An efficient new way to represent multi-dimensional data
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A new method for graphically representing mult-dimensional points in two dimensions is presented. The representation is
moderately robust in tolerating a certain amount of noise before being obscured. The method is particularly suitable for
presenting the results from cluster analysis based on a minimum spanning tree. Information not readily perceived in
conventional arrangements is made apparent. The method is non-iterative.

1. INTRODUCTION

In an experimental situation one is often confronted with
multi-dimensional data, measurements of a system taken
at various times for example. The coordinates of a point
represent the different measurements taken at one time
in this case. Certain patterns present in the measurements
would then show up in the form of clusters of points in
p-space (where p is the dimensionality of the data).

Innumerable calculations can be performed with
multi-dimensionaldata. SPSS, BMDP,2and CLUSTAN?
are a few of the better-known statistical program
packages which include many such routines. Hartigan?
and Gnanadesikan® provide texts of suitable methods.
Refs 6-8 provide examples of lesser-known (and
lesser-used) methods.

Much less numerous are methods which display such
patterns. These include simple projections from multi-
dimensional space to a two-dimensional space formed by
pairs of existing coordinates, discriminant coordinates
(canonical variates), or, most commonly, the largest
eigenvectors. Pairs of other combinations of coordinates
could also be used. One must bear in mind, however, that
increasing the complexity of the coordinates chosen,
while improving the image obtained, renders that image’s
interpretation in terms of the original coordinates more
difficult. Non-linear mapping?® is a good example. This
iterative process involves attempting to plot the multi-
dimensional points in two dimensions while preserving as
much as possible the distance relationships between
points. The final result will often show what structure is
present in the data, but not how to quantify it. Andrews
presents an interesting method based on representing a
multi-dimensional point by a two-dimensional curve.!® A
collection of points in p-space (p > 2) is plotted as a
collection of curves in 2-space. A useful projection vector
can often be graphically determined from the results. The
method is useful for relatively small collections of points
of up to 4-5 dimensions, the graph usually becoming too
cluttered when higher dimensions are present.

If cluster analysis has been performed, two further
methods are commonly used to output information from
the analysis. (Everitt!! provides a good summary of the
techniques of cluster analysis.) The first consists in
furnishing numbers characterising each cluster’s mean,
dispersion, eigenvectors, distance from other clusters, etc.
The other widely used method of representing the result
of a cluster analysis is the dendrogram. This is a diagram
showing the relationship (usually a distance) between the
different points as these points are accumulated into a
cluster, or discarded from a cluster, depending on

whether the clustering was agglomerative or divisive. The
dendrogram allows the observer to visualise the hierarchy
of formation of clusters.

The method presented in section 2 does not replace
existing methods of displaying data, but adds to them by
providing a method which allows the user to obtain some
further information not apparent in the conventional
representations. To demonstrate the pitfalls of depending
only on information from eigenvectors, for example,
consider Fig. 1 as an analogy of p-space in two

Figure 1.

dimensions. Projection on an original coordinate (x or y)
(whether standardised or not), or on the larger
eigenvector (a) is of no help in showing the real situation.
In this case, projection on to the smaller eigenvector (b)
is useful. But a useful axis for projection is not always so
easily found; it need not necessarily be an eigenvector, nor
indeed exist at all. A dendrogram would indicate the
presence of two distinct clusters in the case shown in
Fig. 1, but the dendrogram will not provide any informa-
tion as to the arrangement in space of the clusters.

2. THE METHOD
2.1 Generalities

All the points present in p-space can be connected by a
‘minimum spanning tree’. Indeed, this can be used as the
basis for a computationally efficient cluster analysis, the
single linkage method. The efficiency derives from the fact
that each of the possible distances between the points is
required only once. (The single-linkage method of cluster
analysis is also the only one to satisfy all the conditions
set by Jardine & Sibson.)'? The minimum spanning tree
allows variouscharacteristic parameters such as ‘ linearity’
or ‘inconsistency’ to be obtained as well as tze usual
projections and dendrogram (see Ref. 13 for example).
The minimum spanning tree has been used to construct
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non-linear projections.!4 Drawing the minimum spanning
tree on conventional projections provides the observer
with an indication of how much overlap is present in the
projection. The indication is of most value when it is seen
that no overlap is present. _

(A tree is a connected graph with no closed paths. A
spanning tree is a tree containing every node present. A
minimum spanning tree (MST) is a spanning tree for
which the sum of the weights of the edges (= distance
between the two nodes concerned in our case) is
minimum. The minimum spanning tree is unique if no
edge of equal weight is present. It will usually still be
unique even if equal edges are present as long as these
edges do not have a common node.)

Fig. 2a shows a minimum spanning tree over the points
indicated, where the dashed line represents a link which
would be cut by a clustering algorithm.

The method presented here uses the ‘trunk’ of the
minimum spanning tree as one of the ‘coordinates’ of a
projection of p-space to 2-space, and one of the original
coordinates as the other coordinate, producing a plot
relating an original coordinate to a position ‘along the
tree’. The inverted commas are used because the
(minimum spanning) tree does not usually consist of only
one branch, namely the ‘trunk’. The problem is then to
cut the branches and present them in an order which will
be of visual use to the observer. It is believed that by
finding the most populous branch, using it as the ‘trunk’,
and inserting the remaining branches at their branch
points with the ‘trunk’, a reasonable ‘tree coordinate’ is
produced. One can then proceed similarly with each of
the original coordinates in turn, using each time the same
‘tree coordinate’. If these two-dimensional representa-
tions are now placed side by side (with the ‘tree’
coordinates parallel to each other), an overall view of the
p-space is obtained. Fig. 2b shows the result of this
process when applied to the points represented in Fig. 2a.

Considering Fig. 2b, one sees that the cluster
represented by the black points is of a ‘chain’ type,
covering all values of X and high values of Y, whereas the

(@)

cluster of white points can be seen to be at middle values
of X and low values of Y and compact in both directions
Xand Y.

2.2 Details

The distance measure used in the examples presented here
is the euclidean metric. Another distance measure could
be chosen.

The minimum spanning tree is computed according to
Prim’s algorithm.!s

(a) Begin with an arbitrary point.

(b) Connect the point from (a) to its nearest
neighbour. The tree now contains two points.

(c) Connect to the tree the point which is the nearest
of the nearest neighbours of the points of the tree but
which is not yet in the tree.

(d) Repeat step (c) until all points have been connected
to the tree.

The advantage of this algorithm is that it requires each
of the n(n—1)/2 distances only once (where n is the
number of points). As there will more often than not be
many more points thandimensions, it willbeadvantageous
to keep the n by p matrix of points rather than half of
the n by n matrix of distances (where p is the number of
dimensions).

Clusters are formed, essentially as a by-product, by
severing edges which are larger than the average edge,
starting from the largest edge. The lower limit (the
average edge length) is arbitrary, based on the
assumption that edges smaller than the average should
not be cut. The dashed lines in Fig. 2 show such an edge.
Again, any other clustering method which provides each
point with a cluster number could be chosen.

The ‘trunk’ of the tree is found by searching for the
most populous path (i.e. the longest in number of points,
not in distance) through the tree. Printing is in the order
defined by the above path under the constraint that points
of a same cluster be printed contiguously. Branches
containing other points are inserted just before the point
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of branching with the trunk and in an order similar to the
one defined for the trunk.

On the computer output, each of the original points is
represented by one output line. An output line will
represent only one point. Duplicate points will produce
duplicate output lines. Output lines are printed on one or
more pages of a computer line-printer output which can
then be placed side by side for viewing; this disposition
yields one continuous line for each point. Blank output
lines are inserted between points belonging to different
clusters to facilitate interpretation.

3. SAMPLE RESULTS

Fig. 3a shows the conventional projections of a set of
random points generated along a 3-dimensional spiral.
Fig. 3b shows the same situation when a certain amount
of noise has been added. Note that in 34 all useful
information has apparently been lost through the
projections. Figs. 4a and 4 show the graphical output of
the method described in section 2, for the cases shown in
3a and 3b respectively. The remarkable feature here is
that 45 is easily recognised as representing the same
phenomenom as 44, less information having been lost in
passing from three dimensions to the representation 45
than in the transition to the conventional projections, 3 b.

(@)

The conventional projections of an example of
‘sausage’ clusters are shown in Fig. 5. Fig. 6 shows the
output using the method developed here. The two main
clusters are clearly visible on the strips corresponding to
the variables. The common element between the two
clusters is seen to be the increasing (or decreasing) value
of the first variable. The strips also show the difference
between the two clusters to be the shift to lower values
of the second and third variables in the second cluster as
compared to the first one. A projection using eigenvectors
would show both of the above conclusions only if one
vector is such that it explains the largest intra-cluster
variance, and the other such that it explains the largest
inter-cluster variance.

As a final example, the data from Fisher were chosen.18
This set of measurements of four variables on each of 150
flowers has become something of a de facto standard _
benchmark in the multidimensional literature. It is
considered that Iris setosa is easily distinguished from the 2
other two species, Iris versicolor and Iris virginica; but 3
that these last two are not easily shown to be&
distinguishable. Fig. 7 shows the output concerning this
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data set. One will notice on Fig. 7 the presence of three, =
perhaps four main clusters (clustering via a more subtle 5

procedure depending on edge inconsistencies was used in S

this case).!? Petal lengths and widths can easily be seen to
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characterise three clusters. (It may be useful to view the
graph at a low angle in this respect.) One can further see
that the clusters are relatively compact in the direction of
petal length, slightly less so in the directions of petal width
and sepal length, and definitely more diffuse in the
direction of sepal width. Iris setosa is seen to be the most
easily distinguishable species.

The points numbered 1-50 correspond to Iris setosa.
All have been printed contiguously. Points 51-100
correspond to Iris versicolor, and points 101-150 to Iris
virginica. Five cases of Iris versicolor are found in the
virginica cluster.

Figs. 8 and 9 show what some other representations
produce with the iris data. Fig. 8 is the familiar
principal-components picture. The Iris setosa are indeed
seen quite separate from the rest, but without some study
of the eigenvector composition the reason for this
separation is not apparent. The two other species do not
appear to be separable.

Fig. 9 was produced through a non-linear mapping
technique.® Here one clearly separable and two touching

188

clusters are visible. (Remember though that one does not
necessarily have the information shown by representing
various species with different symbols.) The visual
impression corresponds to that obtained with the method
described in section 2, but, the projection being non-
linear, interpretation in terms of sepal or petal length or
width is hindered.

4. TECHNICAL DETAILS

The computer program used to produce the examples
shown is available from the author. The program consists
of approximately 260 lines of ANSI-conforming
FORTRAN 77 written with an emphasis on efficient
memory utilisation as well as portability, and 150
comment lines. A versionin BASIC for a Hewlett-Packard
9831A also exists.

Execution time is mainly constrained by the computa-
tion of the minimum spanning tree, in particular the
calculation of the distance between two points. The
execution time will depend approximately on the square
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of the number of points times the number of dimensions.
The timings for Fisher’s iris data (150 points, 4
dimensions) using the FORTRAN 77 program running
on a CDC Cyber 73 (elementary multiplication
time = 5.7 us) are: 608 ms of CPU time for data input,
1680 ms for minimum spanning tree construction, 447 ms
for clustering, 135 ms for determination of printing order,
803 ms for printing out.

The requirements of data storage within the program
(in a blank COMMON block) are proportional to n
(points) times p+2 (p dimensions).

5. CONCLUSIONS

A method for representing multi-dimensional data has
been described. The results are easily interpreted in terms
of the original coordinates (see Fig. 7). The method will
tolerate a certain amount of noise in the data before the
representation is obscured (see Figs. 3 and 4). The method
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is particularly suitable for presenting the results of a
cluster analysis; indeed, a cluster analysis is provided
almost ‘free’. Ribbon- or sheet-like clusters are acceptable
(see Figs. 3 and 4 again). The emphasis here has been on
the graphical output.

Input to a program is simple: the number of points, the
number of dimensions, the data format and the data
proper. Clusters derived from an external clustering
procedure can easily be provided for. The ‘tree’ order
used is useful even if the strips for each coordinate are
not output, provided that an informative label for each
point takes their place.

The method is computationally efficient: several
hundred points of 10-20 dimensions can be accommo-
dated in a small mini-computer. A line printer is all that
is needed for output.

Remarks of a referee were helpful in clarifying the
presentation of this work.
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