A Language Enhancement Facility for COBOL —

its Design and Implementation

J. M. TRIANCE AND P.J.LAYZELL*

Department of Computation, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 10D

A working party of the British Computer Society has designed a facility which allows users to configure their COBOL
compilers to accept different dialects of COBOL. The facility, known as the COBOL Language Enhancement Facility
(CLEF), was produced in response to users’ requirements to enhance their versions of COBOL. This paper reviews the
development of CLEF: looking at the users’ requirements, identifying design criteria and outlining the design,

implementation and evaluation of CLEF.

1. THE NEED FOR CLEF

There is a popular belief that COBOL users want a
vigorously enforced standard language. This is a fallacy.
Most COBOL users have a standard (ANS 74!') COBOL
compiler but are unhappy with the language it supports.
A UK survey? revealed that 919 of the users questioned
were dissatisfied with their COBOL compiler. The major
reasons for dissatisfaction were:

(a) omission of modern features (such as structured
programming and data base);

(b) the presence of features which are undesirable from
the point of view of style or efficiency (such as the
ALTER or GO TO statements);

(c) differences from COBOL on other machines on
which the programs are to run;

(d) absence of applications-oriented features.

Symptoms of these deficiencies are:

(a) the large number of pre-processors;

(b) the prevalence of installation standards which
confine programmers to a subset of the COBOL
dialect supported by the compiler;

(c) libraries of subroutines to provide functions which
are not directly supported by the language.

Improvement to the standard could reduce the need for
user variability, but the specific requirements of the users
in different application areas will always demand
different dialects of COBOL. It makes no more sense to
limit all COBOL programmers to one common dialect
than it would, for example, to demand that doctors and
civil engineers use the same terminology and working
practice.

This need for individual users to build on standard
COBOL was recognised by a working party of the British
Computer Society’s COBOL Specialist Group. It
designed the COBOL Language Enhancement Facility
(CLEF) to satisfy this need.?

CLEF allows users to take an existing dialect of
COBOL (the base language) and add new features, delete
features and alter the run-time behaviour of features.

The remainder of this paper describes the design of
CLEF by the BCS CLEF Working Party and its
implementation and evaluation at UMIST in a project
funded by the UK Science and Engineering Research
Council. Since this paper covers the whole project,

* To whom correspondence should be addressed.

128 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

detailed descrlptlons of each stage are not possible. For
these, the reader is referred to refs. 3, 12 and 5 for the &
design, 13 and 11 for the implementation and 14 for the
evaluation.

2. CLEF DESIGN CRITERIA
The design of CLEF is based on the following criteria.

(1) Portability. There is a need for portability of
applications programs: CLEF must have no adverse &
effect on this.

(2) Ease of learning. It should be easy to learn how to ¢
specify Enhancements in CLEF.

(3) Independent implementation of enhancements. To 3
keep implementations as straightforward as possible =
separate enhancements should be capable of independent 3
implementation. Thus it should be possible, for example, =
to implement IF...END-IF construct without any
danger of interfering with the implementation of the
INITIALIZE statement.

(4) Support for COBOL-like enhancements. CLEF
must permit enhancements which are COBOL-like.

(5) Full support for enhancements. The enhancements
must be supported to the same level as the base language.
New features must be fully validated and any errors
reported in terms of the original source text.

(6) High-level means of specifying enhancements. The
enhancements should be specified in a suitable high-level
language.

3. DESIGN OF CLEF

CLEF is designed to permit users to add extra features
to COBOL, delete existing features and alter the
semantics, subjects to the design criteria stated in the
previous section. This section demonstrates how CLEF
was derived from these criteria.

3.1 Portability

To assist portability enhancements are supported by
converting them into standard COBOL. For example,
Fig. 1 shows the translation of a PERFORM...WITH
TEST AFTER statement (as permitted in draft ANS 83
COBOL* into standard COBOL. In Fig. 1, p-n represents
a procedure-name and c represents a condition. The
COBOL produced by the translation process is compiled
by an existing compiler.

O

3

2°dno-olwapeose)/: sduu wolj papeo|

o

=

3

ﬂ

20z Iudy 01 uo1senb Aq Syere/8gL/z/8z/e1one

A LANGUAGE ENHANCEMENT FACILITY FOR COBOL

PERFORM p-n WITH TEST AFTER
UNTIL ¢

Enhancement

\

Translation
process

T
'

\j
PERFORM p
PERFORM p UNTIL ¢

Figure 1. The PERFORM...WITH TEST AFTER
enhancement

Equivalent standard COBOL

This design decision restricts the enhancements that can
be supported by CLEF to those which are expressable in
existing COBOL. However COBOL is a rich language,
so in practice this is not a major constraint. It does not
for example rule out any enhancement that can be
achieved by pre-processors, called subroutines or
installation standards. Furthermore CLEF does not
prevent the user from generating CALLs to assembler
subroutines; though a user who does this will be
sacrificing portability. To maximise the portability of
CLEF, COBOL is used for coding the translation
process.

3.2 Ease of learning

It should be easy for the programmer responsible for
implementing the enhancements to learn how to write the
translation process. The choice of COBOL as the
language for implementing the translation process assists
in this: the programmer must already know COBOL to
decide on the output from the translation process. In
many respects the translation process is a typical
data-processing program with input, output and proces-
sing. Where specialised facilities are required they have
however been added to COBOL.

3.3 Independence

The translation processes for separate enhancements
should be independent. For example, when writing the
translation process for COBOL’s new EVALUATE
statement,* the programmer should need to have no
knowledge of how other new constructs, such as
PERFORM...WITH TEST AFTER, are implemented
and it should be impossible to corrupt the translation
process for these other enhancements.

Independent routines for translating source text such
as this are known as macros. They are invoked by a macro
processor which scans the source text looking for
enhancements (normally referred to as macro calls). The
text output by the macro is referred to as generated text.

The action of a macro is summarised in Fig. 2. Within
the macro there are three major components. They are
as follows.

(1) Specification of the format of the macro call
(known as the template) which is used by the macro
processor to recognise macro calls within the source text
and is used by the rest of the macro as a means of
reference to parts of the macro call.

(2) A description of the generated text which is to be
output.

Macro call
]

\

Description of macro
call (template)

Procedural code Macro
(macro body)

Description of
generated text

T
1

Generated text

Figure 2. Overview of a macro

(3) Procedural code (or macro body) which examines
the macro call, determines what text should replace it and
then generates the text.

CLEF differs from existing macro processors in that it has
a number of high level COBOL oriented features. The
term ‘CLEF processor’ is used to refer to the CLEF
macro processor and a ‘CLEF program’ is a CLEF
macro. Each CLEF program is a separate COBOL
program which is called by the CLEF processor wherever
a relevant macro call is encountered. By the very nature
of COBOL programs a great degree of independence of
macros (CLEF programs) is assured.

3.4 Support for COBOL-like enhancements

CLEF permits any COBOL-like enhancements to be
specified as a macro call. In other words anything that
can be expressed in the COBOL metalanguage can be a
macro call. Fig. 3 represents a sample of a macro call. The
format may contain key words (underlined upper-case
words in Fig. 3), optional words (other upper-case
words), syntactic classes (lower-case words), options
(enclosed by [and], alternatives (enclosed by{ and })
and repetition (indicated by...).

INITIALIZE identifier-1... {identiﬁer-Z}

[REPLACING NUMERIC DATA BY literal

Figure 3. Format of a macro call

The macro calls do not have to be preceded by any special
symbol (or herald) and they obey the standard COBOL
rules for layout and continuation across lines.

Macro calls thus look just like any COBOL statement —
in fact the programmer may well be unaware of which
statements are supported by CLEF and which ones are
supported directly by the compiler.

3.5 Full support for enhancements

In the previous section it was established that the macro
calls are indistinguishable in appearance from the base
language COBOL statements. Since they are to become
part of the COBOL programmer’s language, they should
also be indistinguishable in the support the CLEF
processor provides for them. The enhancements should

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 129

cpJy 28

¥20Z Iudy 01 uo 1senb Aq Gy1ee/8zL/z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

J. M. TRIANCE AND P.J.LAYZELL

be fully checked for errors, and any errors encountered
should be reported in terms of the source code (the macro
call). It is not acceptable for any errors in the macro call
to be transmitted to the generated text because the
resulting error messages, issued by the compiler, would
refer to code that the programmer did not write and does
not therefore understand. In addition to detecting any
error within the macro call the CLEF processor should
also reject the macro call if it appears in the wrong
context —if for example a new Procedure Division
statement is specified in the Data Division.

3.6 High-level means of specifying enhancements

The aim is to provide the macro writer with a high-level
programming language — at least as high-level as COBOL
is for normal data-processing operations.

In addition to normal data-processing operations the
CLEF program must be able to do the following:

(@) describe the format of the macro call;

(b) specify the context in which the macro call may
appear;

(c) indicate the destination of the generated text (the
‘current position’ in the program being processed,
the ‘working-storage section’, etc.);

(d) discover information about the rest of the program
being processed (the attributes of data items, etc.).

With each of these functions the emphasis has been on
shifting from the CLEF programmer on to the CLEF
processor the burden of validating macro calls and of
ensuring the integrity of the generated text.

The CLEF programmer specifies the format of the
macro call in a form equivalent to that of the COBOL
metalanguage (see Fig. 3) in a special format section.
Fig. 4 shows a format section equivalent to the format in
Fig. 3.

FORMAT SECTION.

1 INITIALISE-STATEMENT.
2 FILLER KEY-WORD
<< INITIALIZE >>.
2 FILLER ARGUMENT IDENTIFIER >

OCCURS MINIMUM 1 TIMES
DEPENDING ON ID-COUNT.

2 REPLACING-
PHRASE OPTIONAL.
3 FILLER KEYWORDS << REPLACING
NUMERIC >>.

3 FILLER NOISE-WORDS << DATA >>.
3 FILLER KEY-WORD << BY >.
3 FILLER ALTERNATIVES.

5 FILLER ARGUMENT IDENTIFIER.

5 FILLER ARGUMENT LITERAL.

Figure 4. A CLEF format section

The Format Section is extracted from the CLEF program
in a special CLEF library run and is used by the CLEF
processor to detect and fully validate macro calls. This
validation ensures that the reserved woods appear as
specified and that the syntactic classes (identifier and
literal in this example) are also valid.

The context of the macro call is specified by a special
clause in the Program-Id paragraph of the CLEF
program. The CLEF processor is responsible for ensuring

that the macro is only matched in the specified context.
The context may be any syntactic class (imperative-
statement, data description clause, etc.). Thus a macro of
context imperative-statement may appear anywhere in
the source program that an imperative-statement may
appear, and nowhere else.

A special Generated-Text Section is used to specify text
which is to be output by the CLEF program. Within this
section each piece of text is labelled according to its
destination within the source program (working-storage
section, file section, current position, etc.). When the text
is output from the CLEF program the CLEF processor
will ensure that it is stored in the currect position in the
source program.

Some macros will require access to the data attributes
to determine what code should be generated. For example
the default action of the INITIALIZE statement in draft
ANS COBOL! is to move zeros to numeric fields and
spaces to alphanumeric fields. Thus the data definition of
any identifier specified in the INITIALIZE statement
must be checked to see whether it is numeric or
alphanumeric. The CLEF processor stores all the
information about the data items, files and other entities
in a property table which is made available to CLEF
programs.

3.7 Summary of design

This section has described the major aspects of the design
of CLEF and related them to the design criteria. A full
description of CLEF appears elsewhere,? as does a fuller
justification of the design decisions.5 12

4. IMPLEMENTATION OF CLEF

An implementation of CLEF has been developed at
UMIST! 18 gnd is described in this section.

4.1 Implementation options

Two strategies exist for the implementation of CLEF: a
pre-processor implementation and a compiler-integrated
implementation.

A pre-processor has the following advantages.

(1) The implementation is compiler-independent and
so can be portable between compilers.

(2) The overall size of an implementation can be
minimised by keeping the CLEF facility separate from
the compiler.

A compiler-integrated CLEF implementation has the
following advantages.

(1) There is no duplication of the lexical and syntax
analysers. In a pre-processor implementation, the input
source must be fully validated and thus a full syntax
analysis is necessary. This can only be achieved by full
lexical and syntax analysis by the pre-processor (as well
as the compiler).

(2) The use of one lexical analyser and one syntax
analyser, together with a single error processor, helps to
provide a uniform level of support for both the base
language and enhancements.

(3) Problems of interfacing with symbolic run-time
debugging packages are overcome with a compiler-
integrated approach.

130 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z Iudy 01 uo 1senb Aq Gy1ee/8zL/z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

A LANGUAGE ENHANCEMENT FACILITY FOR COBOL

These two approaches are not as different as they might
appear. Because the pre-processor must do full syntax
checking it is very similar to the front-end of a compiler.
The only difference is that the pre-processor will generate
COBOL object code whereas compilers normally
generate some lower-level code.

The UMIST implementation is a pre-processor and
thus demonstrates the feasibility of both approaches.

4.2 Overview of the compiler

The COBOL compiler with an integrated CLEF facility
developed at UMIST has the following characteristics:

(a) the compiler is one-pass;

(b) the compiler is based upon a syntax-driven
design? ® with a single set of syntax diagrams that
define both the base COBOL language and the
CLEF extensions that are acceptable to the
compiler;

(c) the syntax diagrams that drive the compiler are
constructed so as to minimize the need for
backtracking during the parse of an input source;

(d) the compiler can return to the stage at which it
processed any previous part of the program so as
to compile generated text that may be produced
after a macro call;

(e) the compiler is controlled by a scheduling process
that detects the production of generated text and
can, if necessary, suspend compilation of the
current part of the COBOL program and compile
the generated text first.

4.2.1 Configuring the compiler

With most implementations of extensible language
processors, some configuration stage®® is necessary
before the processor can be used. In CLEF, this
configuration stage is known as the CLEF library run.
Fig. 5 shows the production of a CLEF library by means
of the CLEF library run and the subsequent use of the
library in the compilation of COBOL applications
programs.

The purpose of the CLEF library run is to convert the
CLEF programs written by a user into a form suitable
for use by the compiler. This process involves:

(a) lexical analysis, syntax analysis and semantic
checking of each CLEF program;

(b) encoding of each CLEF program format section in
the form of syntax diagrams (for subsequent use by
the compiler’s syntax analyser when checking for
macro calls);

(c) identification of new reserved words;

(d) conversion of he CLEF program into executable
code (for execution whenever the compiler matches
the source text against the associated format
section);

(e) updating the CLEF library with the new syntax
diagrams, reserved words and CLEF object
programs.

Before the library is used by the compiler, some optimiza-
tion is performed by the UMIST implementation.

(1) The syntax diagrams that represent the format
sections are combined with the syntax diagrams that

1
1 1
Vn-built !
| syntax E

o)
1
o
o
B
1]
3

compiler
(with CLEF)

Figure 5. Overall implementation strategy

represent the base language. By adding the syntax
diagrams of the enhancements in the correct position of
the syntax diagrams of the base language, the context of
the macro calls is automatically validated by the syntax
analyser.

(2) The syntax diagrams are ‘factorized’ to minimise
the need for backtracking during syntax analysis.

Once all the CLEF programs to support the desired
dialect of COBOL have been added to the CLEF library,
the compilation of COBOL applications programs is
possible. These COBOL programs may contain any
enhancements supported by CLEF programs contained
in the CLEF library currently available to the compiler.

4.2.2 Running the compiler

When the desired macro call formats have been added to
the rest of the language, the compiler is ready for use. A
user submits his COBOL programs, possibly containing
CLEF-supported language enhancements, in the normal
way. The only distinction made between the base COBOL
and the enhancements supported by CLEF is when the
syntax has been validated. The syntax analyser passes
control to the semantic analyser which either generates
object code, in the case of a base language feature, or calls
the associated CLEF program, in the case of a
CLEF-supported feature.

If the syntax analyser cannot match the input source
against either the base language or CLEF-supported

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 131

9-2

¥20Z Iudy 01 uo 1senb Aq Gy1ee/8zL/z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

J.M.TRIANCE AND P.J.LAYZELL

CLEF library COBOL program
| I
v v
! ! !
E f Scheduler | ,
' o e e e e e 1 :
: / \ X
! ' Syntax ! ! Lexical | "
H | analyser | <-| analyser | :
1 e e e - - - L 1 1
' | ' :
| | | |
il \ , H
! ' Semantic | ! !
H ' analyser | ! H
! ! : :
LS : i
H ! Code ; : !
1 ! generator | ! !
L S SR !
|]
v v
Object code Listing

Figure 6. Structure of the CLEF compiler

enhancements, an error processor is called that will report
the error and proceed with error recovery, irrespective of
whether the error has occurred in the base language or
macro call.

The error processor reports the error by writing the
appropriate message to an error listing. CLEF programs
can also direct messages to this listing. Thus the
programmer receives a single error listing containing both
CLEF program-generated error messages and base
language error messages, presented in a consistent
format. The error processor then attempts a local error
recovery. If this fails a global error recovery!® is
performed, whereby the error processor skips through the
source text until a period, another recognisable symbol
or end of source is encountered. Processing is resumed
from this point.

The structure of the compiler is shown in Fig. 6. Its
construction is similar to existing compilers with the
exception of the scheduler, whose function is to direct the
compiler to process any generated text produced after the
execution of a CLEF program.

During the validation of data description entries, the
semantic analyser constructs a property table (or symbol
table) for use by the compiler. The property table is
constructed in such a way that CLEF programs can easily
access the information stored. This enables the CLEF

REFERENCES

1. Ansi. American National Standard Programming Language
COBOL, X3.23 (1974). [Official COBOL specification.]

2. P. J. Layzell, A summary of the results of the BCS COBOL
users’ questionnaire, Computation Department Report 257,
UMIST, Manchester, England (1980). [Summary of results
of a questionnaire to COBOL users on the suitability of their
versions of COBOL.]

3. P.J. Layzell, CLEF Journal of Development, Computation
Department Report 258, UMIST, Manchester, England
(1981). [Official specification of CLEF.]

4. ANSI, Revised X3.23 American National Standard Pro-

programs to perform a full semantic analysis of macro
calls.

S. EVALUATION OF THE CLEF FACILITY

The final stage of the CLEF project at UMIST was an
evaluation to ensure that CLEF could support a
sufficiently high number of enhancements to COBOL
required by users.

The evaluation followed the following steps:

(a) an extensive set of COBOL enhancements were
collected (340 in all) by surveying COBOL users?
and using the changes between the ANS 74
COBOL standard and the draft ANS 83 COBOL
standard;

(b) each enhancement was categorised on a number of
criteria;

(c) a cross-section of enhancements was identified
which between them displayed all the characteristics
identified by the categorisation;

(d) CLEF programs were designed and implemented
for the selected enhancements;

(e) the implemented CLEF programs were tested.

The evaluation of CLEF showed that between 709, and
809 of the enhancements could be implemented by
CLEF, thus demonstrating its viability.

6. THE FUTURE

The feasibility of the CLEF facility has been demonstrated
and its potential has been recognised by the UK Science
and Engineering Research Council and ICL. These two
oganisations are sponsors of a project at UMIST to
develop a CLEF facility for ICL machines. The aim is to
bring the benefits of the University research to
commercial programmers. In the longer term it is the aim
of the CLEF Working Party to incorporate CLEF into
standard COBOL, thereby offering the benefits of CLEF
to all COBOL users. It is hoped that in due course each
installation will be able to choose the dialect of COBOL
that suits it in the same way as it can currently choose
its own hardware configuration.

Acknowledgement

The specifications of CLEF were produced by the BCS
CLEF Working Party. The work at UMIST was
sponsored by the UK Science and Engineering Research
Council.

gramming Language COBOL (1981). [Draft of the pro-
posed official COBOL specification to replace ANS 74
COBOL.]

5. J. M. Triance, The design and evaluation of a language
enhancement facility for COBOL, M.Sc. thesis, Computa-
tion Department, UMIST, Manchester, England (1981).
[Describes the design principles behind CLEF.]

6. J. M. Triance & J. F.S. Yow, MCOBOL -a prototype
macro facility for COBOL, Comm. ACM. 23, 8,
432-439. [Introduction to MCOBOL, a COBOL macro
facility and forerunner of CLEF.]

132 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z Iudy 01 uo 1senb Aq Gy1ee/8zL/z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

A LANGUAGE ENHANCEMENT FACILITY FOR COBOL

- M. E. Conway, Design of a separable transition-diagram

compiler, Comm. ACM. 6, 7, 396-408. [Describes a
syntax-driven COBOL compiler.]

. P.J. Layzell & J. M. Triance, Syntax-driven COBOL

Compilers, Computation Department Report 275, UMIST,
Manchester, England (1982). [An introduction to syntax-
driven compilers.]

. Cobra Systems and Programming, Cobra Users Manual,

21 Green Hill Road, Camberley, Surrey, England (1982).
[An introduction to the Cobra macro processor.]

. A. B. Pai & R. B. Kieburtz, Global context recovery: a new

strategy for syntactic error recovery by table-driven parsers,
ACM Transactions on programmed language systems 2, 1,
18-41 (1980). [Describes a global error recovery technique
for syntax driven compilers.]

11.

12.

13.

14.

P.J. Layzell, The implementation of a COBOL language
enhancement facility, Ph.D. thesis, UMIST, Manchester,
England (1982). [Describes an implementation of CLEF.]
J. M. Triance & P. J. Layzell, CLEF-A COBOL Language
Enhancement Facility, Computation Department Report
273, Manchester, England (1983). [Outlines the basic
concepts of the CLEF facility.]

P.J. Layzell & J. M. Triance, Implementation of a
COBOL Language Enhancement Facility, Computation
Department Report 274, Manchester, England (1982).
[Describes an implementation of CLEF.]

O-C. C. Lin, The Evaluation of the COBOL Language
Enhancement Facility, M.Sc. Dissertation, Computation
Department, UMIST, Manchester, England (1982). [Des-
cribes an evaluation of the CLEF facility.]

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 133

¥20Z Iudy 01 uo 1senb Aq Gy1ee/8zL/z/8z/e1ome/|ulwoo/woo dnosolwsepeoe//:sdpy wolj papeojumoq

