Exploiting Vector Computers by Replication

PETER R.BENYON

CSIRO Division of Computing Research, GPO Box 1800, Canberra, ACT 2601, Australia

Two broad classes of problem suitable for computers with vector architecture can be distinguished. The first have a
systematic structure that makes them natural candidates for this type of machine. The second lack such structure but the
algorithm as a whole has to be run many times. It may then be possible to vectorise across a large number of conceptual
replicates of the same algorithm rather than trying to vectorise within the one algorithm. The conditions allowing this
are stated. An advantage is that even scalars in the original become long vectors in the replicated version. A
disadvantage is the amount of storage needed. The application of replication to a continuous simulation problem is

discussed.

1. INTRODUCTION

Computers having pipelined vector architecture, such as
the Cyber 205, are generally considered to be rather
specialised machines particularly suitable for solving
multi-dimensional partialdifferentialequations. However,
it is being found that there are other classes of problem
that can be made to vectorise well, significantly widening
the applications for which such machines are attractive.
One such class of problem is identified here for which it
is shown that a method termed ‘replication’ can be very
effective. The basic idea is not new, but most discussions
of it lie buried in the specialised literature related to
particular applicatons.!~® The aim here is to bring out the
generality of the approach and make it more widely
known.

To get the best out of a vector machine it is necessary
to organise the calculations so that they consist as much
as possible of similar operations on all elements of long
vectors. To qualify as a ‘vector’ in the case of the Cyber
205, elements must be stored in consecutive locations.
Achieving a high proportion of vectorisation is very
important, since if only 909, of the work can be
vectorised, the speed may be only 109, of that for full
vectorisation. This is because vector arithmetic is so much
faster than scalar arithmetic on machines of this class.
Replication is one technique aimed at achieving a high
degree of vectorisation.

Section 2 will describe the general principle and Section
3 some experiences in trying it out in a particular case.

2. GENERAL METHOD
2.1 Problems requiring multiple independent runs

The type of problem to be considered can be anything that
requires a substantial algorithm to be executed many
times over, but where the different executions are
independent of each other.

Two commonly occurring reasons for multiple execu-
tion are:

(1) the presence of random numbers in the calculation,
with the attendant need for large batches of runs to obtain
means and other statistics; and

(2) the requirement to vary parameters in search of an
optimum, leading to large numbers of runs using different
trial sets of parameters.

In the first case, the different runs are independent of
each other, but in the second the usual ‘hill climbing’

138 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

methods do not as they stand satisfy the requirement of
independence, since the next set of parameters to be tried
depends upon the results obtained with earlier sets.
However, once the designers of these search algorithms
realise they can have 1000 independent runs (i.e.
evaluations of the objective function) for the price of
about 20 sequential ones, they will doubtless think of
ways to exploit that capability.

In any case, search algorithms cannot be guaranteed
to find the global optimum; so to increase the chances
that the optimum found is not just local, one often repeats
the whole search a number of times, each time starting
from a different point in the parameter space. A large
number of searches starting from different points could
all be carried out as a batch, and these different searches
would be independent.

The two reasons for multiple execution sometimes
occur together. Many different sets of parameters may
have to be tried for optimisation purposes, while for each
set many runs may be needed to obtain the average result
in the presence of random variations.

2.2 Vectorised multiple runs

Given some algorithm to be executed many (say 1000)
times, imagine we had 1000 computers side by side. We
could load the same program into all of them, each with
its own set of parameter values or its own starting number
for the random number generator, and set them all
running simultaneously. In general they would not
remain in step because the path taken through a
computer algorithm is not usually the same every time it
is executed, due to different numerical values influencing
the outcome of IF and similar tests. However, suppose
we could force them to remain in step. As we look across
the line of 1000 computers, each variable or array element
in the program would appear as a vector of 1000 numbers
with each machine working on a different element of the
vector. Clearly, on a vector machine we could emulate
those 1000 simultaneous executions using vectors 1000
long. This approach of vectorising across many replicates
of a complete algorithm, rather than trying to vectorise
within the algorithm, will be called ‘vectorising by
replication’. When it can be used, it is very effective, since
even scalars in the original algorithm become long
vectors.

This method requires two conditions to be met: (1) the
different replicates must be independent of each other;

¥20Z I4dy 01 uo 1senb Aq 291E1E/8€ L/Z/82/21o1e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

EXPLOITING VECTOR COMPUTERS BY REPLICATION

and (2) they must remain in step with each other. If both
of these conditions had to be satisfied strictly there would
be few cases where replication could be used, but it is this
writer’s belief that a great many applications can be
forced to meet these conditions without too much effort.
To illustrate, a common reason for violating the in-step
condition is likely to be that some process has to be
iterated to convergence. In some runs it may take only
three iterations to converge, while in others it may take
as many as ten. One would simply have to force all runs
to grind around for ten iterations anyway. In other words,
one must be prepared to sacrifice efficiency in the small to
gain much greater efficiency in the large.

2.3 Applications

The technique has appeared in a variety of guises and
under a variety of names in different fields of application.
Saunders, who has applied it in quantum chemistry,?
aptly calls it ‘extrinsic vectorisation’ as distinct from the
‘intrinsic vectorisation’ that may be possible within the
algorithm. Hegarty,* also in connection with quantum
chemistry, uses the term ‘data driven’, as opposed to
‘algorithm driven’. Temperton® has applied the method
in signal processing, where a large number of fast Fourier
transforms can be computed at once.

So far, though, interest in replication has been less than
might have been expected. This is probably because
people have not realised how often it will be possible to
force satisfaction of the necessary conditions.

One limitation to using the idea in some cases could be
the amount of memory needed. However, vector methods
in general tend to rely on plentiful memory. Fortunately
very large amounts are becoming available on this class
of machine.

Continuous simulation is one field where multiple runs
are often needed and where it should generally be fairly
easy to satisfy the in-step requirement, provided a
fixed-step rather than variable-step integration method is
used. (Fixed steps are usually faster anyway when
simulating systems subjected to random noise.)

With discrete simulation, on the other hand, different
runs of the model tend to follow vastly different paths.
Even the entities in existence at any given instant are
sometimes quite different from run to run. Thus one must
be doubtful about the possibilities of replication in that

Table 1. Problems suitable for vector machines

1. Systematically structured
1.1 Partial differential equations
Especially in three space dimensions and time.
Problem may be stated in some other, more user-oriented
form.
1.2 Large matrix problems
Often derived from partial d.e. problems.
2. Replicated problems
2.1 Signal processing
Replicated fast Fourier transforms and the like.
2.2 Modelling dynamic systems
With noise and/or optimisation.
Continuous and some discrete simulation.
2.3 Optimisation
Several varieties to consider.

field. Even there, though, there would probably be cases
where it could be made to work.

Table 1 summarises this writer’s view of how
replication increases the broad classes of application for
vector computers.

Since there has been little sign of replication being
applied to simulation it was decided to provide a
demonstration on a problem of that type.

3. ASIMULATION EXAMPLE
3.1 The test problem and its results

The test problem was a continuous simulation of a
servomechanism (position control system). The part
whose position was being controlled was subject to
randomly varying disturbing forces, requiring the servo’s
accuracy to be evaluated by averaging the results of a
large number of simulation runs. The equations of the
model were straightforward, apart from some rather
complex non-linear functions which were needed to
represent saturation and Coulomb friction.

First the problem was programmed, debugged and
timed on a more conventional type of machine, a Cyber
76. The program structure used is standard for this class
of problem, providing the flexibility needed in simulation
while being efficient on scalar computers.

On the Cyber 76 the speed achieved was about
2.4 Mflops — millions of floating point operations per
second. The figures quoted here are a little arbitrary since
they depend on what one counts as a floating point
operation. Is taking the absolute value a full-fledged
floating point operation? And how many operations do
functions like SIN and EXP count as? Operation counts
were weighted roughly according to the relative times
taken on the Cyber 76, but the results are probably
meaningful mainly as measures of relative rather than
absolute speeds.

Tests on the Cyber 205 began with a program differing
as little as possible from the Cyber 76 version. The
program was then progressively modified to exploit fully
the machine’s capabilities. Initially the speed was only 2.1
Mflops (slower than the Cyber 76!) but by the end it was
up to 110 Mflops (46 times faster than the Cyber 76). This
is an extreme case of what many have found when
converting to this type of architecture — existing programs
written without thought for vectorisation may yield
disappointing speeds at first, but after some effort the
results can be spectacular.

There were three main stages of improvement:
vectorising the main DO loop, vectorising the non-linear
functions, and vectorising random-number generation.

3.2 Vectorising the main DO loop

The first step was to try the compiler’s automatic
vectorisation option. It gave absolutely no improvement.
This was expected — the reason will be clear from the
following code. (This is not the servo problem but a
hypothetical problem that is easier to explain.)

(1) Routine calling 1000 times for a run of the model:

DO 11=1, 1000
1 CALL MODEL (COST (I))

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 139

¥20Z I4dy 01 uo 1senb Aq 291E1E/8€ L/Z/82/21o1e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

P.R.BENYON

(2) Subroutine for one run:
SUBROUTINE MODEL (COST)

R = RANF()
X = U*'V4R

COST=---
RETURN
END

Since the FORTRAN compiler looks at only one
subroutine at a time, it misses the fact that the equations
of the model are embedded in a DO loop and so sees
nothing to vectorise. A necessary preliminary must be to
move the DO loop inside the subroutine as follows.

(1) Routine calling once for 1000 runs of the model:
CALL MODEL (COST)

) Subr;)utine for 1000 runs:
SUBROUTINE MODEL (COST)
REAL COST (1000), R(1000)

+ U(1000), V(1000), X(1000)
+ ...

DO 11=1, 1000

R(I)=RANF()
X() = Uy*V(I)+R()

1 COST(I)=--
RETURN
END

The need for the above type of change illustrates the
general point that the compiler is only able to peform
optimisation and vectorisation on a local scale. Changes
of a more global nature, which are often the most
effective, are up to the programmer.

Where the model is not all contained in one subroutine,
but is distributed throughout a hierarchy of subroutines,
still further demotion of DO loops is necessary, along
these lines:

Before: After:

SUBROUTINE MODEL SUBROUTINE MODEL

DO 11=1, 1000 DO 11=1, 1000

— 1 ---

CALL SUBMOD CALL SUBMOD
DO 31=1, 1000

1 --- 3 ---

RETURN RETURN

END END

SUBROUTINE SUBMOD SUBROUTINE SUBMOD
DO 21=1, 1000

— 2 -

RETURN RETURN

END END

Further breaking up of loops may then be necessary
where there are IF tests, but this will be discussed in the
next Section.

Once the compiler is able to see some DO loops, it is

140 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

able to vectorise them automatically if they satisfy certain
rules. Alternatively, one can vectorise them by hand using
the special vector syntax provided in the Cyber 205
dialect of FORTRAN. This second method was chosen,
mainly as a means of learning more about what can and
cannot be done by the machine’s vector instructions — so
as in future to be better able to write code that would
vectorise automatically.

With the experience gained it is believed this problem
could now be handled by the automatic vectorisation
method to give almost as good results, with the advantage
of much less use of non-standard FORTRAN.

As was to be expected, this primary stage of
vectorisation made a big difference and gave an
order-of-magnitude improvement in speed.

3.3 Vectorising the non-linear functions

The non-linear functions typically had the following
pattern:

DO 1 I=1, 1000
Equations computing some logical condition C as a
function of X(I).
IF (C) THEN
Equations computing result F(I) as one function of X(I).
ELSE
Equations computing result F(I) as some other function of
X().
END IF

1 CONTINUE

If C were a fixed condition independent of X(I), one could
take its computation outside the loop, split the remainder
into two shorter loops and use the IF test to control which
of the two to execute. This would give loops requiring
nothing but uninterrupted operations on elements in
consecutive memory locations — just what vectorises
most easily. When, as here, C varies with each iteration
of the loop, the simplest method proceeds along these
lines:

Compute logical bit vector C as a function of vector X.

Compute vector F1 as the first function of vector X.

Compute vector F2 as the second function of vector X.

Call library function Q8VMASK to mask elements of either F 1
or F2 across to the result vector F according to the bit
pattern of C.

The computations of C, F1 and F2 can be programmed
using either explicit vector syntax or automatically
vectorisable DO loops. The masking requires non-ANSI
syntax using one of the vector functions available in the
FORTRAN library.

The above method has the disadvantage that each
component of the result vector has to be computed by
both sets of equations and the value not needed thrown
away. This may not matter if the value most often thrown
away is much cheaper to compute than the other. In the
servo problem it was the other way round, so it became
worthwhile changing to the following method:

Compute logical bit vector C as a function of vector X.

Call Q8SCNT to count number of 1s in vector C to allow the
correct lengths to be specified for vectors X1, X2, F1 and
F2 below.

Call Q8VCMPRS to compress those elements of X for which

¥20Z I4dy 01 uo 1senb Aq 291E1E/8€ L/Z/82/21o1e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

EXPLOITING VECTOR COMPUTERS BY REPLICATION

the corresponding element of C is a 1 into contiguous
locations in vector X 1.

Call Q8 VCMPRS to compress the remaining elements of X into
vector X 2.

Compute vector F1 as the first function of vector X 1.

Compute vector F2 as the second function of vector X2.

Call Q8VMERG to merge elements from either F1 or F2 into
result vector F according to the bit pattern of C.

This method is somewhat more complex than the first and
requires even more use of non-standard FORTRAN, but
it can be significantly faster even after allowing for the
overhead of compressing.

As can now be seen, where alternative paths in the
algorithm being replicated are simple and occur on only
a local scale within one routine, as was the case with these
servo functions, the problem of keeping the different
replicates in step is dealt with simply in the course of
vectorising. It is only where the alternative paths are on
a much broader scale, with branches within branches,
that it becomes difficult to arrange for all replicates to be
doing the same thing at the same time.

3.4 Vectorising random-number generation

Initially, the library subroutine VRANF was used for
generating vectors of random numbers. However, the
program did not run as fast as expected and it turned out
that 709/ of the time was being spent generating random
numbers. (This compared with only 49, on the Cyber 76.)

VRANEF is so slow because although it produces a
vector of random numbers it generates them using a
scalar seed. To generate them by vector methods, it is
essential to have a vector of seeds. If vector computers
are to be exploited on stochastic problems it is important
to have available a fully vectorised random-number
generator.

REFERENCES

1. B.J. Alder and D. M. Ceperley, Some programming
aspects of quantum Monte Carlo calculations. Proceedings
of Symposium on Cyber 205 Applications, Colorado, August
1982. (Available from Conferences and Institutes, Colorado
State University, Fort Collins, Colorado 80523, USA.)

2. M. F. Guest and S. Wilson, (eds), Electron correlation.
Daresbury Study Weekend, 17-18 Nov. 1979. (Proceedings
available from SERC Daresbury Laboratory, Daresbury,
Warrington WA4 4AD, UK.)

3. M. F. Guest and S. Wilson, The use of vector processing in
quantum chemistry — experience in the UK. In Super-
computers in Chemistry, edited P. Lykos and I. Shavitt.
American Chemical Society, Washington. (1981).

4. D. Hegarty and G. van der Velde, A quantum chemical
program system. Proceedings of Symposium on Cyber 205
Applications (see Ref. 1).

Developing and testing such a generator is a sizeable
task. For the time being, a makeshift generator was
devised. It uses a replicated set of generators using the
VRANTF algorithm working in parallel on a vector of
seeds. The initial numbers in the seed vector have to be
set randomly and independently by some other generator.
One was designed using the rules given in Volume 11 of
D. E. Knuth’s The Art of Computer Programming.

4. CONCLUDING REMARKS

There is much more to do to explore the possibilities and
limitations of replication. It was easy to apply in the servo
example, but that problem was chosen for its suitability.

A systematic set of rules needs to be developed for
replicating the various basic types of programming
structure. An ultimate aim could be a pre-processor to do
automatically most of the work of replicating any given
algorithm.

Research into replication and other forms of vectorisa-
tion is important, not only because it will help get the
most out of the present generation of vector processors,
but for two other reasons.

(1) Futurecomputers generally are likely to make more
use of vector and similar forms of parallelism. This seems
likely to extend even down to personal computers.

(2) Vectors and matrices are the natural data objects
to use in many applications, and higher-level languages
(including future versions of standard FORTRAN) will
include them. As others have said, we must all learn to
‘think vectors’.

Acknowledgement

I wish to thank Dr Peter R. Taylor for drawing my
attention to some of the existing work on replication.

S. D. Hegarty and G. van der Velde, Integral evaluation
algorithms and their implementation. International Journal
of Quantum Chemistry 23, 1135-1153 (1983).

6. V. R. Saunders and M. F. Guest, Applications of the
CRAY-1 for quantum-chemistry calculations. Computer
Physics Communications 26, 389-395 (1982).

7. P. R. Taylor, Supercomputers in Quantum Chemistry —
A Survey. Technical Report 82-TR01, CSIRO Division of
Chemical Physics, PO Box 160, Clayton, Victoria 3168,
Australia.

8. C. Temperton, Fast methods on parallel and vector
machines. Computer Physics Communications 26, 331-334
(1982).

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 141

¥20Z I4dy 01 uo 1senb Aq 291E1E/8€ L/Z/82/21o1e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

