one
of the Interface routines, e.g.

CALL CHARHI (IROW, ICOL, LENGTH, DATA)

CLEAR
Clears screen; no ‘automatic skip’
CLSKIP

Routine:
Purpose:
Routine:
Purpose:
Routine:
Purpose:

CLFILE (FILE, IUNIT, ISKIP, IROW, ICOL)

FILE

where ‘CHARHI’ is the routine that defines a field as
‘character data, not protected, highlighted’, ‘IROW’ is
the screen row of the start of the field, ‘ICOL’ is the screen
column of the start of the field, ‘LENGTH is the length
of the field in characters, ‘DATA’ is the initial content
of the field. The routines currently available are listed at
Fig. 2(b).

Arguments

‘IROW’, ‘ICOL’ and ‘LENGTH are integer constants,
variables or expressions (the Interface routines check that
they are credible — the field must be completely contained
within the 24 row x 80 column screen). ‘LENGTH is not
required for date fields as all dates are displayed in ‘99
XXX 9999’ form.

‘DATA’ holds the initial content of the field and may
be a variable, array, array element, constant, etc. — see
Fig. 2(b). If ‘DATA’ contains characters they can be
displayed as they stand; if not, the character string
corresponding to the internal numeric value of ‘DATA’
must be set up for display. (FSM assumes all data to be
displayed are characters rather than internal numeric
values — it cannot detect and convert the latter so the
Interface routines do the work, without altering the
content of DATA, relieving the programmer of the chore
of arranging for this to be done in the calling program).

When internal floating-point values (REAL,
DOUBLE PRECISION) are to be displayed an extra
argument is required to give the number of decimal places
to be shown.

‘NDECPL’ is set to
0 if the value is to be rounded to the nearest whole
number
1 if rounding to one decimal place is required
etc.
—1, —2, etc., could be used to specify rounding to
the nearest ten, hundred, etc.

(FSM does not offer any facilities for displaying N
decimal places, so the work is done by the Interface
routines when setting up the character string to be
displayed.)

3.3 Displaying the ‘screen form’

When all the screen fields have been defined, the ¢ write
to screen’ Interface routine is used to display them,
automatically positioning the cursor at the start of the
first unprotected field (if any) unless the programmer has
specified a different initial cursor position.

Clears screen; unused and protected areas of the screen will be skipped automatically when the user types in data

Clears screen and displays introductory messages/menu/whatever taken from a text file
: name of VSPC file containing text to be displayed (e.g. ‘MENU’)

IUNIT : unit/channel to be used to read the text from the file

ISKIP : 1if ‘automatic skip’ required; 2 if not
IROW : row on which cursor should be placed when screen displayed
ICOL : column in which cursor should be placed when screen displayed

Figure 2(a). Interface routines for clearing the screen and displaying menus, etc.

118

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

SIMPLIFYING SCREEN SPECIFICATIONS

Type of data provided by Type of data Type of
Routine calling program* user may enter display
CHARAC ‘Character’ Any characters Normal
CHARHI ‘Character’ Any characters Highlighted
SECRET ‘Character’ Any characters Suppressed
PROTEC ‘Character’ None: protected Normal
PROTHI ‘Character’ None: protected Highlighted
INTEG4 INTEGER (*4) Whole number Normal
INT4HI INTEGER (*4) Whole number Highlighted
INTEG2 INTEGER *2 Whole number Normal
INT2HI INTEGER *2 Whole number Highlighted
SINGLE REAL (*4) Any number Normal
SINGHTI REAL (*4) Any number Highlighted
DOUBLE DOUBLE PRECISION (REAL *8) Any number Normal
DOUBHI DOUBLE PRECISION (REAL *8) Any number Highlighted
DAY4 INTEGER containing a date Date Normal
DAY4HI INTEGER containing a date Date Highlighted

The above routines are used as follows:

CALL XXXXXX (IROW, ICOL, LENGTH, DATA, NDECPL)

Where XXXXXX

is the name of the routine appropriate to the type of field the programmer wishes to define, e.g.

CHARAC to define an unprotected, normal intensity character field

IROW, ICOL give the starting position of the field on the screen

LENGTH indicates the size of the field on the screen (not required for dates)
DATA contains the data to be converted (if required) and displayed
NDECPL specifies the number of decimal places required (only for REALSs)

* The types of data provided by the calling program are as follows: ‘Character’ — any variable, array, array element
containing characters or a character string. INTEGER - full-word (4 byte) internal INTEGER value**. INTEGER *2 -
half-word (2 byte) internal INTEGER value**. REAL - full-word (4 byte) internal REAL value**. REAL*8/DP — double
word (8 byte) internal REAL*8/DOUBLE PRECISION value**. INTEGER-date - full word INTEGER giving the date
as the number of days since the start of the current calendar (15 October 1582); displayed on the screen in ‘99 XXX 9999’

form (e.g. 13 May 1982).

** Internal numeric values may be provided as constants, expressions, variables or array elements.

Figure 2(b). Interface routines for defining screen fields.

Routine: FREEZE (IROW, ICOL)

Purpose: Protects the contents of the field starting at IROW, ICOL

Routine: PUTCUR (IROW, ICOL)

Purpose: Specifies the position the cursor should be put at when the ‘write to screen’ routine FSWRIT is next used.
If the cursor position is already set or the ‘pick up’ routines reset it after finding a gross error in one of
the data fields, the position specified by PUTCUR is ignored.

Routine: FSWRIT (IROW, ICOL)

Purpose: Write to the screen all the fields that have been specified since the last time (if any) FSWRIT was used,
where they join all the fields already being displayed, overwriting the older fields if their positions overlap.
The cursor will be positioned at IROW, ICOL unless its position has already been fixed (e.g. by an earlier
CALL of PUTCUR) or IROW and ICOL are O when the cursor is placed at the start of the first
unprotected field (if any).

Routine: FSREAD (KEYHIT)

Purpose: Waits until the user has made any changes to the data on the screen and pressed a ‘control’ key (such as
‘ENTER’ or one of the ‘function keys’) and then reads the data from the screen into an internal storage
area which the program can access later via the ‘pick up’ routines. Only the contents of fields which have
been changed are transmitted; the ‘current screen work area’ holds the latest version of each screen field.
KEYHIT returns a code identifying the ‘control’ key that was pressed.

Routine: CURSOR (IROW, ICOL)

Purpose: Returns the position of the Cursor at the time the last FSREAD was executed.

Routine: PRINT

Purpose: Prints the screen (as it was at the time the last FSREAD was executed) on the printer allocated to the

terminal.

Figure 2(c). Interface routines accessing the screen, etc.

3.4. Picking up data entered by the user

The user then enters (or amends) the data on the screen
and presses a control key to transmit the changed fields
to the computer. The ‘read from screen’ routine
determines which control key was used and various
Interface routines are used to pick up the content of the
unprotected fields, with conversion from character to
internal numeric if appropriate. There is a separate ‘ pick
up’ routine for each type of data (character, integer,

etc.)—see Fig. 2(d)-returning flags and messages
indicating the results of any character to internal
conversions. The pick up’ routines detect gross errors in
the data entered by the user (e.g. ‘49 GUG —123’ina
date field, ‘1.2.3-’ in a numeric field, etc.) and
automatically reset the cursor position so that it appears
at the start of the first erroneous field when the screen is
next displayed. It is up to the calling program to test the
error flags and, if appropriate, display the error message
using the ‘define character field’ Interface routines. The

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 119

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

F.J. DIXON

Routine Type of data handled

PICKUP Character

PUINT4 INTEGER (*4)

PUINT2 INTEGER (*2)

PUSING REAL (*4)

PUDOUB DOUBLE PRECISION (REAL *8)
PUDAY4 INTEGER (*4) containing a date

The above routines are used as follows:

CALL XXX (IROW, ICOL, LENGTH, DATA, ISITOK, MESS)
Where XXX is the name of the routine appropriate to the type of field programmer wishes to access
IROW, ICOL give the starting position of the field on the screen

LENGTH
DATA
ISITOK

Specifies the size of the field on the screen (not required for dates)
returns the (converted) data taken from the screen
Indicates whether the data entered by the user contain ‘gross’ errors (not

required for character data)

+1: no error

0: blank assumed zero or date not known (99 XXX 9999)
—1: ‘gross’ error (e.g. 1.2.3.4 or —1XYZ 9876 as a date)

MESS

40 character error message (not required for character data)

blank if ISITOK = +1
else warns (e.g. ‘BLANK ASSUMED ZERO") or describes error (e.g. ‘TOO
MANY DECIMAL POINTS’ or ‘INVALID DAY, MONTH AND YEAR’)

Figure 2(d). Interface routines ‘picking up’ data from the screen.

calling program must also check the values are ‘in range’
and put up error messages if they are not.

Additional Interface routines are used to determine the
position of the cursor when the user pressed the control
key and to print the content of the current screen if
required.

3.5. Advantages of the Interface routines

With the Interface routines, the task which required 16
(rather obscure) lines of code using IBM’s OPSYS
routine (Fig. 1) takes only 6 lines:

Code Notes

CALL CLEAR Clear screen
CALL PROTEC (9, 1, 16, ‘FULL SCREEN TEST")
Message is protected
Initial content a space
Write to screen,
Cursor positioned
automatically at start
of first unprotected
field
CALL FSREAD (KEYHIT) Read amended screen
CALL PICKUP (23, 1, 1, LOCAL) Store data entered
by user in program
variable ‘LOCAL’

CALL CHARAC (23,1, 1,“")
CALL FSWRIT (0, 0)

moreover, the process of defining a more complicated
‘screen form’ with several fields (each with a side-heading),
instructions to ‘press control key X to obtain a print’,
error message areas and so forth is reasonably straight-
forward (and changes to the screen layout much easier)
because, given a little familiarity with the Interface
routines, it is clear what is going where.

An example of such a screen form is given at Fig. 3 and
the code required to produce it at Fig. 4.

The Interface routines also allow ‘screen-editing’
problems encountered using IBM’s OPSYS routine to be
overcome very easily. Users of 3270 (or equivalent)
terminals can amend data in a screen field by

(a) Deleting characters (using the ‘DELETE’ and
‘ERASE to End Of Field’ keys)

(b) Inserting characters (using an ‘INSERT MODE’
key)
(c) Keying over its initial content

or a combination of the above operations.
For example, if a ‘name’ field contains

‘FRANK DIXON ’
the user might wish to change it to

‘F DIXON > (by deleting ‘RANK’)
or

‘FRANK MACDIXON’ (by inserting ‘MAC”)
Spaces and ‘nulls’ (indicating no characters present at all)
both appear as blanks on the screen but have different
internal codes. Deleting characters from a field causes it
to be ‘padded’ with trailing nulls (which can cause
problems when the amended information is processed
later) and the insertion of characters into a field is only
possible if there are nulls at the end (insertions into a field
with trailing spaces fail because the spaces cannot be
‘pushed’ past the end of the field). The Interface routines
convert trailing spaces to nulls before displaying the fields

STEFF REF NO 1234
GURNAME: odidson
THNLTLALS L

GRAIDE e

ROOM 61 /250
FXTENSTON B2045

DATE OF EXRTH 10 mesw LOUE
DATE JOINED 003 11 fein 1978

G OENTER" WHEN ALL CHANGES MADE
"EFG" FOR FRINT OF SCR

indicates area in which user can enter data.

Figure 3. Screen produced using F.S.M. interface routines.

120 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

770

ASU091

OO0

OO OO0

000

OO0 OO0 OO0 OO0

OOOOOOOOOON

SIMPLIFYING SCREEN SPECIFICATIONS

FIGURE 4 PRODUCES FIGURE 3 USING THE INTERFACE ROUTINES

DIHENSION SURNAM(5), ROOM(2),
MESS1(10), MESS2(10), MESS3(10), MESS4(10)
DATA IREFNO, SURNAM, INITS, GRADE, ROOM, IEXTNO, IBORN, JOINED
- / 0, 5% *, vy, Y, 2% Y, 0, 0, 0/

CLEAR SCREEN, WITH "AUTO SKIP'
CALL CLSKIP
SIDE-HEADINGS

CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC
CALL PROTEC 22,

DATA FIELDS

CALL INT4HI (¢ 3, 26, &, IREFNO
CALL CHARHI (5, 26, 20, SURNAM
CALL CHARHI ¢ 7, 26, &, INITS

CALL CHARHI ¢ 9, 26, 4, GRADE

CALL CHARHI E 11, 26, 8, ROOM
(
(

1, 19, "STAFF REF NO
1, 19, '"SURNAME
1, 19, '"INITIALS
1, 19, 'GRADE
11, 1, 19, 'ROOM
1
1
1
1
1

19, "EXTENSION

19, 'DATE OF BIRTH
» 19, '"DATE JOINED SOCS !
» 35, "PRESS "ENTER™ WHEN ALL CHANGES MADE')
» 35, * OR "SF6™ FOR PRINT OF SCREEN ')

MMAANAAAA
-
w
-

"t Nt o o

CALL INT4HI 13, 26, 4, IEXTNO
CALL DAY4HI 15, 26, IBORN
CALL DAY4HI 17, 26, JOINED

DISPLAY FIELDS ON SCREEN

Nt Nt Nt ot Nt N b

50 CALL FSWRIT ¢ 0, 0)

READ/COPY ALL FIELDS FROM SCREEN INTO 'CURRENT SCREEN WORK
AREA' AFTER USER PRESSES 'ENTER' / 'SF6' / OTHER KEY

CALL FSREAD (KEYHIT)
PRODUCE PRINT OF CURRENT SCREEN IF 'SF6' PRESSED
IF C KEYHIT .EQ. 6) CALL PRINT
IF SOME OTHER KEY WAS PRESSED (EG 'CLEAR') MAY HAVE PROBLEMS

IF KEYHIT .NE. 0 .AND. KEYHIT .NE. 6)
LR I TAKE APPROPRIATE ACTION % x X

PICK UP CONTENTS OF FIELDS USER MAY HAVE CHANGED

CALL PUINTG 3, 26, 4, IREFNO, IOK1l, MESS1)
CALL PICKUP 5, 26, 20, SURNAM)
CALL PICKUP 7, 26, &, INITS)
CALL PICKUP 9, 26, &, GRADE)
CALL PICKUP 26, 8, ROOM)
CALL PUINTG 13, 26, 4, IEXTNO, I0K2, MESS2)
CALL PUDAY4 15, 26, IBORN, IOK3, MESS3)
CALL PUDAY% 17, 26, JOINED, IOK4, MESS4)

FOR CERTAIN FIELDS, IF "OK' FLAGS INDICATE 'GROSS' ERROR
PUT UP ERROR MESSAGE VIA 'PROTEC' /'PROTHI'

DO "RANGE CHECKS' IF APPROPRIATE & PUT UP ANY ERROR MESSAGES
VIA 'PROTEC' / 'PROTHI'

GO BACK IF ANY ERRORS FOUND - USER MUST CORRECT DATA
(APPROPRIATE CODE OMITTED)

STOP
END

AN
—
—
-

RETURN CODE = 00.

Figure 4. Program using the interface routines to produce screen shown in figure 3.

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

121

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

F.J. DIXON

(and trailing nulls to spaces when picking up the amended
data) thus allowing the ‘DELETE’, ‘INSERT’ and
‘ERASE EOF’ keys to be used without problems.

The Interface routines also ‘left align’ the data
(removing leading spaces) to simplify subsequent process-
ing (e.g. checking an abbreviation entered by the user
against a list of valid abbreviations).

3.6. Other points

The Interface routines use IBM’s OPSYS routine —
essentially each CALL of a ‘define screen field’ routine
stores details of the field being defined in an area within
the Interface routines that is used as the ‘control variable’
when the next CALL of the ‘write to screen’ routine
CALLs IBM’s OPSYS routine. The other Interface
routines use OPSYS more directly — the parameters
supplied by the calling program are used in an immediate
CALL of OPSYS. The Interface routines therefore
require more computer time and storage than ‘direct’ use
of OPSYS but this must be set against the savings in
programmer time that they provide.

As the use of the Interface routines has increased they
have evolved to meet new needs and, no doubt, will
continue to do so. The routines are not perfect — for
example, it can be argued that the ‘character’ routines
should not automatically ‘left align’ the data entered by
the userand the calling sequences might beimproved — and
so minor enhancements (or corrections!) are made from
time to time. Other weaknesses are unavoidable — for
example, the standard FORTRAN limit of 6 characters
accounts for some of the more cryptic routine names and
prevented the adoption of a convention that all “service’
routines have an identifying prefix as that would have
resulted in even less comprehensible names (e.g.
‘FSMI4H’ instead of ‘INT4HI’ and so on): if longer
names were permitted then they could have been given
more meaningful names (e.g. FSMCLEAR, FSM-
CLEARSKIP, etc.).

4. THE ‘SCREEN FORM’ GENERATING
ROUTINES

Although the FSM Interface routines were a considerable
improvement on the facilities provided by IBM (and
sufficiently easy to use that several systems benefited from
them) quite a lot of repetitive coding was required to set
up each ‘screen form’. Clearly, an application requiring
several ‘screen forms’ would need several blocks of code
using the Interface routines and although the effort
involved could be reduced by copying and amending
chunks of code such a solution would not be totally
satisfactory.

4.1. Specification of individual fields

The ‘Screen form’ generating routines were therefore
developed to allow a program to set up several ‘screen
forms’ from specifications provided in a ‘card-image’
lookup table file. The programmer gives for each field to
be displayed on the screen:

(a) The description (or side-heading) — normally dis-
played beside the field

(b) the number of the screen form which the field is to
form part of N

122 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

©

(GY)
(e)

®

(®
(h)
@
G)

the type of data to be displayed

— at present the main options are

(i) text

(ii) integer (whole number)

(iii) floating-point number (with N decimal places)

(iv) date(displayedin ‘99 XXX 9999’ form - e.g. 13
MAY 1982 — and held internally as the number
of days since the start of the current calendar)

(v) ‘coded’ (the user enters an abbreviation or
code-number to identify, say, local government
areas which may be coded thus
EDIN Edinburgh
GLAS Glasgow
BADE Badenoch & Strathspey
and so forth. For each entry in the code-list, up
to 8 characters are allowed for the abbreviation
and up to 24 characters for a more detailed
description: the description corresponding to a g
code being displayed when the user has entered =
the abbreviation. All abbreviations and descrip- £
tions are listed if ‘HELP’ is invoked. The full &
abbreviationneednotbeentered — abbreviations &
of abbreviations are allowed provided the entry 3
is unambiguous. The code-lists would normally 5
be held as a ‘card-image’ file read by the &
program into its local storage).

(vi) cash (££££.pp — the number of digits before the
point can vary)

(vii) none — only the ‘description’ is to be displayed
(this allows the programmer to specify extra
headings, etc., which may not be associated with
any particular field)

the position of field on the screen (row x, column y)

and its length (z characters)

the location of the data within the calling program

(by pointers to the elements of the array in which all

the data for display on a particular screen are held)

range/validity checks

— the details depend upon the type of data.

(1) numbers — the user specifies the minimum and
maximum values,

(ii) dates — the user specifies the earliest and latest
dates as either ‘fixed’ dates —e.g. 15051952 for
15 May 1952 or N days relative to the current
date (e.g. — 14 if 2 weeks ago, +7 if a week
hence),
‘coded’ fields — the user specifies the code-list
for the field by pointers to the first and last
entries for the field in an array of valid
abbreviations and descriptions.
As the look-up table is read into the program’s local
storage the check values can be altered by the
program during a run (if required) given appropriate
coding: for example, a value entered on one screen
form may be used as the maximum value for a field
on another screen form.

the position and length of the description of the field

and the error-message area for the field,

the number of decimal places to be displayed (if

appropriate),

whether ‘not known’ is acceptable — a ‘zero’ value

may be valid even if failing the range checks,

whether or not the data in the field can be amended.

Generally the content of every data field can be

changed by the user (descriptions and error messages

(iif)

20z 1udy 0| uo 1senb Aq 8Zyete/. L L/2/8Z/8191Me/|ulwoo/woo dno-ojwepeoe

SIMPLIFYING SCREEN SPECIFICATIONS

cannot); in certain circumstances, however, particular
fields may only be entered the first time a screen is
displayed or may be displayed on one screen for
information only (any alterations being made via a
different screen); for example, in a ‘ personnel’ system
an individual’s name might be entered via an
‘identifying details’ screen and be displayed for
information only on other screens.

There are various ‘default’ specifications so the pro-
grammer need not enter all of the above for every field.

4.2. Limitations of the screen form generating routines

The form generating routines do not provide the full
flexibility of the Interface routines — they just cope with
the bulk of the normal requirements for defining *screen
forms’. In particular

(a) the programmer cannot specify ‘highlighting’ — the
routines automatically display at ‘high intensity’
data areas, any error messages and certain ‘standard’
instructions to the user and display everything else at
normal intensity. At present they do not cater for
‘display suppressed’ (e.g. for passwords).

(b) The programmer has no control over the form of the
error messages. These are, however, reasonably
self-explanatory —e.g. ‘MUST BE IN RANGE
(EARLIEST) TO (LATEST)’ where ‘(EARLIEST)’
and ‘(LATEST)’ are dates derived from the
programmer’s specifications and displayed in
99 XXX 9999 form.

(c) The only control keys available are those used to:
record changes made to the

data on the screen form
record changes and print
current screen)
undo most recent changes)function
page forward)keys
page backwards
The last two can be used only if the programmer
specifies (via an argument) that ‘paging’ is allowed.
If any other ‘programmable function key’ is pressed
a ‘PLEASE PRESS CORRECT KEY’ message is
sent to the user.

(d) The cursor positioning is totally under the control of
the ‘screen form’ routines: they put it at the start of
the first field containing invalid data (e.g. an
out-of-range value) or, if no errors are found, at the
start of the first ‘unprotected’ field. The programmer
cannot specify the intial cursor position nor do the
routines indicate where it was when the user pressed
a control key.

(‘ENTER’)

4.3. Advantages of the screen form generating routines

Given a suitable look-up table (which can be laid out in
‘any’ form the programmer wishes as the format it is read
in is specified in the calling program) setting up a ‘screen
form’ reduces to a few statements to read in the table, etc.,
and a single line CALL of the form generating routine
(with appropriate arguments — the number of the screen
form to be displayed and so forth) compared to at least
one line per field with the Interface routines. The savings
are greatest for non-text fields as, using the Interface
routines, quite a lot of coding is required to check the

user’s entry is ‘in range’ and, if not, to put up an
appropriate error message and position the cursor at that
field. Fig. 5(a) and (b) show ‘screen forms’ generated by
the program given in Fig. 6(a), the look-up table from
Fig. 6(b) and the code-list at Fig. 6(c); Fig. 7 explains
the use of the routines.

Setting up the look-up table to define the ‘screen forms’
is a fairly straight forward task given some familiarity
with the various options available. It could be simplified
by using a program to obtain (via ‘screen forms’ of
course) the details of each field or heading to be
displayed — no doubt this will follow once time permits.

The power of the ‘screen form’ generation routines is
such that one can sit down and in just a few hours put
together a quite complicated series of screens. Essentially
all the work is done by the routines and the look-up table
and the only programming required is a relatively short
‘main’ program to read in the look-up table, specify the
order in which screens are displayed, access the system’s
files and so forth. In practice, developing a production
system takes far longer because extra coding is required
to handle special cases, perform cross-checks and so
forth. However, a quickly put together ‘demonstration
system’ gives the potential user an idea of what the final
version would be like and having such a prototype often
helps identify possible problems and areas where extra
facilities are required. Changes to the layout of a screen
form are quite easily made by amending the relevant
look-up table entries.

4.4. Other points

The ‘screen form’ generating routines are written in
VSPC FORTRAN and use the Interface routines—
essentially they contain a series of CALLSs of the Interface
routines for each of the permitted types of data plus code

- to check the user’s entries, handle cursor positioning, etc.

They ‘interpret’ the specifications provided in the
look-up tables and thus require more computer time and
memory than ‘teletype’ dialogue or code using IBM’s
OPSYS routine directly. For small applications this does
not matter greatly — only a few seconds of computer time
per day are ‘wasted’ by ‘inefficient’ code — but the
implications of the routines’ heavier CPU usage would
have to be assessed carefully before they were used for
large applications. In theory the routines could be
speeded up (e.g. by replacing certain parts with, say,
Assembler) for use in larger applications, but as yet this
has not been tried.

5. APPLICATIONS AND EVOLUTION
5.1. Applications

The routines described in this paper have been used for
two types of application:

(a) ‘Record-keeping’ systems
An example of these is a Periodicals Circulation
system which holds details of periodicals taken by the
Scottish Office Library, their suppliers and recipients
(individuals in the Scottish Office to whom the
periodicals are circulated). A series of ‘screen forms’
are used to enter and amend periodical details (e.g.
title, frequency of publication, etc.), supplier details
(e.g. name and address, bank account(s), etc.) and

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 123

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

F.J. DIXON

(@) Error messages produced automatically

STAFF REF NO 123 NOT @ WHOLL NUMERR

SURNAME. AL 3O

THITIALS o

GRADE COR HELF) TNVALLD ABEREVIATLON

ROCM

EXTENSTON 123 MUST EBE 3000 100 3999

DATE OF EBIRTH 15 maw 1933 MUST B 5 AR 1216 0 8 AP 1L H7
DATE JOINED 11 fet 1983

MAKE CHANGES THEN PRESS

"SF6" IF
"GELO® TO

FRINT
CAMCEL.

(b) Credible data entered
STAFF REF NO

GURINARE. ofi on

THXTIALS [

GFADE. fies

RO #1205

EXTENSTLON 3206

DATE OF EBIRTH LS maw L9%2

DETE JOINED Ll feb 1978
EMNTER

MAKE CHANGES THEN FRESS
"GEGY IF
"GELOY TO

FIRINT
CANCEL.

REQULRED
RECENT

COR HELF)

CHANGE S A OK XK

Kow R PLEASE CORRECT ERRORS

HLGHER EXECUTIVE OFFXCER

NOVERFORS FOUNE

Figure 5. Screen forms produced using screen form generating routines.

recipient details (e.g. name, room, building, etc.). The
facilities provided by the ‘screen form’ generation
routines for checking the user’s entries and offering
HELP are particularly important here as there are
several long code-lists for subjects covered by the
periodical, recipients’ locations, etc.

(b) Remote Job Entry ‘ pre-processor’ systems

These are programs which simplify the submission of
batch jobs by asking the user for details of the
processing required and modifying the Job Control
Language accordingly (e.g. changing the name of the
dataset to be accessed). Various checks reduce the
possibility of the job failing — for example, if the user
enters an invalid dataset name the program refuses
to continue until a correction is made. In some cases
the options selected from a previous batch run are
displayed on the ‘screen form’ for amendment if
required — e.g. if the user wishes to repeat a statistical
analysis done for 1979 data on the 1980 file, the part
of the dataset name giving the year can be changed

on the screen and all other options (e.g. destination
of output, number of copies of results, etc.) re-used.

5.2. Evolution

The Interface routines were originally developed to
handle only ‘character’ data — principally to facilitate
minor corrections to, say, names and addresses in
‘record-keeping’ systems (data for other types of field
being entered and amended via a ‘ teletype’ question and
answer sequence). This arbitrary split was unsatisfactory
and, when time permitted, facilities for converting and
displaying internal numeric values and dates were added
so that the ‘screen forms’ could display the various fields
in a logical order for the users.

Menus were initially specified by a series of CALLs of
PROTEC, which required quite a lot of coding and
sometimes made minor changes to their layouts or
wording rather awkward. The CLFILE routine was
therefore added to simplify this process.

The cursor handling has become more sophisticated.
At first the cursor would be placed at the top left of the

124 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

SIMPLIFYING SCREEN SPECIFICATIONS

(@) Program to produce screen shown in Fig. 5

10 € PROGRAM TO SET UP FIGURE 5 SCREEN FORM - F J D, APR 83
20 C

30 DIMENSION IPERSN(99), LFIELD(30,40), LVALID(8,50)

40 C

50 C READ & CHECK FIELDS LOOK-UP TABLE & SET DEFAULT VALUES
60 C

70 DO 40 N = 1,13

80 READ (1, 50) JUNK

90 40 CONTINUE

100 C

110 DO 60 N = 1,40
120 READ (1, 50) (LFIELD(K,N), K=1,30)

130 50 FORMAT (Al, Al, T1, 6A&4, 714, 217, 13I1)

140 60 CONTINUE

150 CALL FSCHKL (LFIELD, 30, 40)

160 C

170 C READ VALID ABBREVIATIONS LOOK-UP TABLE

180 C

190 READ (2, 200) LVALID

200 200 FORMAT (8A4)
210 C

220 C CLEAR FIELDS & DISPLAY SCREEN

230 C

240 CALL CLRREC (1, IPERSN, LFIELD, 30, 40)

250 CALL FSFORM C 1, IPERSN, LFIELD, 30, 40, LVALID, 8, 2, 1, IRET)
260 C

270 STOP

280 END

(b) Look-up table defining screen form

10

20 FIGURE 6 SCREEN FORM GENERATING LOOK-UP TABLE

w .

50 A DESCRIPTION OF FIELD FOR SIDE-HEADING

60 B BLANK 7 ZERO IF SPARE LINE IN LOOK-UP TABLE

70 C SCREEN NUMBER (SEVERAL SCREENS MAY BE DEFINED IN ONE TABLE)

30 D & E START OF FIELD AND LENGTH IN WORDS IN ARRAY IN CALLING PROGRAM
90 F TYPE OF DATA - 1: TEXT, 2: CODED, 3: INTEGER, 4: DATE ETC

100 G & H START OF FIELD ON SCREEN - ROW AND COLUMN

%%0 I &8 J BASIC RANGE 7 VALIDITY CHECKS - MINIMUM & MAXIMUM VALUES ETC
0

130 A. B. C. D. E. F. G. H. I. J.

140 STAFF REF NO 1 1 1 1 3 3 26 1000 9999

150 SURNAME 1 1 2 5 1 5 26

160 INITIALS 1 1 7 1 1 7 26

170 GRADE 1 1 8 1 2 9 26 1 10

180 ROOM 1 1 9 2 1 11 26

190 EXTENSION 1 1 11 1 3 13 26 3000 3999

200 DATE OF BIRTH 1 1 12 1 4% 15 26 -23750 -5850

g%g DATE JOINED 1 1 13 1 ¢ 17 26 -164625 0

230

2640 (Spare lines omitted)

250

(¢) Look-up table giving valid abbreviations and descriptions for ‘coded’ fields

10 EO EXECUTIVE OFFICER

20 HEO HIGHER EXECUTIVE OFFICER
30 SEO SENIOR EXECUTIVE OFFICER
40 PRIN PRINCIPAL

50 AS ASSISTANT SECRETARY

60 SPARE

70 SPARE

80 SPARE

90 SPARE
100 SPARE

(Subsequent entries omitted)

Figure 6. Use of screen form generating routines.

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 125

¥20Z I4dy 01 uo 1senb Aq gzyee// L L/Z/8z/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

F.J. DIXON

In the program listed in Fig. 6(a)

IPERSN

LFIELD

LVALID

holds the data for the current individual according to the specifications given in the look-up table shown
in Fig. 6(b)
i.e. IPERSN(1) holds the Staff Ref No. as an INTEGER

and IPERSN(2) to (6) holds the Surname (text)
etc. and IPERSN(13) holds the Date Joined (‘date integer’)
In a proper system IPERSN would be read from and written to a direct-access file using the Ref No to
determine the appropriate record.
holds the screen form generating look-up table read from the card-image file shown in Fig. 6(b) (the first
13 lines of which are skipped). In this case, up to 40 screen fields can be defined, each being specified by
one line of the look-up table, and a lot of defaults have been used. The description of field J is read into
LFIELD (3,J)...(8,J); the ‘spare’ indicator into LFIELD (9, J); the screen number into LFIELD (10,]J);
the start of the field in the data array (IPERSN) into LFIELD (11, J); its length in the data array into
LFIELD (12,7J); its type into LFIELD (13,J) and so on.
holds the code-lists read from the card-image file shown in Fig. 6(c). In this case up to 50 entries are
allowed - for entry J, LVALID (1,J) and (2,J) hold the 8-character abbreviation and LVALID
(3,7)...(8,J) hold the 24 character description.

The routines used are:

FSCHKL

CLRREC

FSFORM

Checks the screen form generating look-up table and sets default values where certain entries have been
read as zero (blank on the card-image file). The checks include valid type of data code? row and column
in range? etc.

(Screen form number, data array, look-up table, words, entries).

Initialises all fields in ‘data array’ which are to be displayed on screen form ‘screen form number’ to
appropriate default values (spaces if ‘text’ field, ‘999 XXX 9999’ if date field, etc.). The look-up table
provides details of which fields belong to that screen form, where they are in the data array, what their
types are.

(Screen form number, data array, look-up table, words, entries, code-list, words per entry in code-list,
paging allowed indicator, new record/entry allowed indicator, return code).

This routine displays the ‘screen form’, checks the data entered by the user for ‘internal’ validity, puts up
error messages on the screen and so on.

‘screen form number’ identifies the ‘screen form’ required — e.g. ‘screen form 1’ might be basic
personal details, ‘screen form 2’ job details, etc.

‘data array’ holds the data to be displayed, amended and returned

‘look-up table’ contains the screen form generating look-up table for this particular application

‘words’, ‘entries’ specify the size of the look-up table

‘code-list’ gives the valid abbreviations, etc., for coded fields

‘words per entry...’ indicates the size of each entry in the code-list

‘paging allowed?’ set to 1 if the user is to be allowed to use certain function keys to move

between screen forms — e.g. if there are up to 10 screens showing job details
for an individual the user may wish to move from, say, the ‘current job’
screen to the ‘previous job’ screen

‘new...allowed?’ set to 1 if the user is to be allowed to enter data in ‘key’ fields (e.g. when
creating a new individual’s record a staff reference number must be
entered; once the record has been created the permanent key cannot be
changed via the normal data amendment sequence)

‘return code’ — 1 if the user wishes to page back
0 if the user has finished with this ‘screen form’ (or set of ‘screen forms”)
+ 1 if the user wishes to page forward

As an example of the coding required to handle ‘paging’ and ‘new records’ assume that JOBS(20, 10) holds details of
up to 10 jobs held by an individual: JOBS(1...20, J) being the details of the Jth job. Let NJOBS be the number of jobs
for the current individual. We have (in pseudo-Fortran):

NEXT =1 (pointer to next job entry to be displayed)
100 IF NEXT > NJOBS (new job entry to be created for current individual)
THEN NEWOK = 1

CALL CLRREC (2,JOBS(1,NEXT),...) (jobs on screen form 2)
NJOBS = NJOBS +1

ELSE NEWOK =2 (not creating new job entry)
END IF
CALL FSFORM (2,JOBS(1, NEXT), ..., 1, NEWOK, IRET)
IF IRET = 0 ‘EXIT’ (user finished with ‘jobs’ screens)
IF IRET = +1 (‘page forward’ requested)
THEN NEXT = NEXT+1 (provided this does not go above 10)
ELSE NEXT = NEXT -1 (provided this does not go below 1)
END IF
GO TO 100 (to display details of NEXT entry)

This would have to be refined a little (if only to prevent the creation of new job entries by accidentally paging too far

forward) but the general idea should be clear.

Figure 7. Use of the ‘screen form’ generating routines.

‘screen form’ when the form was first displayed;
subsequently the routines were modified to put it
automatically at the start of the first amendable field (if
any) and, later, at the start of the first field (if any)

126 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

containing ‘gross’ errors. The PUTCUR and CURSOR
routines were added to give the programmer more
control over the cursor and detect its position for
selection from ‘menus’.

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

SIMPLIFYING SCREEN SPECIFICATIONS

Various other changes have been made over the years
and the routines are now considerably more powerful
then was originally envisaged. Fortunately it has been
possible to introduce the enhancements without requiring
major changes to existing applications: the routines have
proved ‘upward compatible’.

The ‘screen form’ generating routines were developed,
after several applications using the Interface routines had
been set up, to reduce the work involved in generating
‘screen forms’ with ‘standard’ facilities (i.e. those
required by most existing and proposed systems). The
coding was based on an existing application using the
Interface routines, generalised to a ‘table-driven’ series
of CALLs of the Interface routines.

6. CONCLUSIONS

These routines are of interest as an example of how the
basic facilities offered by the manufacturer’s software
may be improved and made easier to use; it is not claimed
that they represent a ‘ great leap forward’ for Computer
Science (no doubt similar routines are in use elsewhere —

indeed some might argue that such routines are, or soon
will be, unnecessary as ‘easy screen design’ facilities are
already offered by some database management systems
and this seems to be an area in which development is
rapid). The time spent developing these (and other)
routines had been more than justified by the time saved
using them, and the net benefits increase with every new
application that uses them. The routines have also
allowed facilities to be used that would not otherwise have
been used because of the difficulty of using the versions
supplied by the manufacturer.

The use of such routines should also make programs
more ‘portable’ as the non-standard installation-
dependent features are restricted to the ‘service’ routines
rather than appearing throughout each program.

Acknowledgements

Colleagues, particularly Duncan Leuchars and Malcolm
McNeil, for assistance and suggestions; SOCS for
computing time; IBM for permission to reproduce Fig.
1 and the referee for suggesting some improvements.

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 127

¥20Z I4dy 01 uo 1senb Aq gzyee// 1L L/Z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

