Parallelism in Simple Algebra Systems

DAVID BARTON

Florida International University

The paper presents a multiprocessor computer suitable for certain simple kinds of algebraic manipulation and shows how
the machine yields near linear speed improvements over a single processor machine while allowing the storage of huge

expressions.

INTRODUCTION

In an earlier paper' a multiprocessor computer was
proposed as a device suitable for certain simple kinds of
algebraic manipulation. The primary purpose of the
machine was to enable very large algebraic expressions to
be stored in immediate access memory, and to achieve this
some 1000 CPUs each with 128K bytes of memory
communicating on a single bus were employed. With such
a huge number of processors it was to be expected that
substantial parallel computation would be possible and
significant speed improvements compared with a single
processor would be realised, together with the expanded
available memory. However, the machine obtained only
a small fraction of the speed improvement possible
because too great an emphasis was placed on efficient
utilisation of storage; indeed using 1000 CPUs speed was
improved only by a factor a little greater than 2. The
present paper addresses the same problem in manipulative
algebra using a similar but not identical machine and, by
making less efficient use of the memory, shows how speed
improvement factors near 1000 are possible for certain
kinds of manipulative operations. Thus true parallelism
is achieved with a large number of processors that results
in a near linear speed improvement over the single
processor model.

THE EXPRESSION SET AND STORAGE
MECHANISM

The class of algebraic expressions discussed in this paper
is the ring of Poisson Series PS, where

PS = {y|y = ZP(xy, ..., X,) cs;‘; Lty o))} (1)

and P(x,,...,x,) is a polynomial over the rationals in
x; (i=1,...,n)and L(u;, ..., u,,) is a linear expression in
u; (j = 1,...,m) with integer coefficients. The summation
is finite and the canonical form for the Poisson Series in
which products of sine and cosine are linearized is
employed. Taking a particular polynomial term from this
expression we have

p r T T Sin
= Xt xhe, ..., X kau,+, ..., +k,u
q 1 A2% ey 1l'cos(11 PR} mm)’

where p,q,r,, 74, ..., 7p, kyy ..., ki € Z. Thus an expression
of the form (1) can be represented as a collection of
vectors V= (ry,ra, .csPpskys ooy Ky ¥,0,9) y =0 or 1 as
the term is sine or cosine. For applications of serious
interest the values r; and k; are typically restricted as
follows

0<r,<10 and —-10<k;<10 with n=m=6.

Thus an element v can be represented in about 25 bytes
of storage. The algebraic manipulative problem is simply
to add and multiply such expressions as (1) while
preserving their canonical form. On a single processor
with small expressions this is of course a simple problem.
However, when expressions with millions of terms are
involved it is of greater interest.

It was proposed in Ref. 1 that these huge expressions
be distributed over about 1000 separate computers, each
with a processor and local storage in such a way that the
entire expression was as nearly equally divided, on a
term-for-term basis, as possible between the CPUs. It was
precisely the constraint that terms be equally divided
between processors that led to the poor CPU utilization
that occurs with the method. To understand this point it
is necessary to examine the details of the addition and
multiplication procedure described in Ref. 1. When two
expressions were to be combined under either addition or
multiplication each machine would generate from the
component parts of the operands stored in its memory a
sequence of new terms of the result. To ensure total
cancellation and equal distribution of these terms, each
term as it was produced was broadcast to all the other
processors. All processors received every term of the
result individually and searched to see if the term would
cancel with any term already present in their memories.
This search takes the majority of the computation time.
If a match was found then cancellation took place, but
failing that the terms were handed out to processors on
a round-robin basis. In order to reduce the inter-CPU
communication on the bus the machines were maintained
in synchronization by a pattern of interrupts so that a
single cycle of operation during which a term was
broadcast, received, processed for cancellation and finally
accepted by a CPU appeared as described in Fig. 1. This
cycle is divided into three parts.

Part 1. Terminating when one machine broadcasts a
single term to all the others. During this time all the CPUs
can in principle be working on genuine parallel
computation. That is to say all the machines are busy
doing different useful computation such as the preparation
of the next term of the result or the cancellation of
existing terms in the result.

Part 2. During which each machine searches the set of
result terms so far stored in its memory to discover if the
newly broadcast term will cancel with any of those
present. Because each processor has at all times almost
the same number of terms of the result as any other and
assuming, for large expressions, an even distribution of
terms that cancel this search will take almost the same
length of time in each processor. To the extent that the
times are unequal, and since the duration of this activity
is limited by the time for a CPU to find a match or the

142 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

PARALLELISM IN SIMPLE ALGEBRA SYSTEMS

Part 1 Part 2 Part 3
Machines perform inefficient
All machines in search operation with little Resynchronisation
l parallel computation parallelism / period |
| |
Bus interrupt Search period Cycle ends

Cycle begins
on all machines

ends

Figure 1.

time of the slowest one to finish, whichever is shorter,
some CPUs may be able to use the remaining time to do
useful parallel work. However, given the uniform
distribution of terms, the time available for such activity
is very short. The parallel activity during the actual
search, however, is not fully rewarding. Assuming g terms
of the result per machine, each CPU will perform about
log, ¢ comparisons before ending its search. On a single
processor with 1000g terms only log, 1000 comparisons
are needed. With g = 4000 for a typical large expression
we see that the improvement in search time is only a factor
of about 2 using all 1000 processors.

Part 3. During this time, which is very short, processors
simply resynchronise and arrange to begin the cycle
again.

Thus during Part 1 of the cycle full parallel processing
is obtained while in Part 2 very little parallelism is
realized. The remainder of the paper describes what can
be done about this.

COMPUTER CONFIGURATION AND BUS
CHARACTERISTICS

Following Ref. 1 the computer configuration employed
here again comprises a set of N computational units each
connected to a single bus B and inter-connected by a bus
L in aloop. The latter bus allows concurrent DMA input
and output simultaneously to all units so that they can
function as a huge circular shift register. This arrangement
is presented in Fig. 2. The facilities provided by Bus B,
while superficially similar to those proposed in Ref. 1,
differ substantially from the earlier machine. They are the
following:

1. Interrupt facilities

1.1 A ‘B’ interrupt generated on a single computer
when the bus is given to that computer by the bus
contention discrimination logic so that the unit
can transmit a significant amount of informa-
tion.

1.2. An ‘X’ and ‘Z’ interrupt generated on all units
simultaneously when initiated by any single unit.
Used to broadcast small quantities ofinformation
from one to all units.

1.3. A ‘D’ interrupt generated on a single unit when
a transfer initiated via a ‘B’ interrupt and bus B
to that unit is done.

1.4. A ‘Y’ and ‘F’ interrupt generated on every unit
simultaneously and initiated when all units have
requested it. Used to synchronise activity on all
units.

1.5. An ‘S’ interrupt generated on a single unit when
requested by that unit and used to prepare the
bus for information transfer via an ‘X’ interrupt.

2. The interrupt enabling facilities are as follows:

2.1. Each unit can place its vote to enable interrupts
in all units itself included. Interrupts can be
enabled either singly or all together. That is to
say a unit can call for only ‘X’ interrupts to be
allowed anywhere or for interrupts of all types
to be allowed anywhere. An interrupt of any type
can occur only if all units have voted to enable
it.

2.2. Interrupts occur according to a priority order
among those requests outstanding at the instant
the bus becomes available. The priority order
from most to least significant is:

D,X,Z,Y,F,S,B

3. When an interrupt occurs then

3.1. Votes by computers that are interrupted are
cancelled. Interrupts areinhibited on all machines
and the interrupted units must vote before any
unit can receive another interrupt.

3.2. At any time any unit can request an interrupt of
any kind and the request will be remembered and
will be processed only when interrupts of that
kind are enabled.

3.3. Requests for interrupts may be cancelled only by
the requesting unit and this may be done at any
time prior to the request being granted.
Arbitration logic assigns the bus in a round robin
fashion among those units with an outstanding
request subject to the priority scheme.

4. Address and data lines are provided on the bus that
may be written by the unit to which the bus is
currently assigned and that may be read by any unit
at any time. The value on these lines determines which
machine receives the ‘D’ interrupt if a transfer is
initiated via a ‘B’ interrupt.

Each computational unit consists as before of a
processor, memory, transmit queue and a receive queue.
The machine configuration is presented in Fig. 3.

Broadcast BusB
Unit 1 Unit 2}—"""" --Unit N|
I_ Loop bus L _l
Figure 2.

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 143

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

D.BARTON

] { Ring bus L
128K
CPU RAM
Transmit TQ RQ Receive queue
queue +
Bus B

Figure 3.

EXPRESSION STORAGE AND
MANIPULATIVE TECHNIQUES

As explained earlier the expressions PS are each
represented as a set of vectors

v={r,ry ...tk kg oy ks 7,0, G}

stored on the machine of Fig. 2. Each expression is stored
in the canonical form to aid simplification, and that
canonical form is the form in which all products of
trigonometric functions are linearised, all algebraic
cancellation has taken place and each individual term
(vector v) is stored in processor n, where the processor
number is generated by a hash function H.

n,=H(ry,ry,....rp, ki Koy ooy ks 7)

This canonical form cannot guarantee to distribute the
vectors v uniformly over the processors and consequently
the aglorithms presented here cannot be as space-efficient
as those presented in Ref. 1. But these algorithms are
much faster. The expressions PS form a ring and
consequently it is only necessary to consider the two
operations of additions and multiplication.

Clearly addition is very simple with the proposed
canonical form. Each computational unit simply adds the
two fragments of the two operands stored in its memory
to yield its fragment of the result. No data transmission
is necessary, all units operate in parallel on distinct useful
calculations and a speed improvement factor comparable
with the number of units is achieved. Multiplication is a
little more difficult. To form the produce of two
expressions, 4 and B, each unit generates terms of the
product locally and concurrently transmits these terms
one at a time to the receiving unit determined by the Hash
function. Concurrent with the generation of terms each
unit will receive terms generated by other units for
inclusion in its portion of the product. These terms must
be added to the local partial result so far and any
cancellation must be implemented. When all units have
completed the calculation of the partial results then one
of the expressions is rotated via Loop L and the product
continues until the entire calculation is finished.

The algorithm is simple enough provided that there is
adequate memory to store the result and the intermediate
expressions that may be generated. That is, however, a
significant reservation. It is perfectly possible for terms
to be generated during the course of a product that
completely fill a particular unit to which they are
allocated by the Hash function and thus prevent that unit
from receiving additional terms. Further, if the storage
limitation could be ignored terms subsequently allocated

to that unit might cancel with existing terms thus causing
the space problem to disappear. It is clear that some
procedure must be included in the algorithm to ensure
that this case, which is by no means unusual, does not lead
to failure. Consequently another constraint should be
added; namely that the multiplication procedure should
fail only when either the intermediate product fills all
units, or the final result cannot be stored in the units
according to the canonical form. The latter condition
simply means that the Hash function is not perfect.

In an attempt to satisfy the proposed constraint the
multiplication algorithm can be modified as follows. Any
unit while in operation is in one of three states. State S,
is the state in which a unit is available to receive any term
that is transmitted to it by any other unit (itself included).
The transmitting unit can discard the term after
transmission. State S, is the state in which a unit is nearly
full. It is available to receive terms only for cancellation
purposes. A unit transmitting to another unit in State S,
must retain the transmitted term until the receiving unit
either accepts or rejects it. State S, is the state in which
a unit is full and unable to accept any new terms at all.
This condition is temporary only.

If a term is rejected by a unit in State S, because it has
insufficient room to store it, the transmitting unit must
attempt to retransmit it to other units by directing it at
the pth attempt to unit

Po,p =H'(ry,ry .. 1y, ki ko, ...k, 7)+p mod N

where H’ is a hash function distinct from H. Thus each
unit receives its own terms via hash function H and may
be called upon to assist its neighbours by accepting terms
via H’ and p. A unit that has accepted terms via H’ must
attempt to transmit them either via H or via H’ to units
with a lower p. In this way as saturation (all machines
nearly full) approaches the system as a whole will ensure
cancellation takes place and ensure that terms are shared
across all units.

A problem of indefinite delay can occur close to
saturation as follows. Unit A wishes to transmit a term
to another unit B but whenever unit A gets the bus it just
happens that B is in State S, (temporarily unavailable)
because B has just received a transfer from a third unit
C and has not yet rejected it. A relinquishes the bus only
to have C seize it again and transfer to B thus leaving B
busy before A tries again. A solution to this is to have
any unit that has a term rejected by a machine in State
S, wait for some randomly determined interval before it
tries again. This is, of course, a well-known collision
avoidance procedure in broadcast networks.

When multiplication proceeds according to this
algorithm the entire system will settle into one of three
final states.

Final State 1

All terms in their correct units as defined by H and no
unit having anything to transmit. In this case the
calculation is complete and the answer is correctly stored.
The algorithm has performed successfully.

Final State 2

A non-trivial subset of units exactly full with some terms
not in their correct units as defined by H. These units are

144 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

PARALLELISM IN SIMPLE ALGEBRA SYSTEMS

Initialise the local state table (all units in state S,)
Initialise the retransmit and result areas both empty; set TQ and RQ
empty
SEARCHING = False; SEARCH-COMPLETE = False; vote for all
interrupts;
Repeat
If current state of this unit differs from state shown in local table
then request S interrupt;
If (on this unit there are no more terms to generate and RQ is empty
and the retransmit area is empty)
or SEARCHING-COMPLETE
then request F interrupt;
If ((Result area is full or the retransmit area is full)
and not SEARCHING)
or (on this unit there are no more terms to generate)
then request Y interrupt;
else drop request for Y interrupt;
If TQ not empty
then request B interrupt;
else drop request for B interrupt;
While RQ not empty do
Begin
Get a term from RQ);
If the term was sent via hash function H
and (the term cancels with one in the local result area or the term
can be incorporated into the result area)
then absorb the term into the result area;
If the term as sent via hash function H’
and (the term cancels with one in the retransmit area or the term
can be incorporated into the retransmit area)
then absorb the term into the retransmit area;
Determine the new local state;
If new state differs from state in local table
then request S interrupt;
If term requires an acknowledgement
{it was received while unit was in state S, according to the local table}
then begin
{in the Transmit status field of RQ}
Mark its acknowledgement status;
{in same field}
Mark it ready for acknowledgement in RQ;
request the B interrupt;
end;
else begin
Disable all interrupts
Update the RQ output pointer; {remove term from RQ}
Enable previous interrupt state on the unit;
end;
end
{to avoid collisions on bus all terms in TQ have a brief real time delay
associated with them}
If TQ not full and it is time to release a term from the retransmit area
to TQ
then begin
Mark the copy of term in retransmit area as ‘in transmit’}
Place term in TQ together with its destination number
and p integer;
Disable interrupts;
Update TQ input pointer; {insert term into transmit queue}
Enable previous interrupt state on this unit;
end
If retransmit area not full and there are more terms of the result
to generate
then begin
Generate a term;
Disable interrupts;
If retransmit area not full
then place term in retransmit area for immediate release;
else discard term;
Enable previous interrupt state on this unit;
end;
Until FINISHED;

Figure 4. Task 2 running on all units.

attempting to transmit the incorrectly located terms to
their final home units but they are never accepted as the
receiving units have no space. By definition of this state
no unit has any new term to generate that is to say the
product is finished. Clearly this case is improbable but the
algorithm has failed and this has to be regarded as a case
where the product is too large to store.

Final State 3

Similar to Final State 2 except that at least one unit of
the subset has more terms of the product to generate. That
is to say the multiplication is not finished and the
algorithm has failed.

It is necessary to be able to detect and distinguish the
final states. Final State 1 in which no unit has anything
to generate or to transmit is easy to detect with a common
interrupt. Final States 2 and 3, however, are only attained
when every unit has transmitted every term in its transmit
area to every other unit allowed by the algorithm and had
it rejected by that unit during a period of time when no
unit has accepted a term from anyone. That condition is
harder to detect. Each unit must measure this time
interval itself and it need do so only while it is in State
S, or State S, or when it believes it is finished. While the
system is in this mode each unit must keep track of the
unit numbers to which each individual term available for

{Interrupt handling sequences}

{S-interrupt; generated on a single unit to enable that unit to transmit
its new state via the bus to all other units.

Following the ‘S’ interrupt all units receive an X interrupt requested
by this procedure}.

Copy current state of this unit to data lines on bus;

Copy unit number of this unit to address lines on bus;

Request an ‘X’ interrupt;

Vote to allow ‘X’ interrupts only;

Exit interrupt routine;

{X-interrupt; generated on all units simultaneously to enable them to
read the new state of some individual unit. This interrupt follows
immediately after the ‘S’ interrupt on the unit broadcasting its change
of state}.

Read new state from the data lines of bus;

Read unit number from the address lines of bus;

Update the table of units/states in the unit;

Vote for interrupts at all levels;

Exit interrupt routine;

{F-interrupt; generated on all units simultaneously when requested by
all units simultaneously. A unit requests this interrupt when it believes
that the multiplication algorithm has completed}.

Set FINISHED flag true;

disable all interrupts;

exit interrupt routine;

{Y-interrupt; generated on all units simultaneously when requested by
all units simultaneously. A unit requests this interrupt when it believes
either
(a) that because its own local storage areas (RES and RT) are full
it is possible that the system is stuck through lack of space. When
all units agree the SEARCHING flag is set to indicate that the
entire system should record any successful cancellation.
or
(b) that it has finished and has nothing more to do. However other
machines may be in trouble so the unit must call for ‘Y’ to enable
other units who really need it to obtain relief}.
Set flag SEARCHING true;
Initialise counts for each term in the local retransmit area (RT);
Vote for all interrupts;
Exit interrupt routines;

Figure 5a. Interrupt Sequence w

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 145

cpy 28

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

D. BARTON

{Z-interrupt; generated on all units when requested by any one unit. If
the entire system has entered the SEARCHING mode via a ‘Y’
interrupt and a single unit accepts a transmission of a term then that
unit terminates the SEARCHING mode by requesting this interrupt}.
Set SEARCHING-COMPLETE flag false

Set SEARCHING flag false;

Vote for all interrupts;

Exit interrupt routines;

{D-interrupt; generated on a single unit at the end of a transmission
to that unit, such transmission having been initiated by the ‘B’
interrupt}.
If received term has acknowledgement mark
then begin
if the acknowledgement is accept and SEARCHING is true
then begin
request Z interrupt;
Vote for Z interrupt;
end
else vote for all interrupts;
Update records and counts in retransmit area to take account
of the acknowledgement;
If necessary set SEARCHING-COMPLETE true;
Exit interrupt routine;
end
else begin
Mark current state of unit from local state table
in received state field of RQ;
place received term in RQ;
drop request for F interrupt if any;
If RQ full
then begin
Set the unit in state S3;
request S interrupt;
Vote for S interrupt;
end
else vote for all interrupts;
Exit interrupt routine
end

Figure 5b. Interrupt Sequence @

{B-interrupt; generated on a single unit following a request by that unit
for the bus. The interrupted unit initiates a bus transfer}.
If RQ contains a term that is ready to be acknowledged {marked in
transmit status field of RQ}
then Begin
Place the address of the remote unit on bus address lines;
Place term on data lines;
Place acknowledgement status (accept/reject) on data lines;
Initiate bus transfer;
Decrement RQ pointer; {remove term from RQ}
end
else if TQ contains a term whose destination is not presently
in state S, according to the local state table
then Begin
If destination is in state S, according to local state table
then delete term from retransmit area;
Place the destination address on bus address lines;
Place term on data lines;
Initiate bus transfer;
Decrement TQ pointer; {remove term from TQ}
end
If TQ is empty and there are no terms in RQ requiring acknowl-
edgement
then drop request for B interrupt;
else request B interrupt;
Vote for D interrupt;
Exit interrupt routines.

Figure Sc. Interrupt Sequence @

transmission has been sent and this record must be
re-initialised each time any unit accepts any term at all.
When a unit determines that it has sent all its terms to
all allowed units and had them rejected then it can call
for the recognition of Final States 2 or 3 via the common
interrupt mechanisms and when all units agree the
appropriate interrupt will be generated.

Pseudo code for a program to perform multiplication

according to this algorithm is presented in Fig. 4 and
5(a, b,). It consists of identical programs running in all
units and in each unit there is a task Q to perform
background work and a set of interrupt routines w to
handle communication with the bus.

The data flow that is controlled by task £ and the
interrupt routines is illustrated in Figure 6. Data areas
that are held in common by @2 and the interrupt routines
need to be protected in the usual way to avoid race
conditions. Such program has been omitted from the
pseudo code to aid simplicity. To help understand the
pseudo code it should be remembered that in real time on
the bus a ‘B’ interrupt is always followed immediately
by a ‘D’ interrupt; an ‘S’ interrupt is always followed
immediately by an ‘X’ interrupt; ‘Y’ interrupt is usually
followed by a ‘Z’ interrupt but there can be substantial
other interrupt activity between these two; an ‘F’
interrupt is generated when all units have finished or given
up. Fig. 7 shows the detailed contents of the transmit and
receive queues manipulated by the pseudo code.

PERFORMANCE OF THE SYSTEM

Let us now examine the expected performance of this
network of machines and the proposed multiplication
algorithm upon the assumptions that the hash function
H is near perfect and that bus transmission speeds are
significantly higher than processor speeds. That is to say
terms are evenly distributed and a unit can get rid of terms
much quicker than it can generate them or absorb them.
Then, with N units on the bus each containing p and ¢
terms respectively of large expressions P and Q, we see
that to generate the product PQ each unit will perform
Npq term generations and relocations via the bus and
each will receive Npq terms from other units for inclusion
in its fragment of the product. Reception of a term
implies the processor performs a search to determine if
cancellation is possible but, since the unit stores only a
fragment of the result, the search will involve fewer
comparisons then would be performed by a single
processor working on the entire product PQ. Since all N
units can work in parallel on all these activities it is clear
that a speed improvement over a naively programmed
single processor machine will be slightly better than a
factor N. In fact approximately N(1+log, N/log,(Ngp)).
Against this must be set the effects of saturation should
it occur and the very light interrupt load.

The storage allocation algorithm broadly described
above enables significant parallelism unless saturation
approaches. As the entire system begins to fill up the
multiplication operation will slow down owing to the
repeated relocation of terms and the repeated rejection of
terms by units already full. It is of course normal for space
allocation algorithms to experience difficulty when space
is nearly exhausted. This configuration of machines is
essentially designed to ensure that very large expressions
can be manipulated and consequently with a fixed N
saturation will in due course take place. It should be
emphasized that the appropriate solution to this problem
is to add more units to the bus thereby removing the
saturation condition and increasing the parallelism.

The high degree of parallelism can only be maintained
using a very-high-speed bus. Indeed a simple calculation
shows that the bus must be able to transmit N terms, each
to a different destination during the average time it takes
for a unit to generate a new term of the product and

146 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

PARALLELISM IN SIMPLE ALGEBRA SYSTEMS

To bus B
L Vel From bus B
B ;"te";‘Pt To bus B Incoming term
ransfer from bus ‘B’
A—F
‘D’ inter-
Mark deletion rupt. agk
from RT TQ ;ece“’e . RQ
following trans- r;(;::r;l;::lo ¢
fer to machine
in state S; on A‘ Remote acknow- Leg 4
‘B’ interrupt Loaded by © ledgement of Inserted by §2 when
according to time a term term received for
P this unit
specification ‘B’ interrupt

Retransmit area in RAM

RT

Inserted by
when terms
received for
other units

Result area in
RAM

RES

Inserted by
for immediate
release

Pool of newly generated
terms produced by

Figure 6.

Transmit Queue Entry
1. Term: 25 bytes of data
2. Transmit Status: (Constant value to mark a normal transmission
of a term and not an acknowledgement)
3. P: integer
4. Destination machine number: integer
Receive Queue Entry
1. Term: 25 Bytes of data
2. Transmit Status: (normal transmission not an acknowledgement
of a previous transmission, sender rejects previous transmission,
sender accepts previous transmission)
3. P: integer
4. Sender machine number: integer
5. Receive State: (S,, S,)
S, The machine can receive terms freely
S, Currently either the result area or the retransmit area are unable to
absorb the entire contents of RQ if it were filled.
P An integer specifying how this term must be forwarded.
P > 0 Implies term does not belong to this machine and must be
relocated.
P <0 This term belongs to this machine.

Figure 7. Contents of Transmit and Receive Queues

absorb a term generated elsewhere. Since a term and
associated data (Fig. 7) consists of about 30 bytes of
information it will take of the order of 10N memory cycles
to move the N terms. The time taken for a unit to generate
and absorb a single term is independent of N and of the
order of 5000 memory cycles (all that is involved is a little
integer arithmetic and a binary search to a depth of 10).
Thus we see that full parallelism can be achieved only for

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

fairly small N, about a hundred, and to improve this
figure it is necessary to speed up the transmission of terms.
A possible way to do this is to interface the bus to each
unit in such a way that the two queues TQ and RQ are
implemented in hardware using very-high-speed memory.
If this can be done using memory 10 times as fast as the
RAM on the units then 1000 units can achieve
parallelism. The queues TQ and RQ can be quite small
(1K bytes) and consequently this technique should not be
prohibitively expensive.

The algorithms presented earlier can terminate
successfully in Final State 1 or unsuccessfully in Final
States 2 or 3. In the latter cases it is most probable that
all units contain incorrectly located terms and that these
states do indeed reflect the generation of expressions that
are too large to store. It is however, possible that these
failure states could be reached with some genuine subset
of units full and the remaining machines having space
available. Such a condition could only be reached if the
hash functions H and H’ tended to favor the subset of
units unfairly when distributing terms of the product. The
problem is easily dealt with by extending the pseudo code
to use a different hash function when this case occurs but
this extension has been omitted here for the sake of
simplicity.

REFERENCES
1. D. Barton. The Computer Journal 27, 2, 159-164.

147
10-2

¥20Z I4dy 60 U0 1senb Aq L 8yEe/2y L/Z/82/e1ome/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

