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An introduction is given to the use of formal semantics as a means of both specifying relational query languages and of
establishing a conceptual basis for their analysis. The approach is demonstrated with respect to the relational calculus
and then extended to cope with the more advanced constructs of SEQUEL and QUEL.

1. INTRODUCTION

Following the publication of Codd’s early work on the
organisation of databases, the advantages of the
relational approach have been increasingly well recognised
and accordingly become the subject of many publications
over the last few years.

One important area which has attracted much
attention is the design, implementation and optimisation
of relational query languages, either to be used in
conjunction with a conventional host language or as
stand-alone systems aimed at the casual user.

Early query languages were, to a large extent, based on
either the relational algebra or relational calculus, both
of which were first proposed by E. F. Codd.! The algebra
employs a set of high-level procedural operators such as
projection and join, whereas the calculus is a non-
procedural, or declarative, language involving the use of
free and bound variables and mathematical quantifiers.
The concise notation of these languages assumes a certain
degree of mathematical sophistication on the part of the
programmer, and in recent years a number of other query
languages have been developed, more appropriate to the
non-technical user.?

As these languages have become more advanced, so the
underlying semantic constructs have become more
complex. However, with few exceptions,* language
descriptions presented in the literature are based on a
series of explanatory examples and rely heavily on the
intuition of the reader in interpreting the text. We believe
this state of affairs to be very unsatisfactory, and contend
that the arguments for this belief are not dissimilar to
those which led to the development of semantic
techniques for the specification and analysis of conven-
tional programming languages.

Early definitions of Algol 60, for example, consisted of
a formal syntax together with an English language
description of its semantic constructs. Being open to
interpretation this meant that what constituted the actual
language was defined by the way in which it was
implemented. This resulted in a variety of different
dialects rather than a single standard Algol 60.

These problems were addressed through the develop-
ment of rigorous formalisms for specifying the semantics
of a language. Each individual construct may be defined
within a mathematical framework which is precise and
unambiguous, and the resulting specification is sufficiently
abstract to be independent of detailed implementation
decisions.

In general query languages are not as large as

* To whom correspondence should be addressed.

programming languages, although many of them tend to
exhibit features which in some ways make them more
complex. The English-like appearance of SEQUEL,® ¢
for example, can make it more subject to error than
conventional languages, since the way in which different
parts of the syntax interact may not be immediately
obvious from the language definition. This problem is
often compounded by the fact that many query languages
are presented, in the literature, by an informal syntax
together with a few selected examples of their use. Often
these examples do not highlight the real problem areas
of the language.

Another issue is the way in which semantically
ill-formed queries are interpreted. Let R be a relation of
the form

{NAME, MANAGER, SALARY}.

Consider now a query requesting the names of all
employees whose salary is greater than ‘Smith’.
Syntactically this is acceptable in most query languages
although it clearly yields a nonsense result. It is simply
not possible to compare numbers with names (strings on
some alphabet). Exactly what happens with such a query
is seldom, if ever, discussed in the literature and even then
it is in the context of a specific implementation decision
rather than a language design feature. Note that this
problem is not the same as generating a well-formed but
incorrect query’ or a well-formed query which is then
processed against a database containing null-values.®

In this paper we provide a formal semantic framework
which can be employed in tackling these and other
problems of relational query language analysis and, at the
same time, provide a deeper understanding of their
underlying constructs.

The semantic techniques are demonstrated with respect
to a form of the relational calculus and also to two
well-known query languages SEQUEL (now SQL) and
QUEL.% %11 For each language a set of recursively
defined functions is provided which map syntactically
correct constructs on to elements of certain sets. These
domains or sets form a second component of any such
formal specification. Our objective has been no more than
to demonstrate the viability of the approach; however, in
providing these definitions we believe that we have
developed a framework in which any relational query
language can be formally defined.

2. RELATIONAL CALCULUS

Our objective in this section is to illustrate the ideas and
techniquesinvolved in providing a denotational definition
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SPECIFICATION OF RELATIONAL QUERY LANGUAGES

of a relational query language. We choose to study a
variant of the relational calculus, due to Ullman, largely
because it is syntactically rather simple and therefore
facilitates an exposition of the main ideas without
excessive syntactic complexity. All of what we shall say
about the semantics of the calculus is implicit in Ullman’s
discussion; the formal semantics will merely make
explicit and precise our underlying semantic intuitions.
This section is, therefore, largely pedagogical; its purpose
is to illustrate the main ideas behind the formal semantics
of query languages.

Before we begin our discussion of the calculus itself we
need to decide upon some notation for relations. As a first
step we assume there is given some collection of disjoint
domains or sets { D, : s € S} of basic objects. This collection
will include, for example, a domain of integers, a domain
of strings (on some alphabet) and a domain of characters.
This collection will remain fixed for the rest of the paper.
Very roughly, relations will be represented as certain
finite subsets of tuples, where tuples are finite sequences
of elements from the domains D,. To be more precise
about this we need to be more precise about the tuples
themselves. To facilitate our exposition we let W = S* be
the set of finite sequences of elements from S, our index
set for domains. We shall employ the notation
w=w(l),..., w(n) where we W is a sequence of length n
whose ith component is w(i), for 1 < i< n. A tuple ¢ is
then just an element of some D* where

D¥ = D,y X———XDpny

and the domain of tuples is given as

— w
T wLE_)W Dv.
For te D¥, with length n, the ith component of ¢ is the
component in D, for 1 <i<n.
Relations can then be identified with those finite
subsets of tuples R, such that R < D for some we W. In
other words, the domain REL of relations is given as

REL ={R:3 weW suchthat ReP.(D%)}

where for any set X, Pr(X) is the set of finite subsets
of X.
Expressions in the relational calculus are of the form

{x:f(x)}

where x is a tuple variable and f is some formulae built
up from atoms and logical operators. More precisely, the
abstract syntax of the calculus is given as follows.

The domain section specifies what single-letter symbols
are to be used as metavariables and over what domains
they are to range.

2.1 Syntax of the calculus

2.1.1 Syntactic domains

xevars variables

rern relation names

o€op dyadic operator names
nenml numerals

aceatom atomic well-formed formulae
fewff well-formed formulae

ecexp  relational calculus expressions

2.1.2 Syntactic clauses
e::={x:fx)}—x
a :: = x,[n) ox,[m]| r(x)| nox[m]| x[m] on

fri=alfi Al ~ A3

The idea behind formal semantics is simple enough: each
expression or term in the language is to be assigned an
element of some set (domain) where the term set is to be
understood in its mathematical sense. So, for example,
well-formed formulae in our calculus will (ultimately)
denote elements of the domain BOOL of truth-values,
whereas expressions will denote elements in the domain
P of expressible values.

Before we can provide the semantics of the calculus,
however, we must deal with the problem of free variables
in calculus well-formed formulae (roughly, a variable x
is “free’ if it is not governed by a quantifier, see Ullman?®
for an exact definition). We must provide some way of
binding the values of free variables to tuple values. To
deal with this problem we introduce the notion of a local
environment which is a function p:vars—> T. Our next
semantic domain then, is the domain LENV of local
environments

is the only free variable of f

peLENV = [vars—> T,

which is the domain of functions from variables to tuples.

We now collect together all the semantic domains
necessary to define the semantics of the calculus. With
each domain we shall indicate what variable we shall use
to range over its elements.

2.1.3 Semantic domains

teT= D¥ tuples
we

ReREL = {R:3 we W such that Re Pr(DW¥)} relations

neN integers

be BOOL = {true, false}
peLENV = {vars- > T}

boolean values

local

environments
the power set of T;
the domain of expres-
sible values

XeP=PT)

The last domain is the only one we have not met so far.
It is the domain whose elements (sets of tuples) are the
result of evaluating calculus expressions of the form
{x:fAx)}.

We are now in a position to define the semantic
functions for the calculus. There are just two:

V:wif—> [LENV - > BOOL U {ERROR}]
E:exp—> P U {ERROR}.

These functions will be defined by a recursive definition
below. First, however, we need to say a little about the
meaning of ‘ERROR’. Certain expressions, and wff, in
the calculus, although syntactically well formed, can
produce an error. For example, suppose we attempt to
select the ith component of a tuple which has no ith
component. The value ‘ERROR’ is included to formally
allow for this possibility. We shall have more to say about
this later, but first we proceed to the formal definitions
of ¥ and E. We shall enclose all syntactic components of
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R. TURNER AND B.G.T. LOWDEN

the definition (i.e. expressions and wff of the calculus)

between brackets [ ].

true — if p(x,) | n # ERROR and
p(x;) | m # ERROR and
p(x,) | neD, and p(x,) | me D,
and p(x,) L nop(x,) | m

false — if p(x,) | n # ERROR and
p(x,) | m # ERROR and
p(x,)lneD, and p(x,) | me D,
and it is false that
p(x;) nop(x,) | m

ERROR - otherwise

(V1) Vix[Alox,[m]lp =

where 6 is the comparison operator named by o (and 6
is an operation on D,x D,) and where

{ the nth component of ¢ — if there is one
l ERROR — otherwise

We insist that p(x;)|n# ERROR and p(x,)]|m #
ERROR, to ensure that we have objects to compare; we
insist that they are both in D, to ensure that they are
comparable with respect to 4.
For example, 6 might be < on the integers so that
D,=N.
true — if p(x) e D¥ where R < D% and
p(x)e R
false — if p(x) e D¥ where R < D* and it is
false that p(x)e R
ERROR - otherwise

V2) Vir(x)lp =

where r names R.

For a non-error result we need to check that p(x) is an
appropriate tuple to be presented to R. Formally this
amounts to checking that p(x)e D¥ where R < D¥.

( true — if p(x) | m # ERROR and
p(x) | me N and nép(x) | m

false —if p(x) | m # ERROR and
p(x) | me N and it is false that
nop(x) L m

ERROR - otherwise

true — if p(x) | m # ERROR and
p(x) ] me N and it is false that
p(x) | mon

(V4) Vix[mlonlp = { false —if p(x) | m # ERROR and
p(x) | me N and it is false that
p(x) | mon

ERROR - otherwise

Inboth (V3) and (V4) we need to insist that p(x) | me N —
otherwise no comparison can be made

true — if V[f,]p = true and
V[f.]lp = true
false — if V[f,]p = false or

VIfilp = false
ERROR - otherwise

true — if V[ f]p = false

V6) V[~ fIp = false — if V[f]p = true
ERROR - otherwise

(V3) Viroxim]lp =

Vs vintl =

Observe that we have truth—value gaps: errors generated
by atoms are inherited by more complex wif’s of which

they are part.
true — if for some

teT,V[flp[t/x] = true
false — if for each

te T V[f1p[t/x] = false
ERROR - otherwise

where p[t/x] is that environment function identical to p
except that it assigns the value 7 to x.

(V7) Vaxflp =

This brings us to the calculus expressions themselves:

{te T:V[AAx)plt/x] = true} —if
{x:fix)} is ‘sensible’
(E) El{x:flx)llp =
ERROR - otherwise

Here ‘sensible’ means that we need to ensure that there
is some feT such that

VLAx)lplt/x] = ERROR.

This is because we actually only want to consider those
tuples for which it makes sense to ask whether or not they
satisfy fx). For example, consider the (syntactically)
well-formed query

{x:r(x) x[1] > 27},

where R, the relation named by r, is a relation of the form
(NAME, MANAGER, SALARY). It would be at best
misleading to say there are no employers who satisfy
r(x)"x[1] > 27. The query is just ‘ill formed’, and since
the syntax does not recognize this fact the semantics must.

This completes our discussion of the calculus. We now
apply and extend the techniques developed here to a more
‘English-like’ query language.

3. THE FORMAL SEMANTICS OF SEQUEL

SEQUEL was designed as a database sublanguage for
both the professional programmer and the casual user
and is currently used as a basis for data manipulation in
system R, arelational database system under development
at IBM San José.

The fundamental command/query of the SEQUEL
language is called a ‘mapping’ and has the form:

SELECT ATTRIBUTE
FROM Table name/Relation name
WHERE Boolean condition

For example, the query

(@) SELECT name
FROM EMP
WHERE EMP | DNO = 50

will select the names of employees in DEPT 50 where the
relation EMP has the following form:

EMP: EMPNO NAME DNO JOB MGR SAL COMM

To begin with, we introduce the syntax of SEQUEL. For
pedagogical reasons we shall only study a subset/variant
of SEQUEL(SS) but which nevertheless illustrates all the
important semantic issues.

3.1 Syntactic domains

gequery queries

bebexp Boolean expressions
eeexp expressions

rern relation names
o€op operation names
Oe€so set-operation names
cecons  constant symbols
fenml numerals

Note that numerals will be distinguished from numbers
by the use of the bar notation, e.g. i is the numeral
denoting the number n.
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SPECIFICATION OF RELATIONAL QUERY LANGUAGES

3.2 Syntactic clauses
q::=SELECT 1 FROM r WHEREb

b:: e06,]q,0q,leINgq
e:: clajr|n

Some comments regarding the difference between SS and
SEQUEL are necessary. Perhaps the most obvious
difference concerns the attribute names. We have, for
simplicity, assumed that they are coded as integers. The
syntax is not explicit about the operations and
set-operations but the intention is that op includes a name
for <, on the integers, whereas a typical set-operation
would be the inclusion relation on sets. The syntax of SS
is much simpler than that of SEQUEL but we have tried
to isolate the important semantic issues without
introducing undue syntactic complexity. The reader
should be able to provide a semantics for the whole of
SEQUEL once the section has been mastered.

Before we can develop the semantics of SS we need to
investigate the problem of how to interpret the
occurrence of table means in WHERE expressions.
Consider the expression

EMP | DNO = 50

from our initial example. The reference to EMP here
(actually implicit in SEQUEL) is not the whole relation
EMP but to a specific member. To model this we once
more introduce a local environment

peLENV = [rn - T],

which as we shall see forces the binding of the occurrence
of relation names inside such expressions to specific
tuples.

As in the case of the calculus, our first task has to be
the presentation of the semantic domains of SS.

3.3 Semantic domains of SS

teT = Uw D% tuples

Re REI?,E: {R:3we W such that RePr(D%)} relations

neN integers

be BOOL = {true, false} Boolean
values

peLENV =[m - T] local
environments

XeP ={X:3seS suchthat XePr(Ds)}

veV= ) Ds
seS

query values

values

These domains are much the same as those for the
calculus. There are, however, a few differences worth
mentioning. The domain LENYV is essentially the same,
but since there are no explicit range statements in SS (or
SEQUEL for that matter) relation names play the role of
tuple variables. The domain V does not occur in our
account of the calculus. In SS, however, expressions
evaluate to actual values and queries to finite sets of
values rather than to finite sets of tuples.

We can now proceed to the formal specification of SS.
The definition of SS involves the stipulation of three
(mutually) recursive functions Q, B E which have
functionality

Q :query—> [LENV-> P U {Error}]
B :bexp- > [LENV-> Bool U {Error}]
E :exp—> [LENV-> V U {Error}]

The first evaluates the queries themselves while the second
and third return the values of Boolean expressions and
expressions respectively. The ERROR value is included
for the same reason as in the calculus — the syntax does
not prevent the formation of semantically ill-formed
expressions and queries. These three functions are defined
by simultaneous or mutual recursion as follows.

(Q.) Q[SELECT n FROM r WHERE blp =
{t}n:teR and B[b]p[t/r] = true} - if for some teR,
B[b]p[t/r] # ERROR and R has at least n-components
ERROR - otherwise

where r names the relation R.

The function Q only returns a value when the Boolean
condition, applied to some/each tuple in the relation R,
returns true or false and when R has at least n
components, i.e. the length of tuples in R is at least n;
otherwise the query results in an error. The stipulation
that B[b] [t/r] # ERROR, for some t € R, is to ensure that
R is an ‘appropriate’ relation to occur in b. For example,
consider a relation R of the form (NAME, MANAGER,
SALARY) and the Boolean expression b, r|2 > 27.
This is syntactically well formed, but semantically it is
nonsense. If we did not include the stipulation that
B[b]p[t/r] # ERROR, for some tuple in R, the query
‘*SELECT1FROMr WHERED’ would return the empty
set of names — a misleading answer at best.

Next we provide the definition of E.

(ED for all nenml, E[fi]p =n

(E2) for all cecons, E[c]p = ¢
Hence E2 shows that the value ¢ of the constant symbol
c is independent of the environment.

(E3)  E[rinp=p()in

Here we select the nth component of p(r).

Observe that one reason for the inclusion of the
ERROR value occurs in (E 3) and proliferates throughout
the definition of SS. If we try to select the nth component
of a tuple which does not have one we should expect to
get an ERROR result.

Finally, we provide the specification of B, the semantic
function for boolean expressions.

true — if E[e,]p # ERROR and
Ele,lp # ERROR and
Ele,]pe D, and E[e]pe D, and
Ele,]p 6 E[e,]p

false — if E[e,]Jp # ERROR
and E[e,]p # ERROR and
Ele,]Jpe D, and E[e,]pe D, and
it is false that E[e,]p 6 E[e,]p

ERROR otherwise

(B1) Ble,0e,]p =

where 6 is the operator named by o and hasrange D, x d,,.
We shall employ the 6 notation throughout to distinguish
the syntactic operator o from the corresponding relation
0.

Once again we have to check that E[e,]p and Ele,]p
return proper values (¥ ERROR) and are suitable for
comparison; unfortunately, the syntax does not perform
this task for us.
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( true - if Q[q,]p # ERROR and
Q[q.]p # ERROR and are
contained in some Dy and
Qla;Jp O Qlg.]p

false — if Q[q,]p # ERROR and
Q[q.]p # ERROR and are
contained in some D, and not

Qla;,Jp O Qla.Ip
ERROR - otherwise

(B2) B[q,0q,lp =

where O is the set-operator named by O.

We have to check that both queries do not evaluate to
ERROR. The set-operator O might be, for example, <
and Q[q,]Jp O Q[q.]Jp would hold just in case
Qla,]p < Qla.Ip.

true  if Efe]p # ERROR, and

Q[q,]p # ERROR, and
E[e]p e Dy where Q[qlp < D,
and E[e]p € Q[q]p

false — if E[e]p # ERROR, and
Qlqlp # ERROR,andE[e]p e D
where Q[qlp < D, and
Ele]p € Q[qlp

\ERROR — otherwise

(B3) Bfeinqlp =

Here we need to check that E[e]p # ERROR, Q[Q]p #
ERROR; and that E[e]p is the same type of object as those
in Q[Q]p, for the result not to be ERROR.

This completes our discussion of the formal semantics.
We now illustrate the semantics by way of an example.

4. EXAMPLE

Find the names of employees who work for departments
in Evanston.

(b)) SELECT Name
FROM EMP
WHERE EMP | DNO IN
SELECT DNO
FROM DEPT
WHERE DEPT | LOC = EVANSTON

(Observe that, in SS, attributes are coded as numerals;
for convenience we shall use the attributes them-
selves).

We first apply Q to (b) to obtain

{tlname:teﬁ\-/[\P and
B[EMP | DNO IN SELECT DNO
FROM DEPT
WHERE DEPT | LOC = EVANSTON
Ip [t/EMP] = true
}

. We now unwrap the application of B using (B3) to
obtain
B[EMP | DNO IN SELECT DNO
FROM DEPT
TN
WHERE DEPT | LOC = EVANSTON]p[t/EMP] = true
if and only if (using (B 3))

E[EMP | DNO] # ERROR and Q[SELECT DNO
FROM DEPT
WHERE DEPT | LOC = EVANSTON] # ERROR
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and

E[EMP | DNOJp[t/EMPJeD, where

QISELECT DNO

FROM DEPT .

WHERE DEPT | LOC = EVANSTON]p[t/EMP] < D,
and

—_—
E[EMP | DNOJp[t/EMP|e Q SELECT DNO

FROM DEPT
WHERE DEPT | LOC = EVANSTON]p[t/EMP]

By using (E3) E(EMP |DNO]Jp[t/EMP] may be
simplified to
plt/EMP](EMP) | DNO = t | DNO

and using (Q) the final Q-expression above becomes

{t' | DNO : t' e DEPT and B[DEPT | LOC =

EVANSTON]
plt/EMP] [t'/DEPT] = true}

Using (B1), (E2) the above B clauses simplifies to

t" | LOC # ERROR and EVANSTON s ERROR and
t"} LOC = EVANSTON

Hence the Q clause may be further simplified to

{t' | DNO :t e DEPT and t | LOC # ERROR and
EVANSTON # ERROR

and t’ | LOC = EVANSTON}
Finally, the application of Q to (b) may be written as

{t | name :te EMP and t | DNOe{t’ | DNO .t e DEPT
and t' | LOC = EVANSTON}}

together with the relevant error checks.

5. THE FORMAL SEMANTICS OF QUEL

We now turn to a more elaborate Query language, namely
QUEL. QUEL is the query language component of
INGRES (Interactive Graphics and Retrieval System). It
is a calculus-based language which is closely modelled on
the language ALPHA. There is, however, one significant
difference: QUEL is free of all explicit quantifiers.

Each query of QUEL contains one or more ‘range’
statements and one or more retrieve statements. The basic
form of a QUEL query is

RANGE STATEMENT(S)
RETRIEVE INTO V
RESULT DOMAIN = function

RESULT DOMAIN = function
WHERE QUALIFICATION

We provide the precise syntax of QUEL in Fig. 3. We
have simplified QUEL by (for example) only allowing the
retrieval into one named relation, but this does not
suppress any important semantic issues.

Our first objective must be to ‘lay out’ the semantic
domains.
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5.1 Semantic domains of QUEL

teT= () D* tuples

WEW
ReREL = {R:3we W such that Re P.(D")} relations
veV=1\) D, values

sES
peLENYV = [var- > T] local environments

MeGENV = [var- > REL] global environments
DeDB = [nrn—> REL] data base

beBool = {true, false} boolean values

XeP = Pp(V) set values

5.2 Abstract syntax of QUEL

5.2.1 Syntactic domains

ieQuery queries

fefun function expressions
qequal  qualifications

K eset sets

neNml numerals

X € var variables

k e bset basic sets

penrn new relation names
deran range statements
Oeset-op set-operation names
rern basic relation names
Ceset-fn set functions

5.2.2 Syntactic clauses

fii=n|x.0|CK)I|f,+f,|f, *f,
q::=f1=f2|q1Aq2|Q1Vq2lK10K2|ﬂ€K
K ::=k|SET(f WHERE q)|SET(f, BY f, WHERE
QIK; UK, |K,-K,|K,; n K,
C::=COUNT|AGG
i::=d:RETRIEVE INTO p

fi;

fies
WHERE q
d::= RANGE x isr|RANGE x is p|d, ;d,

In providing the semantics of QUEL we require not
onlya ‘localenvironment’ butalso a ‘ global environment’
as well as an explicit representation of the database. The
latter is required because the basic form of a QUEL query
permits the construction of new named relations. Global
environments are necessary because of the introduction
of range statements. For example, the statement RANGE
x is r forces the binding of x, in any local environment,
to be an element of the relation named by r.

To define QUEL we need to stipulate five semantic
functions:

F:fun-> [LENV-> V U {ERROR}]
S:set—>[LENV-> P U {ERROR}]

B :qual-> [LENV-> BOOL U {ERROR}]
G :range- > [GENV-> GENV]

Q :queries— > [DB- > DB]

Once again these are defined by simultaneous recursion:
as we shall see, the function F involves S; S involves F
and B; B involves F and S, and Q involves F, B and G.
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To begin with then we define the function F:
(F1) Flilp=n
(F2) Flx.Alp =p(x)|n
(F3) FIC(K)lp = C(S[K]p)
where
Cﬁ}ﬁ (S) = the number of elements in S

the aggregate of S—if S < N

—
AGG(S) = {ERROR — otherwise
(F4)

_ (FIflp+Flglp - if F[flpe N and F[g]pe N
Flf+glp = {ERROR — otherwise

(similarly for * etc.)

This is mostly straightforward. The function F either
produces a value (in V) or an ERROR. The only
complication occurs in (F3) where reference is made to
the function S. So in order to grasp what is involved, we
need to consider S itself.

(S1) S[klp =k
where k is some fixed element of P (V) denoted by k.

(S2) S[SET(f WHERE q)lp =
{Flflp’ # ERROR : B[q]p’ = true}if Z
ERROR - otherwise

where Z is the statement that there is some p’ such that
B[q]p” # ERROR and F[f]p’ # ERROR.

We need to include the condition Z to ensure that the
set-definition is ‘sensible’. For example, suppose
f = AGG(k) where k denotes some subset of strings and
q is the Boolean expression fiek. Clearly there are no
environments p for which F[f]p # ERROR and B[q]p #
ERROR. Without this condition the result of SET(f
WHERE q) would be the empty set, and this is intuitively
unsound. We want to say the expression is semantically
iliformed, not that the set of values for f, where q holds,
is empty. The condition ensures that there is a
‘consistent’ assignment to the variables of f and q.

(S3) S[SET(fBY g WHERE qQ)lp =
{F[flp’ #ERROR :Flg]p = Flglp"
# ERROR and B[q]p’ =true} —if Z
ERROR - otherwise

where Z is the

F[flp’ # ERROR,

B[q]p” # ERROR.
We shall later illustrate the use of this construct by way

of example.

(84) S[K, U K,]Jp = S[K,]p U S[K,]p

where by stipulation S U ERROR = ERROR U S =
ERROR, for any set S. Similar clauses apply for
intersection and relative complement.

We next present the details of the semantic function for
Boolean expressions or qualifications.

(B1) B[fl = fz]p =

true — if F[f,]p # ERROR and F[f,]p #
ERROR and are in some Dg and are equal.

false — if F[f,]p # ERROR and F[f,]p #
ERROR and are in some Dg but are not equal.

ERROR - otherwise

statement that for some p’,
Flglp = Flglp’ # ERROR and
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(B2) B[g, A q.]p =
true — if B[q,]p = true and B|[q,]p = true
false — if B[q,]p = false or B[q,]p = false

ERROR - otherwise
(B3) B[K, OK,]p =

true — if S[K,;]p # ERROR and S[K,]p # R
ERROR andarecontainedinsome Dgandsatisfy O

false — if S[K,]p # ERROR and S[K,]p #
ERROR and are contained in some Dg and do not

satisfy O

ERROR - otherwise
where O is the set operator named by O.

true —if ne 2[Kjr < N
false —if ne S[K]p < N

ERROR - otherwise

We claimed that range statements create a global
environment with respect to which all bindings of variables
to tuples must be ‘ consistent’. We now present the details
of the creation of such an environment.

G :Range-> [DB-> [GENV-> GENV]]
(G1) G[RANGE x is r]DM = M[R | x]
(G2) G[RANGE x is p]DM = M[D(p) | x]
(G3) G[d,;d,]DM = G[d,]DGI[d,]DM

where, in (G1),M[R|x] is that global environment
identical to M except it assigns the relation R to the
variable x and where R is the relation named by r. Note
the different roles played by basic relations and new
named relations; the latter obtain their values from the
database itself.

We can now provide the main semantic function for
QUEL queries.

Q[d : RETRIEVE INTO pf, ;f,; — ; f, WHERE q]D

D[p|P] - if there is an environment (local) p for
which {G[d]D 1 }Cp, F[f;]Jp # ERROR and
B[q]p # ERROR for 1 <i<k.

ERROR - otherwise

where P = {teT :te{<F[f,]p # ERROR, ——, F[f ]p #
ERROR) :B[q]p = true and {G[d]D }}Cp}
and MCp (=) (¥x) (p(x) e M(x))
and 1 e GENV is given as (Vx)(L(x) = @) (§ the empty
relation).
Then condition {G[d]D L}Cp forces the bindings of all
variables to be consistent with the range declarations.
Observe that P is an element of REL, since a simple
inductive argument shows that for some fixed function f
the different values of F[f]p (as p varies) will be in the
same domain.

We shall now, as promised, illustrate the use of the
statement form SET(f BY g WHERE q) by way of an
example.

6. EXAMPLE

Suppose ‘supply’ is a 3-place relation whose first place
is occupied by supplier names, the second place by part
numbers and the third by prices. Consider the query:

‘Find the suppliers whose price for
every part is greater than $10°

(B4) BlneK]p =
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This can be represented in QUEL* by

(1) RANGE of x is SUPPLY
(2) RETRIEVE INTO p

x. NAME
(3) WHERE COUNT (x. PARTNO BY x. NAME)
4) WHERE x. PRICE > $10) q

(5) =
(6) COUNT (x. PARTNO BY x. NAME)

(Note: ‘x. PARTNO BY x. NAME’ is short for ‘x.

PARTNO BYx. NAME WHERENAME = NAME".)
In what follows we shall omit the ERROR checks.

The range statement of line 1 forces the construction of
a global environment M which binds the value of the
variable x to the supplier relation. To evaluate the
retrieve statement of line 2 we must compute all the values

(7) F[x. NAME]p

for those p which are compatible with M (i.e. MCp) and
which satisfy the WHERE clause (see details of R). Now
how do we compute those p which satisfy the WHERE
clause? Let p be a candidate and let

(8) v = F[x. NAME]p # ERROR

We must check to see if B[q]p = true. This forces us to
evaluate (by (B1))

(9) F[COUNT(x. PARTNO BY x. NAME WHERE
x. PRICE > $10)]p

and
(10) F[COUNT(x. PARTNO BY x. NAME)]p
We concentrate on (9). This reduces (by (F3) to

(11) COUNT{F[x. PARTNOJp’ # ERROR : F[x.
NAME]p’ = F[x. NAME]p # ERROR

and
B[x. PRICE]p’ > $10}

The full import of (3) can now be seen. We only count
those values F[x. PARTNO]p’ where F[x. NAME]p’ = v.
In other words, we take the count of all the parts, which
v supplies and which are greater than $10.

The second occurrence of the variable x in COUNT(x.
PARTNO BY x.NAME WHERE x.PRICE > $10)
plays a different role to the first and third occurrences and
this is reflected by the role of the two environments p and
p’. The range of values permitted by the first and third
occurrences of x (the class of p’ permitted) is determined
by the range of values permitted for the second
occurrence (fixed by p). So the different conceptual roles
played by these different instances of x are reflected by
the constraining effect the choice of the first environment
has on the selection of further environments. We believe
that this is implicit in the original discussion of QUEL;
the formal semantics merely makes this design feature
precise and explicit.

7. CONCLUSIONS

In this paper we have given an introduction to the use of
formal semantics as a means of rigorously defining and
analysing the semantics of relational query languages.

* Note that we have not explicitly coded attributes as numerals but
x. NAME, for example, would be rendered x. 1.
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SPECIFICATION OF RELATIONAL QUERY LANGUAGES

The approach adopted permits specification at a level of
abstraction which is independent of any particular
implementation. We have demonstrated this approach
with respect to the calculus, QUEL, and SEQUEL.
Formal specifications provide a basis for communica-
tion and discussion between the language designer and
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