DAP-Algol: A Development System for Parallel Algorithms

L. M. DELVES anD S. C. MAWDSLEY

Department of Statistics and Computational Mathematics, University of Liverpool

This paper describes a programming language and environment, ‘ DAP-Algol’, which provides convenient facilities for
developing, testing, and timing parallel algorithms for an SIMD machine such as the ICL Distributed Array Processor,
and which can be run on any serial machine supporting the language (Algol 68) in which the system is coded. The
Jacilities provided are modelled closely on those provided in DAP-FORTRAN, and so the system is particularly
convenient as a development system for DAP programmes; however, the principles involved in providing the facilities
apply equally well to other parallel languages of similar structure, such as ACTUS or FORTRAN 8X.

1. INTRODUCTION

With the introduction of vector processors (Cray 1,
Cyber 205, AP 120b) and of multi-processor SIMD
machines (ICL DAP) into routine user service, there
is growing interest in the development of specialised
(parallel) algorithms for such systems. This interest
stems from the fact that a given algorithm may perform
well in a serial environment but poorly on a parallel
machine; an algorithm which runs well on the DAP
may run poorly on the Cray 1, and vice versa; and in
general the choice of a ‘best’ (i.e. fastest) algorithm for
a given task may depend strongly on the machine on
which it is intended to run it. The minimum testbed
requirements for the development of a new parallel
algorithm are: a language allowing ready expression of
the algorithm; a compiler for this language; timing
software to test the effectiveness of the code and a
machine on which to run. At the present time, none of
these requirements is easy to fill. Several ‘parallel’
languages have been developed; for example ACTUS;!
DAP-FORTRAN;?while othersalready have asignificant
parallel and/or array — processing ability (Algol 68) or
proposed ability (FORTRAN 8X). None of these
languages provides an ideal medium of expression:
ACTUS can deal only with one-dimensional parallelism ;
DAP-FORTRAN contains features specific to the ICL
DAP and hence is not portable; while neither of these
contains features suitable for MIMD machines. The
other two languages are ‘general purpose’ rather than
‘parallel’; and FORTRAN 8X, although promising to
contain many features useful at expressing parallelism, is
still rather far from being available. We return to Algol
68 below. It is often also difficult to provide a machine
on which to test a proposed algorithm. This is especially
true of the ‘supercomputer’ architectures: Cray 1, Cyber
205, DAP. Machines of this class have so far been sold
in ones rather than hundreds; remote access, or no access,
is the norm. One possible answer to these problems of
language and machine availability is to provide some sort
of simulator. This has been done, for example, for the ICL
DAP, for which a complete bit-level simulator exists
which will run on any ICL 2900 machine. However, such
a simulator is likely to be slow: orders of magnitude
slower than the direct execution of code on the machine
hosting the simulator. It is also rather likely to be itself
not portable. An alternative approach to portability is to
embed, in an existing high-level language, features which

are needed to express parallel algorithms. DAP-
FORTRAN does this by adding new facilities to
FORTRAN; but this cannot be done directly in a
portable manner because FORTRAN was not designed
to accept such extensions. This lack of portability can be
overcome in one of two ways: either by writing a
pre-processor for the language extensions, or by adding
similar facilities directly to a language which was already
designed to accept extensions. We take the latter course
here, by describing briefly a package (a ‘prelude’ in the
jargon of Algol 68) which adds DAP-FORTRAN-like
facilities to Algol 68 and in addition includes a ‘pseudo
timer’ which maintains a clock designed to return the
timings which we would obtain were the code run on the
current 64 x 64 production DAP. Because the language
was designed to accept user-defined extensions, these
extensions can be themselves written wholly in Algol 68;
and this has three advantages:

(1) The extensions are portable;

(2) programs written in the extended language run as
fast as those in the base language;

(3) the effort involved in producing the extensions is
relatively small, and certainly much less than would be
required to write a pre-processor of similar capabilities.

2. DAP-ALGOL

The extensibility of Algol 68 lies in the ability of the user
to define new data types (‘modes’), and to define new
operators acting between variables of either new or
existing types. A simple introduction to these facilities is
given in Ref. 3; however, it is not necessary to know the
language to read what follows, since this paper is
intended to outline the principles involved and to
demonstrate by example the use of the facilities, rather
than to serve as a manual for DAP-Algol (for which see
Ref. 4). In this section, then, we recall briefly the
additional facilities introduced into FORTRAN by
DAP-FORTRAN, and describe their equivalents in
DAP-Algol.

2.1. Array operations

The most basic feature of the DAP is its ability to process
whole arrays (of size up to 64*64) in parallel.
DAP-FORTRAN reflects this ability by allowing the user
to write whole-array operations, and operations on
subsections of an array (‘slices’). Table 1 gives examples,

148 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



DAP-ALGOL: A DEVELOPMENT SYSTEM FOR PARALLEL ALGORITHMS

together with the equivalent code in DAP-Algol. We
make the following comments on these examples:

(1) Apart from trivial representational differences
(: = for assignment, square brackets for suffixes), the
facilities are the same in the two languages.

(2) Whole array assignment, and the ability to refer to
or to name a slice of an array, are already part of the Algol
68 language. Arithmetic operations between arrays are
not predefined, but the ability to define them is there.
Thus, in the last four lines of Table 1, the operators
*,+,— and / have been defined as extensions to the
language. The Algol 68 code defining the operation *
between two real matrices is given in Table 2 to illustrate
how simple it is to do. (Non-Algol 68 users need not read
this table; those who are expert in the language will note
that checks on the input parameters tc the operator,
which are included in the actual code, have been omitted
in Table 2 for simplicity.) We note that the operation is
defined as pair-wise multiplication between matrix
elements, rather than as an algebraic multiplication of the
two matrices, because that is how it is defined in
DAP-FORTRAN. Note also that the result of the
multiply operation is another matrix, space for which is
generated automatically; this ability to generate storage
as required, and to define functions returning matrix-
valued results, is crucial to the DAP and to DAP-
FORTRAN; it is already present in Algol 68. Similar
facilities are available for Integer and Logical matrices,
and for one-dimensional vectors.

(3) The DAP-Algol operators are defined for any
(compatibly sized) matrices or vectors. A global variable
DAPSIZE is provided for compatibility with DAP-
FORTRAN, with a default value of 64 (resettable by the
user!); but there is no restriction to the use of DAPSIZEd
vectorsand matrices. (Therestrictionin DAP-FORTRAN
is imposed to make efficient implementation on the DAP
easier.)

2.2. Systems functions

DAP-FORTRAN provides a large number of operations
via ‘system functions’: pre-defined functions which can
be called by the user. These are all very useful, but from
the point of view of the present paper not very interesting:
we merely have to provide routines which carry out the
same tasks, in Algol 68. The only feature of note is that
DAP-FORTRAN allows the ‘ overloading’ of procedure
names; that is, a given procedure name can refer to two
or more procedures which expect different types of
results. This facility allows, for example, the same name

Table 1. Array facilities in DAP-FORTRAN and DAP-Algol.
A, B, C are assumed to be real or integer matrices, U, V are
one-dimensional vectors

DAP DAP
Operation FORTRAN Algol
Array assignment A=B A:=B
Array addition A=B+C A:=B+C
Array multiplication A = B*C A:=B*C
Slicing a row U=V+A((1,) U:=V+A[lL]
Slicing a column U=V+A(D) U:=V+A[]

Table 2. The Algol 68 code required to define the operation
¢*’ between two real matrices

OP* = (REF [,] REAL a,b)REF [,] REAL:
BEGIN
£ Experienced Algol 68 users will note that, here
and elsewhere in this paper, we used ‘ Reserved
Word Stropping’ for Algol 68 keywords. They will
also note that this coding assumes that the two
arguments have the same bounds, with a lower
bound of one. In the DAP-Algol 68 prelude this is
checked for by the code. This checking of the
bounds is omitted here for simplicity £
INTn= 1UPBa;
HEAP [1:n,1:n]REAL result;
FOR i TO n DO
FOR j TO n DO
result [i,j]: = a[i,j] * b[i,j]
D

OD;
result £ returns the result matrix £
END £ of operator definition £

to be used for the procedure to sum the elements of a real
matrix (SUM) as for the versions to sum the elements of
an integer or logical matrix, or of a real integer or logical
vector. Such procedures are said to be ‘ generic’. In Algol
68 procedures cannot be generic, but operators may;
most of the system functions have therefore been
implemented as generic operators. This leads to a
notational difference for two parameter generic functions;
which are accessed in DAP-Algol using the infix
notation:

function Operator
(DAP-FORTRAN) (DAP-Algol)
one parameter: fix(im) fix(im) or fix im
two parameters: and(Im, In) Im and In

A partial list of system operators and functions
containing some of the more commonly used ones, is
given in Table 3; a full list is given in Ref. 4. Note that
the last entries in this table relate to a limitation in Algol
68: Operators can only have two arguments so that
three-argument generic facilities are not available. Thus
the three-argument function MERGE cannot be provided
as a single operator. We provide two alternative forms in
DAP-Algol; the first is as a set of procedures with
different names for each type of argument (bvmerge,
bmmerge, rvmerge, rmmerge); the alternative form,
which is fully generic, uses the two operators MERGE
and MASK, with the reasonably comfortable syntax
answer = argl MERGE arg2 MASK arg3
The operator MASK appears again later in Section 2.5.

2.3. Subscripting facilities

In DAP-FORTRAN, the FORTRAN concept of a
subscript is generalised. In addition to the traditional use
to specify a particular element of a vector or a matrix
Al 5 VO

it is possible to specify a row or a column, and to provide
integer and logical vectors and matrices as suffixes. The
resulting facilities are extremely useful for specifying quite
general loops without having to introduce an explicit DO
loop. It is not possible within Algol 68 to use the

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 149

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



L. M. DELVES AND S. C. MAWDSLEY

Table 3. A partial list of system functions. The allowable types of argument are indicated as follows: s = scalar, v = vector,
m = matrix, e = any of these; r = real, i = integer, 1 = logical, a = any of these

DAP-FORTRAN DAP-Algol Type of result Comments
ABS(ae) ABS(ae) same as argument
EXP ATAN SIN SQRT COS LOG are also provided
FIX(re) FIX(re) ie
FLOAT(ie) FLOAT(ie) re
ALL(le) ALL(le) Is logical AND of components
ANY(le) ANY(le) Is logical OR of components
AND(le,le) le AND le le logical AND of components
NOT(le) NOT(le) le logical NOT of components
MERGE(am,am,lm) ) am
MERGE(av,av,lv) av merges the first two
BVMERGE(lv,lv,lv) Iv depending on the value
BMMERGE(Im,Im,Im) Im of the third argument
RVMERGE(rv,rv,lv) v
RMMERGE(rm,rm,lm) rm
or am MERGE am MASK Im am
av MERGE av MASK Iv av

DAP-FORTRAN syntax as it stands; however, it is
straightforward to define new operators SUB, SUBR,
SUBC which accept logical and integer vector and matrix
arguments, and perform the same selecting actions as the
‘extended suffixing’ provisions of DAP-FORTRAN. A
list of the facilities is given in Table 4, together with their
DAP-Algol equivalent.

2.4. Shift facilities

In DAP-FORTRAN there are facilities which enable
users to perform datashifts on vector and matrix values.
These shifts are performed by a set of pre-defined
functions, each of which shifts either vector or array data
between processors in the DAP processor array, in a
horizontal (‘EAST/WEST’) or vertical (‘NORTH/
SOUTH’) direction. The length of the shift is a parameter
of the function; a simpler facility (‘shift-indexing’—see
below) is provided for shifts of length 1. Shifting a
DAP-sized row of data one place to the right (say)
introduces a blank in position 1, and shifts the rightmost
data element out of the DAP processor array. How these
edge effects are treated depends on the setting of what
DAP-FORTRAN refers to as the GEOMETRY:

CYCLIC GEOMETRY: data shifted out are wrapped
round and shifted back in at the other end.

PLANE GEOMETRY : data shifted out are lost; zeros
are shifted in at the other end

At any time there is a standard geometry, set separately
(and resettable) for the N-S and E-W direction. The shift
operations themselves either impose an explicit temporary
geometry, or use the default geometry. The facilities
provided are listed in Table 5, with DAP-Algol
equivalents; the naming convention adhered to is the
following. Shift operator names start with the letters SH.
The direction of the shift, and the mode of the argument
is given by the next letter of the operator name. N, S, E
& W, which stand for North, South, East and West
respectively, are matrix shifts, and L & R, which stand
for Left and Right, are vector shifts. The last letter of the
operator name gives the type of geometry used by the

150 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

~ shift. If the shift name ends with a P the shift uses Planar

geometry, while if the shift name ends with a C the shift
uses Cyclic geometry. DAP-FORTRAN also provides
Left and Right shifts for matrices; these treat the matrix
as a long vector. This concept has not been mimicked by
DAP-Algol, and is not necessary since the vector shift
operations in DAP-Algol work for any length vector.

DAP-FORTRAN also permits the use of + and — as
array subscripts to indicate a shift. This facility is
included in DAP-Algol by defining operators NORTH,
SOUTH, EAST and WEST. The geometry of these shifts
is given by the current geometry, as set in the global
boolean variables NSGEO and EWGEO. These can be
altered at any time by either a straightforward assignment
of the form:

NSGEO: = PLANE (or CYCLIC)

or by calling a procedure GEOMETRY which takes a
boolean vector argument of any size and sets either the
NS, or both the NS and EW geometries (see Ref. 4).

2.5 Masked assignments

The concept of a ‘ Logical Mask’ is a very important one
in DAP-FORTRAN. A logical mask is a matrix of logical

Table 4. Subscript facilities available in DAP-FORTRAN and
DAP-Algol 68. (LV is a logical vector, LA a logical matrix,
IV an integer vector)

DAP- DAP-

FORTRAN Algol 68 Meaning
A( i) Al,i] iTH column of A
A(,) Ali,] iTH row of A
A(LA,) A SUBR LA {These forms each
A(,LA) A SUBC LA return of vector
A(LIV) A SUBR IV whose components
AlV,) A SUBCI1V are a selection
V(LV) VSUBR LV from the elements

V SUBC LV of A or V. For details,
or VSUBLV see [4]}

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



DAP-ALGOL: A DEVELOPMENT SYSTEM FOR PARALLEL ALGORITHMS

Table 5. Shift operators. The allowable types of argument are
as follows: s = scalar, v = vector, m = matrix, a = any of
these, r = real, i = integer, b = boolean, e = any of these

DAP- DAP-

FORTRAN Algol* Operation
SHNC(me,is) me SHNC is  Shift North Cyclic
SHNP(me,is) me SHNP is  Shift North Planar
SHSC(me,is) me SHSC is  Shift South Cyclic
SHSP(me,is) me SHSP is Shift South Planar
SHWC(me,is) me SHWC is  Shift West Cyclic
SHWP(me,is) me SHWP is  Shift West Planar
SHEC(me,is) me SHEC is  Shift East Cyclic
SHEP(me,is) me SHEP is  Shift East Planar
SHLC(ve or me,is) ve SHLC is Shift Left Cyclic
SHLP(ve or me,is) ve SHLP is Shift Left Planar
SHRC(ve or me,is) ve SHRC is Shift Right Cyclic
SHRP(ve or me,is) ve SHRP is Shift Right Planar

A(+,) ANORTH 1 or NORTH A

A(—,) A SOUTH 1 or SOUTH A suffixed elements
A(,+) A EAST 1 or EAST A move in the stated
A(,—) A WEST | or WEST A direction with the
V(+) VEAST1or EASTV default geometry
V(-) V WEST 1 or WEST V

A(—,+) (ASOUTH 1) EAST 1 etc. etc.

* Note. Our current implementation of DAP-Algol does not
include integer vector or matrix shifts.

values which is used to determine which of the DAP
processors shall be active during a given operation;
examples of the use of such masks during subscripting
operations are given in the previous section. Equally
important is their use during assignments: it is very
common to find that time can be saved by computing a
whole matrix of values, and then throwing away the
unwanted ones during the assignment of the results to
storage. In DAP-FORTRAN the syntax for such a
masked assignment is not distinguished from that for
masked suffixing; the difference is detected by the
compiler from the context. We believe that this double use
of the suffix notation is not desirable, and originally we
used an alternative syntax for this feature which
emphasises the difference. In DAP-FORTRAN, a
masked assignment takes the form:

A(MASK) = matrix-expression

which assigns the values of the components of the
matrix-expression to the elements of the matrix A, but
only for those elements for which the corresponding
element of the logical matrix MASK is TRUE. We
associate the mask with the right-hand side of this
statement by introducing the operator MASK:

expression MASK logical-mask.

With this notation, we would write a masked assignment
in the form:

a: = expression MASK logical-mask

However, this assignment statement cannot be imple-
mented within Algol 68; the result of the operation ‘a
MASK logical-mask’ is a structure containing the
information necessary for the assignment, but one is not
allowed by the language to give a new or extended
meaning to the assignment symbol : =, which is treated

as a primitive operation and not as an operator. We
therefore find it necessary to introduce a new operator
BECOMES and to write the assignment in the form:

a BECOMES expression MASK logical-mask

which does the required job but is certainly more verbose
than the DAP-FORTRAN equivalent. The introduction
of BECOMES also has the side effect that it is possible
to provide a version which accepts the alternative syntax:

A MASK logical-mask BECOMES expression

which is rather closer to the DAP-FORTRAN syntax.
Our current implementation does in fact accept either
form of the assignment. We note that the operator MASK
is identical with that introduced in section 2.2. to describe
the MERGE operation

DAP-FORTRAN also accepts the constructs:

DAP-FORTRAN DAP-ALGOL

A(V,): =expr A MASK COL(IV) BECOMES expr
A(,IV): =expr A MASK ROW(IV) BECOMES expr
A(LV,): =expr A MASK COL(ELN LV) BECOMES expr
A(,LV): =expr A MASK ROW(ELN LV) BECOMES expr

and other variants. In these variants, the suffix LV or IV
is first implicitly expanded to the logical matrix mask, and
hence, as shown, all of these can be easily written in
DAP-Algol using operators already introduced. Since
these constructs seem less often used, we have not
provided special operators for them (though we certainly
would if the constructs A(LV,) or A(,LV) were often
needed!)

2.6. Other features

DAP-FORTRAN contains other facilities (see Ref. 2).
Most of these have close equivalents in DAP-Algol (see
Ref. 4), with the following exceptions.

(1) Variable length reals and integers are not
supported.

(2) The debug facilities are not supported.

(3) There is no equivalent of a FORTRAN COMMON
block, and the distinction between DAP and HOST code
is not maintained. Therefore, the conversion routines
between DAP and HOST formats are not mimicked,
although they could be provided in dummy form so that
the conversion time would be taken into account in the
psuedo-timer.

3. EXAMPLES

DAP-Algol can be run on any machine for which an Algol
68 compiler is available (this does not currently include
the DAP itself). Its purpose as a vehicle for developing
parallel algorithms requires that it feel as comfortable in
use as does DAP-FORTRAN;; and that the pseudo-timer
returns reasonably accurate DAP timings. We illustrate
the correspondence between DAP-Algol and DAP-
FORTRAN and the use of the pseudo-timer, with two
short examples.
The first solves a system of N equations of the form

Ax=Db

for N < = 64, using the Gauss-Jordan method (the
‘recommended’ method for full matrices on the DAP).

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 151

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



L. M. DELVES AND S. C. MAWDSLEY

DAP-FORTRAN version, taken from Ref. 5.

REAL VECTOR FUNCTION GAUSS-JORDAN (A,B,N)
DIMENSION A(,) B()
REAL MULT (),S
DO11=1N
S =A(L])
MULTS = A(I)/S
A(NOT.ROW(I)) = A—MATR(A(I,))*MATC(MULTS)
B(.NOT.EL(I)) = B—B(I)*MULTS
A(L) = A(L)/S
1 B(I) = B(I)/S
GAUSS-JORDAN = B
RETURN
END

This is of course a rather simplified program; it was
included in Ref. 5 as a programming example rather than
a ‘production solver’. Note that the solution is returned
as the vector value of the function GAUSS-JORDAN;
the ability to return vectors and arrays is an essential part
of DAP-FORTRAN.

DAP-Algol version

PROC GAUSS-JORDAN = (MATRIX A, VECTOR B,
INT N) VECTOR:
BEGIN
[1:N] REAL MULTS; REAL S;
FORITO N
DO
S: = A[LI];
MULTS: = A[I}/S;
A MASK (NOT ROW (I))
BECOMES A-MATR(A[L])*MATC(MULTS);
B MASK (NOT EL(I)) BECOMES B-B[I]*MULTS;

AlL]: = A[L)/S;
B[I]: = B[I]/S
OD;
B
END;

This example shows how closely the facilities in
DAP-Algol correspond to those in DAP-FORTRAN;
the two codes correspond on a line-by-line basis. For
those not used to Algol 68: the keywords DO...OD
delimit the FOR loop, and the apparently ‘floating’ B at
the end represents the Algol 68 mechanism for returning
a value; this line corresponds to the line GAUSS-
JORDAN = B in the Fortran code.

The second example compares two programs which
perform a bubble sort on N < = dapsize{2 positive
elements. For DAP-FORTRAN, these are assumed
provided in the first N locations of a DAPSIZE x
DAPSIZE matrix and padded out with zeros.
DAP-FORTRAN version, taken from [6]

REAL MATRIX FUNCTION BUBBLE (VALUE)
REAL VALUE(,)
LOGICAL MSK(,),CHANGE(,)
MSK = .NOT.ALTR(1)

1 CHANGE = VALUE.LT.VALUE(+)
IF(NOT.ANY(CHANGE)) GOTO 10
CHANGE = CHANGE.AND.MSK
CHANGE = CHANGE.OR.CHANGE(-)
VALUE(CHANGE) =

MERGE(VALUE(+),VALUE(—),MSK)

MSK = .NOT.MSK
GOTO 1

10 BUBBLE = VALUE
RETURN
END

152 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

DAP-Algol Version

PROC BUBBLE = (VECTOR VALUE) VECTOR:
BEGIN
[1: UPB VALUE] BOOL MSK,CHANGE;
MSK: = NOT ALT(1);
CHANGE: = TRUE;
WHILE ANY(CHANGE)
DO
CHANGE: = VALUE < WEST VALUE;
CHANGE: = (CHANGE AND MSK);
CHANGE: = CHANGE OR EAST CHANGE
VALUE MASK CHANGE BECOMES
RVMERGE(WEST VALUE,EAST VALUE,MSK);
MSK: = NOT MSK
OD;
VALUE
END;

Again the correspondence between the two codes is very
close, with the exception that we have used a WHILE
loop in DAP-Algol rather than the GOTOs of
DAP-FORTRAN. Note however that the DAP-FORT-
RAN code assumes that the data to be sorted is in a
DAP matrix, which it then treats as a vector (‘long-vector’
in DAP notation). This standard trick will be familiar to
all FORTRAN users, but comes as a surprise to Algol
programmers; in DAP-ALGOL, arbitrary length vectors
are accepted and the data required can therefore be
provided in a vector.

4. TIMINGS

Asmentioned above, DAP-Algolincludes a pseudo-timer;
a global variable called TIME is updated whenever any
of the DAP-Algol procedures or operators are entered,
by the time taken for the equivalent facility on the DAP.
Interrogating the timer then allows estimates of the speed
of the corresponding DAP code. For the examples given
here, with DAPSIZE = 64, we obtain the times given in
Table 6. We see that for example 1 the pseudo-times are
about 109/ too fast; for example 2 about 109, too slow.
This is quite good enough accuracy to compare
algorithms, since a 109, change in the speed of an
algorithm is rarely significant in practice. The actual
measured DAP times themselves are not completely

Table 6. Timing results. DAP-FORTRAN times obtained on
the ICL DAP at QMC, London; DAP-Algol, run on the ICL
1906S at the University of Liverpool

DAP- DAP-
FORTRAN Algol
Code time pseudo-time
Gauss-Jordan, N =4 5.10 448
8 10.20 8.96
16 20.40 17.92
32 40.80 35.84
64 81.60 71.68
Bubble sort, N = 256 79.15 86.032
512 158.30 172.048
1024 316.60 344.080
2048 633.20 688.144
4096 1266.40 1376.272

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



DAP-ALGOL: A DEVELOPMENT SYSTEM FOR PARALLEL ALGORITHMS

consistent; the same program run a number of times can
give a fluctuation of between 5 and 109;.

5. CONCLUSIONS

The facilities provided by DAP-Algol are, as the
examples show, sufficiently close to those in DAP-
FORTRAN thatitis possible to develop DAP algorithms
quite naturally in DAP-Algol and then translate
line-by-line. The development is in practice aided
considerably by the relatively good accuracy of the
pseudo-timer.

We achieve this timing accuracy because most DAP
programmes consist mainly of calls to array features,
which are trapped by the pseudo-timer, and have
relatively few sections of ‘serial’ code in them which are
replaced in DAP-Algol by standard Algol 68 and hence
are not timed. This in turn reflects the success of
DAP-FORTRAN in expressing the operations which are
needed for parallel processes on this type of machine.

REFERENCES

1. R. H. Perrott, ACTUS. ACM Transactions in Programming
Languages, TOPLAS (1979), 177.

2. DAP-FORTRAN Manual ICL Technical Publication
6918.

3. L. M. Delves, ALGOL 68 For FORTRAN programmers.
Preprint, Department of Statistics and Computational
Mathematics, University of Liverpool (1983).

4. S. C. Mawdsley, DAP-ALGOL Users Manual, Internal

We believe the success of the exercise can be interpreted
a little more generally. The success depends upon the
suitability of Algol 68; if FORTRAN had been similarly
suitable, then DAP-FORTRAN would itself be portable.
As machine architectures proliferate, with each having its
own strengths and hence suggesting its own high-level
language features to utilise these strengths, we need either
local and non-portable extensions of FORTRAN, or a
widely used and suitable extensible language. The authors
hope that FORTRAN 8X will include not only built-in
array facilities suited for current SIMD machines, but
sufficient extensibility to cope with architectures which
the language designers do not know about in advance.

Acknowledgements

The research reported here was funded in part by the U.S.
Army European Research Office via grant No
DAJA45-82-C-0010; and by the U.K. Science and
Engineering Research Council via grant no. GR/A48990
to the University of Liverpool.

Report, Department of Statistics and Computational
Mathematics, University of Liverpool (1983).

5. R. W. Gostick, Introduction to DAP-FORTRAN. ICL
Document Number AP 20 (1978).

6. R. W. Gostick, Software and Algorithms for the
Distributed Array Processor. ICL Technical Journal
116-135 (1979).

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 153

¥20Z IMdy 60 U0 1senb Aq 061E1E/8Y L/Z/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



