A Relational Schema Description and Manipulation Facility

YUKSEL UCKAN

Systems Analysis Department, Miami University, Oxford, OH 45056, USA

This paper presents the schema description facility of DDS, an experimental relational DBMS designed and partially
implemented by the present investigator. The proposed schema description language and the DDS/DBMS software
which supports it are primarily designed to satisfy requirements of the database administrator (DBA). The language
includes a comprehensive schema description capability for a relational database environment, and can also be used in
the generation of the DDS/DBMS software. It is a block-structured, English-like, user-friendly general-purpose schema
description language. The architecture and logical structure of DDS/DBMS as well as the DDS system-generation

sequence are also explored in the paper.

1. INTRODUCTION

Following the introduction of the relational model of
data by Codd,! the last decade has witnessed a heavy
concentration of research and development on relational
database languages and database management systems.
As a result, a large number of data languages became
available among which may be cited Alpha, Quel, Ingress
and Damas,? 345 which are based on the first-order
predicate calculus, MacAims and IS/1¢:7 of the relational
algebra origin, Square, Sequel and System R#: % 10 which
are set-oriented, and Query-by-Example,!* which re-
sembles Sequel, but has a two-dimensional syntax.

These efforts were quite successful towards the goal of
developing reasonably comprehensive, easy to use,
non-procedural and relationally complete? database
query languages. Most also included storage operations
which can be used for database manipulation or
maintenance purposes. However, we observe an almost
complete neglect of schema description languages in
recent research. This is partly because the query
formulation aspects of database systems are intellectually
more challenging and stimulating, and partly because the
database administrator (DBA) who would most likely be
the person to need a schema description language, can
take care of his problems more easily compared to the
average database user due to his more technical
background. Nevertheless, the need for a simple and
effective relational schema description and manipulation
language exists.

This paper presents results of a research effort striving
to fill this gap. It concentrates on the schema description
and manipulation facility of a relational database
management system (DDS: Dynamic Data Base System)
which is proposed, designed and partially implemented
by the present investigator. DDS is an experimental
DBMS and a data language based on the relational model
of data. The designed data language has a linear syntax
and is block-structured, English-like and user-friendly. It
comprises a data definition (DDL), a data manipulation
(DML), and a query formulation (QFL) language subset.
This paper is one of the products of a continuing research
effort related to the design and implementation of
DDS/DBMS.

The proposed data language is stand-alone, and it can
be used in producing highly readable data definition,
database manipulation and query formulation programs.
The language design is based on the most elementary
database concepts and can be easily learned and used by

170 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

those with little or no mathematical or technical
background. All three language subsets include features
which can satisfy almost every need of a database user.

This paper discusses DDS/DDL and the relevant
features of the DDS/DBMS design. DDS/DDL is
designed primarily to satisfy the requirements of DBA.
It can be used in one-shot or step-by-step definition of
database relations, and conceptual schema updates which
include expanding a relation, changing structure and/or
key attributes of a relation, deleting a relation, and
changing type, field length or security code of an attribute
existing in a relation. In addition, DDS/DDL statements
can be formulated to specify a new relation by joining two
existing database relations, to prescribe structural
similarity of a transient relation to a permanent database
relation, and to render permanent a transient relation.
While such operations are permitted, the integrity of the
database is carefully maintained by DDS/DBMS.
Finally, DBA can utilise DDS/DDL in defining 10 major
DDS/DBMS system control structures which are
designed as relations. In other words, DDS/DBMS has
a self-definition capability, and DBA can take advantage
of this feature in the system-generation phase for
DDS/DBMS.

Section 2 of this paper describes the basic features of
DDS/DDL, whose syntax is presented in Appendix A.
It also contains examples which demonstrate schema
definition and manipulation capabilities of the proposed
language. In Sections 3 and 4 we present the highlights
of the DDS/DBMS design and major data structures
incorporated into the design. Also in Section 4, we discuss
the basic design assumptions and restrictions and
interactions among the DBMS software and the language
components. Section 5 is devoted to an exploration of the
self-definition capability of DDS/DBMS and the
problem of system generation. Sections 3, 4 and 5
together provide a clear and concise algorithmic
description of the relevant features of the proposed
DBMS design.

2. DDS SCHEMA DESCRIPTION
LANGUAGE

DDS/DDL includes six language constructs which can be
used in describing schema definition and manipulation
operations in terms of English-like, easy-to-follow DDS
program blocks. Syntax descriptions of DDS/DDL
constructs are presented in Appendix A. Their functions
are summarized below:

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

A RELATIONAL SCHEMA DESCRIPTION AND MANIPULATION FACILITY

DEFINE RELATION: assigns a name to a relation
and defines its tuple structure and key attributes. In case
key attributes are not specified, the first attribute
appearing in the tuple structure is, by default, the key
attribute. A somewhat different form of this block,
namely, DEFINE RELATIONS/USING, defines a new
relation by joining two existing database relations over
a common attribute and projecting the join over a set of
attributes specified in the tuple structure clause. As the
join relation is permanent by intent, in order to preserve
database integrity, DDS/DBMS will delete both the
definitions and the contents of two source relations.

DEFINE ATTRIBUTE: specifies type (either alpha-
numeric or numeric), field length, and optionally, security
code of each attribute in a relation. A DEFINE
ATTRIBUTE block must contain attribute definitions
for relations which have already been structurally
described through a DEFINE RELATION block. All
attribute definitions for a relation may be accomplished
through a single DEFINE ATTRIBUTE block, or DBA
may choose to use several DEFINE ATTRIBUTE blocks
at different times. DDS/DBMS accepts step-by-step
attribute definitions; however, it should be noted that
unless all domains of a relation are defined, the software
will not permit any other database operation on that
relation.

REDEFINE RELATION: is a block designed to
change the name of a relation, its tuple structure (change
existing structure, add new attributes, or delete attributes)
and its key attributes. It also permits deletion of an entire
relation. As the result of this statement, both the schema
and the content of the relation will be updated.

REDEFINE ATTRIBUTE: can be used to change
name, type, field length and/or security code of any
attribute which has already been defined. It results in
schema update, and in case field length of an attribute is
compressed, also in content update of the relevant
relations.

SIMILAR: is a statement needed to specify structural
similarity of a transient relation to a permanent database
relation.

PERMANENT: this statement transforms a transient
relation to a permanent relation. Both SIMILAR and
PERMANENT statements are basically of DDL type;
however, they are needed and used in certain DML
operations, such as LOAD, ADD, COPY and
COMBINE.12, 14

From a program structure point of view, a DDS/DDL
program block has no syntactical constraint; it may
contain any number of the basic six language constructs
discussed above. This is because the DDS language
processor has been designed to pre-process a given
program block as a whole and go through all necessary
structural modifications on the basis of the semantic
relationships inherent in the subschema under considera-
tion. For example:

BEGIN: DEFINE ATTRIBUTE:
a ALPHANUM (6);
b NUMERIC (5)
END.
DEFINE RELATION: r;

TUPLE STRUCTURE: a,b;
KEY: a
END.

END.

is seemingly incorrect as it defines attributes of r before
its structure is prescribed. However, DDS/DBMS will
interchange the two blocks in the program before it
attempts to process it. Therefore, DDS/DDL is
completely non-procedural from the user’s viewpoint.

Table 1 contains some examples of schema definition
and manipulation programs written using the proposed
language. All basic features of DDS/DDL are exemplified
in Table 1. The simplicity and self-documentation aspects
of the language should be noted. It should also be noted
that a DDS/DDL program not only changes the existing
database structure, but it will also cause DDS/DBMS to
approriately update certain system control structures.
The major system control structures are discussed in
Section 4 of this paper.

3. DDS/DBMS SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture for DDS/DBMS.
The system consists of five principal components:

(a) DDS data language program,

(b) DDS/DBMS software,

(c) ten system control structures,

(d) permanent (corporate) database,

(e) transient database.

Fig. 1 also shows the interrelationship or communi-
cation paths among these system components. DDS/
DBMS software is a collection of programs written in a
high-level implementation language; a partial implemen-
tation exists in PL/1. A complete implementation in
FORTRAN is presently under way. Fig. 1 indicates only
functionally significant software modules. During the
actual implementation, a larger number of program
modules is emerging. It should be noted that Fig. 1 does
not attempt to indicate the interrelationships among the
DBMS software modules.

The permanent database, as well as the transient one,
is relational. The transient database contains copies of
database relations, or some horizontal or vertical subsets
of such relations. It is embedded in the design in order
to allow for certain DML operations while preserving
database integrity.

In addition to some auxiliary data structures which are
implemented in the DDS/DBMS software, ten additional
data structures are required by the design. These data
structures are referred to as system control structures.
They are conceived as relations and are actually part of
the DDS database. There is a complex set of inter-
relationships between the DDS system control structures
and the DDS/DBMS software modules. The next section
discusses the system control structures and these
interrelationships, thereby shedding more light on the
overall logic of DDS/DBMS.

4. DDS SYSTEM CONTROL STRUCTURES

Table 2 shows ten DDS system control structures, their
tuple structures and basic functions. The underlined
attributes in the tuple structures are the key attributes.
SYS 01 contains authorised user definitions and user
authorisation codes as assigned by DBA. A user with
authorisation code of 1 is permitted access to all database
relations and attributes; the user is also authorised to
specify any DDS data language operation. On the other
hand, a user whose SYS 01 authorisation code is, say x,

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 171

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

Y. UCKAN

Table 1. DDS/DDL program examples

DDS/DDL program

Meaning

1. BEGIN:
USER-ID = 55555, USER-NAME = SMITH.
DEFINE RELATION: r;
TUPLE STRUCTURE: a, b, c;

RELATION: t;
TUPLE STRUCTURE: a, d, e;
KEY: a, d
END.
END.
2. BEGIN:
BEGIN
USER-ID = 55555, USER-NAME = SMITH.
DEFINE ATTRIBUTE:

a ALPHANUM (6)
b NUMERIC (5) 2;
¢ NUMERIC (4) 1;
d NUMERIC (2)
END. END.
3. BEGIN:
USER-ID = 66666, USER-NAME = GEORGE.
DEFINE ATTRIBUTE:
e ALPHANUM (10) 2
END. END.
4. BEGIN:
BEGIN:
USER-ID = 66666, USER-NAME = GEORGE.
DEFINE RELATION: tt
USING r AND t;
TUPLE STRUCTURE: a, d, b, ¢;
KEY:a,d
END. END.
5. BEGIN:
USER-ID = 55555, USER-NAME = SMITH.
REDEFINE RELATION: r as rx;
TUPLE STRUCTURE: a, b, ¢, f
END. END.
6. BEGIN:
USER-ID = 55555, USER-NAME = SMITH.
REDEFINE RELATION: rx AS;
KEY: b END. END.
7. BEGIN:

USER-ID = 77777, USER-NAME = JOHN.
REDEFINE ATTRIBUTE:
a AS ax (8)
END. END.
8. BEGIN:
USER-ID = 55555, USER-NAME = SMITH.
RELATION tx IS SIMILAR TO t.
RELATION tx IS PERMANENT.
END.

Defines a relation r with three attributes a, b, and c,
where a is key; also, defines a relation t with three
attributes a, d, and e, where a| d is the key.

Defines domains for attributes a, b, ¢ of r, and
attributes a, d of t. Now, r is completely defined
and is user-accessible; t, however, is not.

Completes domain definition for relation t.

Defines a new relation tt by joining r and t over the

common domain a, and projecting it over a, d, b, e with
a and d as keys. r and t will no longer exist in the
database.

Changes the name of relation r to rx; also, changes

its tuple structure from (a, b, ¢) to (a, b, c,)
where f is a new attribute to be defined before rx
can be used. r will no longer exist in the database.

Changes the key of relation rx from a to b, provided

b is an attribute with the property of unique
identification.

Changes the name of attribute a to ax; also, changes

its field length from 6 (see Ex. 2) to 8.

Defines a relation tx which is similar to t; then

copies t to tx, makes tx permanent and t transient.

will be restricted to certain database operations, and a
subschema defined by attributes with a security code, y,
satisfying y > x (see SYS 04 format in Table 2). Thus,
together with SYS 04, SYS 01 is used in maintaining
database security.

DDS/DBMS software will produce a log entry for each
DDS data language program run, be it successful, in
error or blocked by the software. These log entries
are accumulated in SYS 02 and can be used by DBA
in extracting user profiles, evaluating user requirements
and observing security and authorisation violations.

SYS 03 contains diagnostic error messages for syntax

and/or semantic errors. It is used by the DDS software
in producing and displaying error diagnostics which aid
the user in program debugging.

SYS 04, SYS 05, SYS 06 and SYS 07 are relations
needed to define the database schema. SYS 04 includes
tuple structure and key attribute specifications for all
permanent database relations and all system control
structures. SYS 04 tuples also contain domain specifi-
cations for all attributes. This approach, coupled with a
one-character-per-byte character string specification for
all database tuples, permits dynamic schema definition
for an arbitrary relation. It eliminates the necessity of

172 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

A RELATIONAL SCHEMA DESCRIPTION AND MANIPULATION FACILITY

Permanent
database

Transient

database

DDS/DL
program

DDS/DBMS

User authorisation module

Syntax analyser

Semantic analyser

Schema definition modules

Database manipulation
modules

Data retrieval modules

Log entry generator

Data decoder

SYS 01
SYS 02
SYS 03
1 SYSO04
SYS 05
SYS 06

-

SYS 07

System control structure(s)

SYS 08

Report generator

Report

1 SYSO09
\/

—1 SYS10

Figure 1. DDS/DBMS system architecture.

Table 2. DDS/DBMS system control structures

Name

Format

Function

SYS 01: User identification
relation
SYS 02: System log relation

SYS 03: Error diagnostics
relation

SYS 04: Schema definition
relation

SYS 05: Attribute-relation
relation

SYS 06: Schema definition
control relation

SYS 07: Similar relation
table

SYS 05: Access path
definition relation

SYS 09 Attribute-coding scheme
table
SYS 10: Data decoding relation

(user-id,user-name,
authorization-code)
(user-id,run-date run-time,
statement-keyword,run-result
relation-used-1,relation-
used-2,relation-used-3)
(diagnostic-message-code,
diagnostic-message)
(relation-name,attribute-name,
attribute-seq-no,seq-no-in-key,
attribute-type,field-length,
attribute-security-code)
(attribute-name,relation-name-1
relation-name-2,relation-name-3,
relation-name-4)
(relation-name, degree of relation,
definition-string)
(relation-name, similar-
relation-name-1,similar-
relation-name-2)
(attribute-name,attribute-value,
path-type, access-path,
inversion-type,frequency-of-use,
recent-use-date)
(attribute-name,coding-scheme)

(coding-scheme,attribute-value,
open-description)

Authorization control
(system security)
Usage statistics, system security

User diagnostics aid

schema definition, subschema
generation, system security

Schema definition

(attribute-name to relation-name
conversion)

Schema definition

Schema definition
(database integrity)

Direct conditional retrieval

Data decoding
(report generation)

Data decoding
(report generation)

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

changing format specifications in the DDS/DBMS
software whenever a relation is to be defined, deleted or
updated, and of recompiling the entire software. It should
be noted that the DDS software accesses SYS 04 for
complete schema description before it can access any

database relation. Only the schema definition for SYS 04
need be software embedded.

SYS 05 permits extraction of a unique relation name
givenan attribute name, provided the attribute is non-key.
This is possible due to the fact that the DDS database is

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 173

Y. UCKAN

integrated, and is required because certain DDS/QFL
statements allow user reference to relations, indirectly
through attribute names. Content generation for SYS 05
can be algorithmically defined on the basis of SYS 04
content.

SYS 06 indicates whether a database relation is
partially or completely defined. DDS/DDL permits
step-by-step definition of a relation, and hence SYS 06 is
included in the design. The software firstly accesses
SYS 06 and, unless the relation specified is completely
defined, prohibits access to the relation itself.

SYS 07 is used to specify transient database relations
and to define their schema by associating them with
permanent database relations.

SYS 08 is the system control structure which is
designed to store access paths created by the software
whenever a user specifies in a run a conditional retrieval
operation using DDS/QFL or certain DML operations
involving conditions. The access paths are retrieved and
used in directly accessing tuples of database relations in
subsequent DDS/QFL runs. This greatly enhances the
retrieval capabilities of the system. DDS/DBMS main-
tains and, if necessary, deletes SYS 08 tuples throughout
the lifespan of the system. This data struture and its
behavioral characteristics are currently under further
investigation.

SYS09 and SYS10 are used for data decoding
purposes, following retrieval and before report generation,
in case so requested by a DDS/QFL program, and if
attributes retrieved have been encoded for data
compaction.

As was mentioned before, to process a DDS data
language program, the DDS software accesses and
updates most of the DDS system control structures. In
view of the functional specifications for DDS system
control structures, the required operations on these
structures for a given DDS program element can be
prescribed. Table 3 relates DDS/DDL statements to

Table 3. DDS/DDL statements vs. DDS system control structures

DDS system control structures and indicates the required
operations necessary for processing. For example, to
DEFINE a RELATION, the DDS/DBMS software
executes the following algorithm:

1. Access SYS 04 and fetch schema specification
tuples for SYS 01, SYS 02, SYS 03, SYS 05 and SYS 06.

2. Using SYS 01 schema, access SYS 01 for user
authorization control.

3. Analyse DDS/DDL program. If a syntax error
exists, using SYS 03 schema, access SYS 03, fetch error
message; display message and terminate.

4. Extract relation name and attribute names from
the DDS/DDL program. Using SYS 06 schema, access
SYS 06; if there exists a SYS 06 tuple for the relation,
access SYS 03 to retrieve the appropriate error message,
display it and terminate. If not, generate a SYS 06 tuple
for the relation and add it to SYS 06.

5. Generate SYS 04 tuples for the relation and its
attributes.

6. Access SYS 04 and add these tuples to SYS 04.

7. Generate SYS 05 tuples for each attribute of the
relation.

8. Using SYS 05 schema, access SYS 05 and either
add these tuples to SYS 05 or, if there already exist tuples
in SYS 05 for a given attribute, update corresponding
SYS 05 tuples.

9. Generate a log entry for the operation.

10. Using SYS 02 schema, access SYS 02 and add this
tuple to it.

11. Terminate.
Hence, each row of Table 3 is a summary of the
requirements of the indicated DDL operation on the
system control structures, as defined by the corresponding
software logic.

Following is a list of system requirements as implied
by the above discussion:

(@) Schema definitions for all DDS system control
structures must exist in SYS 04.

SYS
Database

DDS statement 01 02 03 04 05 06 07 08 09 10 relations

DEFINE RELATION R A R* RA R,AorU RA — — — — —

DEFINE RELATION/ R A R* RAD RUD* RD — RD — — RWD
USING

DEFINE ATTRIBUTE R A R* RU R RU — — — — —

REDEFINE RELATION/ R A R* RD R,DorU RD R D* RD* — — RD
DELETED

REDEFINE RELATION/ R A R* RU RU RU R U* — — — —
RELATION NAME

REDEFINE RELATION/ R A R* RU R*, AorU RU* RD* RD* — — RU
TUPLE STRUCTURE

REDEFINE RELATION/ R A R* RU — R R D* RD* — — RW
KEY

REDEFINE ATTRIBUTE/ R A R* RU RU R — RU* RU* — —
ATTRIBUTE NAME

REDEFINE ATTRIBUTE/ R A R* RU R* R — — — - —
ATTRIBUTE TYPE

REDEFINE ATTRIBUTE/ R A R* RU — R — R*D RD* R*D RU
FIELD LENGTH

REDEFINE ATTRIBUTE/ R A R* RU R — — — — —
ATTR. SEC. CODE

SIMILAR R A R* R — R R,AorU — — — —

PERMANENT R A R* RU RU RU RU — — — —

Notation. R, read; W, write; *, conditional; A, add tuple; D, delete tuple; U, update tuple.

174 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

Table 4. Data base operations on DDS database relations

A RELATIONAL SCHEMA DESCRIPTION AND MANIPULATION FACILITY

Retrieval/
Initial Tuple Tuple Tuple schema
Relation Definition loading addition deletion update display
SYS 01 DDL[r] DML]1] DML[r] DML[r] DML]r] QFL[r]
SYS 02 DDL[r] Not DDL[a] DML][r] Not QFL([r]
required DML[a] permitted
QFL[a]
SYS 03 DDL[r] DML]r] DML]r] DML]r] DML[r] QFL][r]
SYS 04 DDS DDL]a] DDL[a] DDL[a] DDL]a] QFL[r]
Software (all users)
SYS 05 DDL]r] DDL[a] DDL[a] DDL[a] DDL][a] QFL[r]
SYS 06 DDL][r] DDL][a] DDL[a] DDL[a] DDL][a] Not
permitted
SYS 07 DDL[r] Not DDL][a] DDL][a] DDL][a] QFL[r]
required DML]r] DML]r] DML|r]
SYS 08 DDL[r] Not DML][a] DDL][a] DDL][a] Not
required QFL[a] DML[a] DML[a] permitted
QFL(a]
SYS 09 DDL][r] DML]r] DML]r] DML][r] DML[r] QFL[r]
DDL[a]
SYS 10 DDL[r] DMLJr] DML]r] DML[r] DML][r] QFL[r]
DDL[a]
USER DDL][r] DML][r] DML]r] DML]r] DML][r] QFL|[r]
DATABASE (all users) (all users) (all users) (all users) (all users) (all users)
RELATION

Notation. DDL[r], DML[r], QFL[r], appropriate sublanguage statement used for the indicated relation; DDL[a], DML[a], QFL[a],

appropriate sublanguage statement used for any database relation.

(b) SYS 04 schema is software-embedded ; however, its
definition must also be included in SYS 04, as SYS 04 is
the primary system structure for the entire database
schema.

(c) SYS 01, SYS03, SYS09 and SYS 10 must be
loaded and updated by DBA. The system is designed such
that DBA can use DDS/DML statements (LOAD,
ADD, DELETE and UPDATE) for this purpose.

(d) SYS 02, SYS 04, SYS 05, SYS 06, SYS 07 and
SYS 08 are automatically loaded and updated by the
DDS/DMBS software as DDS data language programs
are being processed. Table 3 details this requirement for
all DDL operations.

In addition to these requirements, the following
assumptions are needed in order to simplify or rationalise
the design.

(a) The following operations on DDS system control
structures are categorically prohibited:

- DDS/DDL operation: DEFINE RELATIONS/
USING, REDEFINE RELATION, REDEFINE
ATTRIBUTE, PERMANENT.

— DDS/DML operations: COPY, COMBINE, SORT,
INVERT.

(b) The following operations on certain DDS system

control struuctures are prohibited:

- LOAD, DELETE, ADD and UPDATE for SYS 04,
SYS 05, SYS 06 and SYS 08.

— LOAD for SYS 02 and SYS 07.

- Retrieval and display of tuples from SYS 06 and
SYS 08.

(¢) Thefollowing DDS/DDL operations are permitted
for all DDS system control structures: DEFINE
RELATION, DEFINE ATTRIBUTE and SIMILAR.

(d) Retrieval from SYS 04 using DDS/QFL is

permitted to all authorised database users. All other
permissible operations are intended for DBA.

Table 4 summarises the above requirements and
assumptions and for each system control structure and
database relation indicates the permissible operations. It
also displays the DDS operations applied to an arbitrary
relation which results in loading or updating the contents
of the DDS system control structures.

5. SYSTEM GENERATION: DEFINING DDS
USING DDS/DDL

Clearly, the third assumption cited above implies that,
while generating the system, following a bootstrap
routine, it is possible to make use of a subset of the
proposed schema description language. This is a useful
and interesting design characteristic. It saves DBA the
time and the effort to write a special-purpose software
package whose main function is to define schema for all
system control structures and to load those which are
required to act as read-only files (i.e. SYS 01, SYS 03,
SYS 09 and SYS 10).

Schema description for a new relation requires
DEFINE RELATION and DEFINE ATTRIBUTE
blocks in a DDS/DDL program. An examination of
Table 3 (first and third rows) reveals that it is necessary
to have schema descriptions for SYS 01, SYS 02, SYS 03,
SYS 05 and SYS 06 existing in SYS 04, and SYS 01,
SYS 03 and SYS 06 at least partially loaded, before these
language constructs can be used for an arbitrary relation.
In other words, the ‘starter’ (or the bootstrap routine) for
this recursive system characteristic has to handle
definition and manipulation operations for the first six
system control structures. Once this is accomplished, all

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 175

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

Y. UCKAN

other system control structures and database relations
can be defined and loaded directly through DDS/DDL
and DDS /DML programs, respectively.

A bootstrap routine can be easily written and included
in the DDS/DBMS software. However, as this routine
will be used only once during system generation, it must
be kept as simple and concise as possible. The bootstrap
routine is considerably simplified if the following
assumptions are made.

(a) User authorization is bypassed in the bootstrap
routine.

(b) No error diagnostics will be produced during its
execution. To ensure that the SYS 03 content is not
needed, the first four DDL programs of the system
generation sequence must be ‘canned’ DDS/DDL
programs containing no errors.

(¢) A log entry will not be produced for the first
program of the system-generation sequence.

Under these assumptions the bootstrap routine has to
perform these functions.

(a) Read schema descriptions for SYS 01-SYS 06
expressed in terms of DEFINE RELATION and
DEFINE ATTRIBUTE blocks in the first program of the
system-generation sequence.

(b) Generate SYS 04 tuples for SYS 01-SYS 06 and
write them on to SYS 04.

(¢) Generate SYS 05 tuples for the SYS 04 content and
write them on to SYS 05, using its schema from SYS 04.

(d) Generate SYS 06 tuples for the SYS 04 content
and write them on to SYS 06. SYS 06 schema is already
in SYS 04 and can be used for this step.

(e) Generate a single fixed-content SYS 01 tuple
(00001, DBA, 1) and using SYS 01 schema available in
SYS 04, write this tuple on to SYS 01.

The bootstrap routine has been incorporated into the
DDS/DBMS software. The DDS system-generation
sequence consisting of six DDS programs is based on this
routine. The system-generation sequence is shown in
Appendix B. Note that it also includes some DDS/DML
runs of LOAD and DELETE type. LOAD and DELETE
operations on the DDS system control structures require
only a subset of the schema needed by DEFINE
RELATION and DEFINE ATTRIBUTE blocks.!?
Therefore they can be legitimately requested after the first
program of the generation sequence, as by then the
bootstrap routine will have generated the required
schema.

Steps B.1 and B.5 of Appendix B are DDS/DDL
programs with domain specifications for all attributes in

REFERENCES

1. E. F. Codd, A relational model of data for large shared data
banks. Communications of ACM 13 (6), 377-387 (1970).

2. E.F.Codd, A data base sublanguage founded on the
relational calculus. Proceedings of ACM SIGFIDET
Workshop on Data Description, Access, and Control, 35-68
(1971).

3. E.F. Codd, Relational completeness of data base sub-
languages, Courant Computer Science Symposia, 6: Data
Base Systems. Prentice-Hall, Englewood Cliffs, New Jersey
(1972).

4. J. B. Rothnie, Jr, An approach to implementing a relational
data management system. Proceedings of ACM SIGMOD
Workshop on Data Description, Access, and Control (1974).

5. G. D. Held,M. R. Stonebrakerand E. Wong, INGRES - a

the system control structures. It should be noted that
some of these domain specifications are the origins for
certain rules which in turn define DDS/DBMS. For
example, the domain specification for the attribute
‘relation-name’ of SYS 04, SYS 05, SYS 06 and SYS 07,
relation-name ALPHANUM (10), causes the following
rule to emerge:

RULE: A relation-name in DDS is a character string

of length 1-10.

There are quite a few such system rules which take their
origin not from the proposed design, but from the utilised
system generation sequence and the bootstrap routine
incorporated into the software. It is DBA’s responsibility
to decide upon the domain specifications for the system
control structures and keep the users informed about the
consequent system rules.

6. SUMMARY

This paper has presented a general-purpose schema
definition and manipulation facility for a relational
database environment, consisting of a data definition
language, DDS/DDL, and an accompanying database
management system, DDS/DBMS. It is designed
exclusively for the database administrator, and its
capabilities comprehensively cover all requirements of
DBA. DDS/DDL is one of the three sublanguages in the
proposed data language, which also includes a database
manipulation sublanguage and a query formulation
sublanguage.

DDS/DDL is a block-structured, user-friendly and
English-like language with linear syntax. It produces
easy-to-read, non-procedural data definition programs to
be accepted, compiled and processed by DDS/DBMS.
DDS/DDL language constructs can be used for any
database relation, including ten basic DDS system
control structures which are part of DDS/DBMS and are
designed as relations themselves. Therefore, it is possible
to generate DDS/DBMS using its own data definition
sublanguage.

The proposed schema definition facility has an
implementation in which PL/1 is the implementation
language. An extended and improved version of the
design is currently being implemented in FORTRAN. In
this implementation all database relations are organised
using FORTRAN’s relative (direct) file organization
technique, together with index tables to permit keyed
retrieval from relations.

relational data base system. Proceedings of the National
Computer Conference 44, 409-416 (1975).

6. R. C. Goldstein and A.J. Strand, The MacAIMS data
management system. Proceedings of ACM SIGFIDET
Workshop on Data Description and Access (1970).

7. M. G. Notley, The Peterlee IS/1 System. IBM (UK)
Scientific Center Report UKSC-0018 (1972).

8. R.F.Boyce et al., Specifying queries as relational
expressions: the Square data sublanguage. Communications
of ACM 18 (11), 621-628 (1975).

9. D. D. Chamberlin and R. F. Boyce, Sequel: a structured
English query language. Proceedings of ACM SIGMOD
Workshop in Data Description, Access, and Control (1974).

10. M. M. Ashtrahan et al., System R: a relational approach

176 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

A RELATIONAL SCHEMA DESCRIPTION AND MANIPULATION FACILITY

to data base management. ACM Transactions on Data Base
Systems 1 (2), 97-137 (1976).

M. M. Zloof, Query by example. Proceedings of the
National Computer Conference 44 (1975).

Y. Uckan, Design of a Relational Data Language and A
Data Base Management System. Technical Report, Depart-
ment of Computer Engineering, Middle East Technical
University, Ankara (1980).

11.

12.

13. Y. Uckan, Design of a relational data base system,
Proceedings of the Fourteenth Annual Pittsburgh Conference
on Modeling and Simulation 14 (3), 959-964 (1983).

14. Y. Uckan and W. D. Haseman, An optimal access path
handling strategy in a data base environment (working

paper).

APPENDIX A: DDS DATA DEFINITION SUBLANGUAGE SYNTAX

In the following syntax definitions, the CBL-notation and its conventions are used.
A.l. define-relation-block:: = DEFINE RELATION: relation-name-1

{ ;TUPLE STRUCTURE: attribute-name-list-1

USING relation-name-2 AND relation-name-3[;TUPLE STRUCTURE: attribute-name-list-l]}

[;KEY: attribute-name-list-2]
[;RELATION: relation-name-4]
{ :TUPLE STRUCTURE: attribute-name-list-3

USING relation-name-5 AND relation-name-6[;TUPLE STRUCTURE: attribute-name-list-3}

[,KEY: attribute-name-list-4]]... END.
A.2. define-attribute-block:: = DEFINE ATTRIBUTE:

ALPHANU
NUMERIC
ALPHANU

attribute-name-1 {

[;attnbute-name-Z{ NUMERIC

(field-length) [attribute-security-code-1]

M} (field-length-2) [attribute-security-code-2]]... END.

A.3. redefine-relation-block:: = REDEFINE RELATION: relation-name-1

DELETED
AS

relation-name-2 [;TUPLE STRUCTURE: attribute-name-list-1] [;KEY: attribute-name-list-2]
[relation-name-2] ;TUPLE STRUCTURE: attribute-name-list-1[;KEY: attribute-name-list-2]

[relation-name-2] [; TUPLE STRUCTURE: attribute-name-list-1];KEY: attribute-name-list-2

[;RELATION: relation-name-3
DELETED

AS

relation-name-4 [;TUPLE STRUCTURE: attribute-name-list-3] [;KEY: attribute-name-list-4]]
[relation-name-4];TUPLE STRUCTURE: attribute-name-list-3[;KEY: attribute-name-list-4]

. END.

[relation-name-4] [; TUPLE STRUCTURE: attribute-name-list-3];KEY: attribute-name-list-4

A.4. redefine-attribute-block:: = REDEFINE ATTRIBUTE:
attribute-name-1 [OF RELATION relation-name-1] 4S

ALPHANU
NUMERIC

ALPHANU
NUMERIC

ALPHANU

NUMERIC
ALPAHNU

[attribute-name-2] [{ NUMERIC
[;attribute-name-3 [OF RELATION relation-name-2] 4AS

ALPHANU
NUMERIC
ALPHANU
NUMERIC
ALPHANU
NUMERIC
JALPHANU

[attribute-name-4] [{ NUMERIC

A.5. similar-specifications:: = RELATIONS relation-name-list

(attribute-name-2 [{
[attribute-name-2] {

[attribute-name-2] [{

attribute-name-4 [{
[attribute-name-4] {

[attribute-name-4] [{

{AIIA:E} SIMILAR TO RELATION relation-name.
A.6. permanent-specification:: = RELATIONS relation-name-list

IS
MANENT.
{ AR E} PER

A.7. relation-name-list: = relation-name-1[,relation-name-2]. ..
A.8. attribute-name-list:: = attribute-name-1[,attribute-name-2]. ..
A.9. field-length:: = integer

A.10. attribute-security-code:: = integer

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

] [(field-length-1)] [attribute-security-code-1]
[(field-length-1)] [attribute-security-code-1]

] (field-length-1) [attribute-security-code-1]

] [(field-length-1)] attribute-security-code-1

] [(field-length-2)] [attribute-security-code-2] 1
[(field-length-2)] [attribute-security-code-2]
] (field-length-2) [attribute-security-code-2]

] [(field-length-2)] attribute-security-code-2)

]...END.

177

cpy 28

~ ¥20z Iidy 0} uo 1senb Aq | GEYE/0. L/2/8Z/a191Me/|UlWod/Wod dnoolwapede//:sd)y Wwolj papeojumoq

Y. UCKAN

APPENDIX B: DDS SYSTEM GENERATION CONTENT OF RELATION S 1:
SEQUENCE 00002, JOHNSON, 1;
B.1. Define relations and all attributes of relations ~
SYS 01-SYS 06. END.
BEGIN: LOAD RELATION S1 TO SYS 01.
USER-ID = 00000; USER-NAME = SYSTEM. END.
DEFINE RELATION: SYS 01; B.3. Delete 00001, DBA from SYS 01.
TUPLE STRUCTURE: user-id, user-name, BEGIN:
authorisation-code; USER-ID = 00002, USER-NAME = JOHNSON.
RELATION: SYS 02; DELETE TUPLE WITH KEY 00001 IN RELATION
TUPLE STRUCTURE: user-id, run-date, SYS 01.
run-time, statement-keyword, run-result, relation- END.
used-1, relation-used-2, relation-used-3; B.4. Load SYS 03.
KEY : user-id, run-date, run-time; BEGIN:
......... USER-ID = 00002, USER-NAME = JOHNSON.
END. RELATION S3 IS SIMILAR TO SYS 03.
DEFINE ATTRIBUTE: CONTENT OF RELATION S3:

user-id NUMERIC () 1; e ;
attribute-name ALPHANUM (20); c.eeeeeen

relation-name ALPHANUM (10); END.
......... LOAD RELATION S3 to SYS 03.
END. END.
END. B.5. Define SYS 07-SYS 10. (Similar to step 1, except
B.2. Load SYS 01. USER-ID and USER-NAME must correspond to an
BEGIN: authorised user which exists in SYS 01 due to step 2.)
USER-ID = 00001; USER-NAME = DBA. B.6. Load SYS 09 and SYS 10. (Similar to step 4.)

RELATION S1 IS SIMILAR TO SYS 01.

178 THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985

¥20Z I4dy 01 uo 1senb Aq ¥1LGE1€/0. L/2/82/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

Mathematical Models of File Growth

C.H.C.LEUNG anND K. WOLFENDEN

Department of Computer Science, University College London, Gower Street, London WCIE 6BT

The number of records in a file system is often recognised as a key determinant of efficiency. For example, the
performance of sequential processing is O(N(t)) and that of tree search is O(log N(1)), where N(t) is the number of
records in the file at time t. In this paper, the growth behaviour of files is studied in terms of quite general record
insertion and deletion characteristics, and the performance evolution of some of the common systems is analysed. The
growth data of an actual system are compared with the model results and reasonable agreement is observed.

1. INTRODUCTION

The efficiency of a file system is often related to its size.
As the size of a file grows, its efficiency deteriorates, since
the amount of time required to locate an item in a larger
file tends to be longer. As one of the chief requirements
of file systems is to enable record insertion and deletion
to be carried out in a simple and routine manner, the
variation in file efficiency over time is therefore to be
expected and such variation is especially pronounced for
volatile systems. For many of the common access
techniques, their performance is directly related to the
number of records present. For example, in sequential
processing, the average number of accesses incurred in
locating a given record varies approximately’ as N/2,
where N is the number of records in the file. In the case
of random processing, the average access distance
separating two randomly located records varies approxi-
mately* as N/3. In these cases, each record is responsible
for a certain amount of contribution to the overall
performance penalty — e.g. in sequential processing, this
is one-half of an access. Thus the record insertion and
deletion mechanism, which governs the file size, has a
direct bearing on time-dependent file behaviour. Now
insertions and deletions are random events occurring in
time and often follow definite statistical patterns. They
are dependent on factors such as the nature of the file
system, its usage pattern, and the business activities to
which the file relates. For instance, in order processing
applications, the insertion and deletion of order records —
which is related to order placement and delivery — depend
on the seasonality of the products, the buoyancy of the
market, the availability of stock, and the speed with which
the orders are processed. These underlying mechanisms
will consequently shape the overall statistical structure to
which the insertion and deletion processes conform. The
growth pattern of a file system is therefore not unlike that
of a software system? in that it is related to the behaviour
of the underlying application the characteristics of which
are governed by the wider laws of, for example, business
and economic systems.

Growth and deterioration of file systems have been
previously considered in Refs. 1, 3-5, 8-11, 13, 15 and
17-19. In Refs. 15, 17 and 19 abstract deterioration
patterns are adopted as basic assumptions without
explicit reference to the underlying record insertion and
deletion patterns for the purpose of formulating suitable
reorganisation procedures. In Refs. 1, 3, 4, 8-11, 13 and
18 the impact of record insertions and deletions on
performance deterioration is explicitly taken into

account, and in these studies the number of records
present in the system is generally recognised to be a key o
determinant of efficiency. They are focused either on the
analysis of particular file structures!-3.4.8.10.13.18 or the
determination of optimal reorganisation strategy,! % 1!
and the patterns of record insertion and deletion are
invoked solely for the purpose of supporting an overall §
evaluation. The characteristics of record insertions and 3
deletions do not form the focus of these studies and they @ 2
take on only a supporting role there; accordingly m
assumptions concerning them, although not always 2 5
unreasonable, are sometimes restrictive and are mostly 3 3
adopted for tractablhty or convenience. In Refs. 1 and 3 &
insertions are given in terms of the actual number of §
records, and the statistical pattern of insertion over time 3
is not considered. In Refs. 13 and 18, the insertion pattern =
over time is assumed to follow a homogeneous Poisson g
process and the deletion process for individual records is =
likewise taken to be Poisson with the same rate. Ref. 8 =
adopts a slightly more general deletion pattern by &
allowing the deletion rate to be different from the in-
sertion rate, both of which remain to be homogeneous N
Poisson processes. Ref. 4 relaxes the Poisson deletion \'
assumption by allowing the lifetime of individual records & w
to be generally distributed but retaining the homogeneous &
Poisson insertion assumptlon In Refs 9 and 11, the ®
insertion of records is assumed to follow a renewal<
process in which the inter-insertion interval of records 1sLg
assumed to be independent, identically distributed; the 2
statistical distribution of record lifetime is not considered >
and deletion is only permitted at file reorganisation. In o
Ref. 10, the insertion process is taken to be ag
non-homogeneous Poisson process, but again the ;'
deletion mechanism is not considered. A partlcularlym
noteworthy study which specifically aims to model the
time-dependent performance of files is Ref. 5, where
stochastic diffusion models are employed to approximate
growth behaviour. However, the dynamic pattern of
record insertion and deletion over time there is not
explicity represented and the study primarily focuses on
file degradation after a given number of transactions have
been entered.

The need for studying the impact of dynamic record
insertions and deletions on file evolution has been pointed
outin Ref. 1, but as yet there is no systematic study which
specifically analyses the growth behaviour of general file
systems over time. It is the aim of the present paper to
provide such a study. The model presented here is quite
general and includes all the above characteristics as

0.} papeojumoq

12182/

THE COMPUTER JOURNAL, VOL. 28, NO. 2, 1985 179

12-2

