Arca: A Local Network File Server

S. MUIR, D. HUTCHISON AND D. SHEPHERD

Department of Computing, University of Lancaster, Bailrigg, Lancaster LA1 4YR

Distributed systems can be built to a client-server model in which one of the important servers is the file server,
consisting of at least one processor and disk drive, attached to the network with the sole purpose of storing information
on behalf of its clients. In the Department of Computing at Lancaster University we have designed and built a file
server which is connected to both of our networks: an Ethernet-type network (called Strathnet, of local design) and a
Cambridge Ring type network. The Arca File Server is based on work started at Cambridge University. T his paper
describes the background of file servers for local networks and the design and implementation of our system.

1. INTRODUCTION

One of the fastest growing subjects for research in
computing today is that of local area networks (LANs)
and their applications. These differ from wide area
networks in that they are of a limited size, commonly a
maximum span of 1km, and they have both a high data
transmission rate and an inherently low error rate. They
may be connected to other LANs or to wide area
networks by gateways, which are machines devoted to
passing messages between networks.

There are two main types of commercial LAN in
existence: Ethernets! and Cambridge Rings*®. The
original experimental Ethernet? is still in active use at
Xerox PARC?®. The Cambridge Ring is named after
Cambridge University where it was developed and where
there is now a fully operational distributed system
connecting many machines together®.

The advent of LANs has given rise to an increased
interest in loosely-coupled distributed systems. In the
past, each computer had its own printer, disks, terminals
and so on. Terminals were connected to the computer
by direct cables, which meant that users were literally
hardwired into one particular computer. Neighbouring
computers normally had no connection between them
and consequently no way of transferring files from one
toanother. In a LAN-based system, multi-user computers
can be connected together using the LAN to provide file
transfer capabilities. User terminals can be clustered
through terminal concentrators attached to the LAN so
that each terminal can potentially access any computer.
Furthermore, the resources hitherto centralised on one
machine can now be spread over a number of machines
interconnected by the LAN. Some of these machines may
provide a service of some specific kind (servers), and
others use these services (clients). Examples of servers are
printer servers (which spool files and print them), name
servers (for converting the name of a service to its address
on the network), compiler servers (for compiling
programs written in a particular language) and file
servers (to hold files for clients in non-volatile storage).
There may also be several processor servers, which
accommodate the user workload of the system between
them, and terminal concentrators as previously
mentioned.

At Lancaster University we are running two different
networks in paralle]’: a Cambridge Ring, and an
Ethernet-type network called Strathnet. The Arca file
server was designed to provide a centralised file store for
any machine on either network. It is based on the

Cambridge File Server (CFS)® but, unlike that system, it
is not intended to be used for swapping programs in or
out of a host’s main store; therefore, it does not
implement the CFS fast read/write mechanism.

The Arca file server allows the client to impose any kind
of file structure he desires and supports simple
commands to manipulate files or directories. Unlike the
Cambridge File Server, which runs on an operating
system kernel called TRIPOS, our implementation is
written as a monolithic program running on a bare
machine.

2. LANCASTER ENVIRONMENT

In our department we have a VAX-11/750, a PDP-11/24,
an LSI-11/23, four LSI-11/02’s, two M68000 systems
and a few microcomputers, as illustrated in figure 1. Both
Strathnet and the Ring have a similar set of hosts
attached and, in some cases, hosts have interfaces to both
networks. Strathnet was entirely designed and built by
two of the authors®. Each device is interfaced to Strathnet
by means of a microprocessor-based network access unit
(AU). The VAX-11/750 is used for research and the
PDP-11/24 is for undergraduate work. The LSI-11/23
is for the file server itself and has a Winchester disc
attached. Three of the LSI-11/02’s are used as stand-alone
work stations, the other is used as a print server and the
two M68000 machines are for gateway development
work. The file server can thus be used to store files for
these machines and any others which may be added at
a later date.

The Cambridge Ring, called Polynet, was supplied by
Logica VTS Ltd.'°, but the interfaces to the 6809 and
68000 machines were designed and built by us. The file
server is connected to, and can communicate with, both
networks at once. Requests can, therefore, be sent to it
on either network and the reply will be returned on the
same network from which the request came. The file
server’s Strathnet interface is connected to a DRV11-B,
a general-purpose DMA interface. The original intention
was that, once a block had been transferred into the node
from Strathnet, it would be transferred to the 11/23 using
burst mode DMA. This implementation is not complete
but meantime we are using program-controlled single
cycle DMA (controlled by the microprocessor in the
Strathnet AU).

There are two performance monitors, one for each
network. These are being used in a programme of
comparison experiments between Cambridge Ring and

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 243

16-2

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

S. MUIR, D. HUTCHISON AND D. SHEPHERD

UNIX Multi-User Systems

\G

Winchester disc

File server
11/750 11/24 11/23
Terminator
Strathnet
/ EIEJ |
B—
> p G -
~
68000 Cambridge ring
Gateway
L 68000 | X.25
Ring monitor j PSE
station Gateway
6809 \
Performance EE
monitors
L
6800 Ring node \ AU 6800 [VDU’
-AU Terminal
Wh/ ~ Q_ concentrators
‘e//ig

Microprocessor-based
access units

) /

l ll/O’ZJ

[11/02 |

[1o |

Personal

T |
VDU \ / VDU

workstations

VAL
VDU’s

Fig 1. Dual network configuration

Ethernet-type local networks’, to capture network traffic
and produce statistical performance information.

3. PREVIOUS WORK ON FILE SERVERS

A review of the current literature showed that the only
two places with file servers that had been running
successfully for any length of time were Xerox PARC in
the USA and the Cambridge University Computer
Laboratory. At Xerox PARC there were two file servers
in existence, WFS!! and XDFS!2, and at Cambridge
there was CFS®. Other work on file servers was in
progress, particularly at MIT on the SWALLOW
system, but none of the work was sufficiently advanced
to form a basis for our file server implementation. We,
therefore, decided to examine WFS, XDFS and CFS in
some detail.

We were soon able to eliminate WFS from our
considerations. It is a simple system which does not
support atomic transactions on files, a feature we
considered essential in a distributed environment.
Furthermore, we felt that its structure does not lend itself

to further development such as the addition of garbage
collection and distribution across more than one
machine.

XDFS and CFS were found to contain most of the
facilities we required (see'* for a good comparison of
these two file servers). For instance, they both support
concurrent random access to files and an atomic
transaction mechanism covering modification of files.
However, they had been designed with different goals:
the XDFS was intended to support database research
whereas an important constraint on CFS was that it
should be suitable for use as the CAP computer’s backing
store!®, Thus XDFS and CFS have slightly different
characteristics. CFS is biased towards the requirements
of operating systems: rapid access to files and high
transfer rates. It has a minimal set of file operations and
concentrates its full bandwidth on one particular client
for the duration of one read or write. The XDFS, by
contrast, can cover updates to a number of files so that
the atomicity of a higher level database operation can
be maintained. It provides a directory for file names, and
access control.

244 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

ARCA: A LOCAL NETWORK FILE SERVER

There is also a considerable difference in the size of
machine required to run the two systems. XDFS runs on
an Alto Computer using 164K 16-bit words, 64K of
which is data and 100K code. CFS runs on a Computer
Automation LSI 4/30 with 64K 16-bit words of memory,
50K words of code and 14K for data and disk buffering.

We decided that the CFS approach was more suitable
for our needs for two reasons:

(1) We required a simple file server with high transaction
speeds to support distributed operating systems
research.

(2) Our system had to fit into a 32K 16-bit word machine
and we felt that a system along the lines of CFS could
fit into the machine.

4. THE ARCA FILE SERVER

The Arca file server is a stand alone system which
provides a file store to be shared by other systems,
henceforth called clients, on the network. It allows clients
to create, destroy, read and write files from a distance.
It is important when designing a file server to strike the
correct balance between what the file server is expected
to do for the clients and what they must do themselves.
In the case of the Arca file server we had three main aims:

(1) Todo as much for the client as possible without either
imposing any kind of restriction on its clients
regarding file structure or taking on time consuming
operations that will hold up other clients.

(2) To allow each client to impose his structure on files
and to let several different file structures co-exist on
the one filing system.

(3) The file server should not lose data when a crash
occurs and should be able to recover automatically.

In order to satisfy the third requirement the file server
has to ensure that certain types of file will be updated
atomically, that is, if either the hardware or software fails
during a transaction, the file server will return the file to
either its final or original state depending on whether the
file was closed or not!® (see section 7). Because of the
overheads involved in the atomic update sequence, it is
adopted for a file only if the client explicitly requests it
when the file is created. This type of file is called ‘ special’.
Although the client could be allowed to change the
‘special’ attribute of an object, we decided it was not a
useful thing to do because objects which are easily
re-creatable (ie compiler listings) will always be
re-creatable and vice-versa for non re-creatable objects
(ie program sources).

As indicated in section 3 we decided to base our file
server on CFS, which has the following desirable
properties:

— highspeed transfers torandom access word-addressed
files.

— the ability to perform atomic updates to files.

— a capability-like access control mechanism.

— automatic reclamation of unused storage.

— attention to the integrity of stored data.

In the next section the underlying file structure of our
implementation, based strongly on that of CFS, is
explained in detail.

5. FILE SYSTEM STRUCTURE

Each object is uniquely identified by a PUID (Permanent
Unique IDentifier) which is created with the object and
is never re-used or destroyed. A UID has the format
shown in figure 2.

bits
1111 12 16 32

absolute disk or
store address

random
bit-pattern

0 logical
disk no.

|
If TUID then O = read interlock
1 = read/write interlock
else 0

0=PUID, 1 = TUID
0 = file, 1 = index

Fig 2. Format of a uid

When an object is opened, (ie disk held information about
the file is entered into a table), the file server returns a
TUID (Temporary Unique IDentifier) synonymous with
its PUID. This TUID is valid only until the object is
closed and is never re-used.

The random bit pattern is the only kind of protection
the file server uses. It makes use of the fact that 32 random
bits will be very difficult to guess and will take too long
to try out all combinations.

Two types of object exist on the File Server: files and
indices. A file is an array of bytes, whereas an index is
an array of PUIDs, each representing a file or index.
Some (or all) entries in an index may be the null PUID
(all zeroes). Note that the client is not allowed to write
explicitly to an index. Any index may contain a PUID for
any object provided only that the object is in existence.
Thus, the structure is that of an undirected graph
(figure 3). One index, however, is distinguished from the
rest — that of the root-index. This index is important
because any object not reachable by any chain of indices
starting from the root is eligible for deletion. No further
structure is imposed on the file store other than that
mentioned above. Thus, although creation of objects is
controlled by the clients, their deletion is controlled by
the file server.

Root
index

File

File

Fig 3. File store graph structure

So far we have described the client’s view of the filing
system. Its internal structure is now explained. Each
object (file or index) has certain attributes, namely
whether it is a file or index, special or non-special (indices
are always special), its PUID, its ‘uninitialised’ value and
its logical size. The ‘uninitialised’ value is the value
returned for any byte which has never been written, and

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 245

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

S. MUIR,D. HUTCHISON AND D. SHEPHERD

is always zero for indices. The logical size determines only
the highest word address which may be written and has
little bearing on the actual physical size. Thus, increasing
an object’s logical size will not change its physical size
(except if a change in the object’s ‘depth’ is caused — see
later), but a reduction of its logical size may cause some
physical blocks to be removed from that object.
Reduction of the logical size of an index may also cause
references to PUIDs in that index to be lost. Each object
also has a ‘high water mark’ indicating the highest
address ever written. The logical file size and the high
water mark are the only dynamic attributes of an object.

Transparent to the client is the object’s ‘depth’ which
can be one, two or three depending on its logical size.
The following gives the object’s depth, D, in terms of the
logical file size (in bytes), L:

L<54=D-=1
504 < L <252*512=D =2
252*512 < L < 252*256*512 =D =3

Note that, for an index, L is always a multiple of eight
(because a PUID is eight bytes), but the client sees its
logical size only in terms of the number of entries it holds.

There are 512 bytes in each disk block. All objects
consist of at least one block, called the *first block’, which
contains some of the object’s attributes in the first eight
bytes. The meaning of the remaining 504 bytes depends
on the object’s depth. For a depth of one, these bytes
contain the data itself; for a depth of two they contain
252 block addresses, each of which contains 512 bytes of
data; for a depth of three they give the addresses of
indirect blocks, each of which contains 256 block
addresses, each of which in turn contains 512 data bytes.

When an object is created, it always occupies one
physical block regardless of its logical size; if its depth
is greater than one, the remaining 504 bytes of its first
block are null pointers. Further blocks become allocated
as necessary; until then, they are read as the appropriate
number of ‘uninitialised’ bytes.

The last block of each cylinder of the disk is used by
the file server as a ‘cylinder map’. This map contains four
words of status for each block on that cylinder. The
information contained in the cylinder maps and the tree
structure of each object are mutually redundant: thus,
each may be rebuilt from the other. This is the basis of
the file server’s ability to perform atomic updates (see
section 7). If the cylinder map becomes bad, a new disk
will need to be obtained. The information held in the
cylinder map for each block is as follows:

word 1:

1. allocation state (1 = allocated, 0 = de-allocated) —
1 bit

2. intention state (1 = intending to change allocation
state) — 1 bit

3. first (1 = first block of an object) — 1 bit

4. index (1 = index, 0 = file) — 1 bit

5. commit (1 = commit, 0 = don’t commit) — 1 bit

6. levell (1 = this block contains pointers to data
blocks) — 1 bit

7. level2 (1 = this block contains pointers to levell

blocks) — 1 bit
8. (9 bits unused)

246 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

word 2:

sequence number (0..255) of block within its parent
(the block that contains its address) or zero if none

words 3 and 4:

if this is the first block of an object, these words
contain the random part of its PUID, otherwise they
contain the address of its parent block and the
address of the object’s first block.

Finding a free block to extend an existing object is
performed by looking first on the cylinder containing its
“first block’, then examining cylinders in both directions
from this point. It is hoped that this algorithm will
minimise the head movement when accessing an object.

6. COMMUNICATION WITH THE FILE
SERVER

As stated in the introduction, the file server is connected
to two different types of network. The file server access
protocols used on the networks are built above the
CSMA /CD (carrier sense multiple-access with collision
detection) level for Strathnet and mini-packet protocols
for the Ring. At the network control level, the Basic
Block protocol'? is used on both networks so that higher
protocol levels need not know which network is currently
being used. Two access protocols are used by the file
server: the Single-Shot Protocol!®* and the Remote
Procedure Call mechanism?!®.

With the Single-Shot Protocol (SSP), a request is sent
(function + parameters), then the reply is received
(status + results) when the operation is complete.
Examples of functions are: CREATE FILE, DELETE,
OPEN, CLOSE, READ and WRITE. A complete list of
the Arca file server functions is given in the Appendix to
this paper. The format of an SSP request or reply is as
follows:

1. Basic Block header — 16 bits

2. Basic Block destination port (0 is SSP request port)
— 16 bits

SSP request tag — 16 bits

reply port (only meaningful if request) — 16 bits
function (request) or status (reply) — 16 bits

tag — 16 bits

parameters (request) or results (reply) —array of 16-bit
quantities

Basic Block checksum — 16 bits

No s w

®

A port is a known address, represented by a 16-bit
integer, to which requests and replies can be sent. Note
that the two ‘tag’ words are ignored by the file server,
but are copied from the request block to the reply block.
They may be used, for example, to distinguish between
different replies to the client.

The Remote Procedure Call (RPC) is similar, but
guarantees successful communication of at most one
request-reply pair for each one sent, even in the event of
crashes of the host or file server. It relies on the file server
storing a history of the most recent requests and replies
in stable storage?® and, if a request matches one of the
stored requests, the file server will only send the same
reply again without taking any other action.

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

ARCA: A LOCAL NETWORK FILE SERVER

The format of an RPC request or reply is as follows:

1. Basic Block header — 16 bits

2. Basic Block destination port (1 is RPC request port)
— 16 bits

3. identifier — 16 bits

4. node number - 16 bits

5. time — 32 bits

6. serial number — 16 bits

7. node number for reply (request only) — 8 bits

8. port number for reply (request only) — 8 bits

9. function (request) or status (reply) — 16 bits

10. number of parameters (request) or results (reply) — 16

bits

11. parameters (request) or results (reply) — array of 16
bit quantities

12. Basic Block checksum — 16 bits

Note that the fifth and sixth fields together must form a
monotonically increasing function to enable any server
to distinguish between old and new requests. The time’
field is the time as seen by each client and the server
remembers the last value of each of these. The ‘serial
number’ field is used to distinguish between requests sent
in the same time slot and is incremented (by one) for each
request. It is assumed that it is not possible for this serial
number to return to its starting point before the client’s
clock increments.

7. ATOMIC UPDATES

The File Server has a mechanism by which an object can
be updated atomically in that, if an update fails, the
object will be restored to either its original or final state.
A file may be given the property ‘special’ at create time
which causes all updates to the file to be performed
atomically, otherwise this mechanism will be by-passed.
The latter case is useful when a file can be easily re-created
and one wishes to avoid the overheads of atomic updates.
Note that indices are always treated as ‘special’.

As stated in the previous section, the information
pertaining to the consistency of the file store (excluding
the contents of data blocks) is recorded twice: once in
the graph structure of the indices and the tree structure
of each object, and once in the cylinder maps (so called
because there is one per cylinder).

An atomic update to a ‘special’ object of depth two is
as follows:

When an object is opened for writing, a copy is made of
its first block and the new block is marked as a ‘ new first

First + allocated

block’. As the object is written, intending to
allocate/de-allocate block pairs are generated. These
intending to allocate/de-allocate states are used by the
automatic crash recovery program to enable it to
ascertain which blocks should be freed and which blocks
should become part of the object. When the object is
closed, the following steps occur:

1. Set the ‘commit’ bit associated with the object.

2. Copy the ‘new first block’ into the ‘old first block’
and de-allocate the ‘new first block’.

3. Change all ‘intending to allocate’ blocks to ‘allocat-
ed’. Change all ‘intending to de-allocate’ blocks to
‘de-allocated’.

4. Reset the object’s commit bit.

If the file server crashes and restarts, the ‘restore’
program will examine the disk and will either undo or
complete any unfinished atomic transactions. If any
cylinder map is found to be unreadable, all cylinder maps
will be rebuilt by traversing the undirected graph from
the root-index. Otherwise, the commit bit of each object
is examined and the allocation state of each block
involved is changed as follows:

commit = 0:
intending to allocate — de-allocated
intending to de-allocate — allocated

commit = 1:
intending to allocate — allocated
intending to de-allocate — de-allocated

Note that the ‘restore’ program undoes/completes
atomic transactions in the same way as the file server so
that a crash in this program is also recoverable. Note also
that this method assumes that a block which was half
written will be left detectably bad.

Having set the commit bit of the object, no further
cylinder maps are written until the ‘new first block’ has
been copied onto the ‘old first block’. Thus, if the
cylinder maps need to be rebuilt, the view of the object
from its first block will be correct according to what the
commit bit would have been. Therefore, the only ways
the file store could be damaged are due to software errors
or physical damage to the disk.

8. GARBAGE COLLECTION

Garbage collection is performed asynchronously with the
normal operation of the File Server. The garbage
collection algorithm runs at priority zero and is

New first block

L] [] {]
Allocated Intending Intending Allocated Intending Intending
to to to to
deallocate deallocate allocate allocate

Fig 4. Atomic update

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 247

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

S. MUIR, D. HUTCHISON AND D. SHEPHERD

interrupted by the receipt of any network request. This
algorithm is as follows:

1. Mark all objects as ‘not found’.
. Search graph marking objects seen as ‘found’.
3. For each object marked as ‘not found’ do the
following:
(a) mark its first block as ‘intending to delete’
(b) mark the rest of its blocks as ‘intending to
delete’
(c) mark its first block as ‘deleting’
(d) free all its blocks in depth-wise order.

4. Reset the ‘intending to delete’ bits of every block.

During step 2, a note is made of any first block marked
as ‘deleting’; if so, the process of deleting that object will
be continued immediately before step 3 begins. Thus,
there will only be one partially deleted object at any time.

No object will be ‘retained’ in an index if its first block
has the ‘deleting’ bit set. Whenever any object is ‘re-
tained’ in an index, the ‘found’ bit is set for that object.
This is done to prevent the garbage collector from
deleting it. When an index is retained, the garbage-
collector is restarted.

9. CONCLUDING REMARKS AND
FURTHER WORK

At present the Arca File Server is being used to support
comparison experiments between Cambridge Ring and
Ethernet-type (ie Strathnet) local networks.

REFERENCES

1. Ethernet: a local area network — data link layer and
physical layer specifications. Digital, Intel and Xerox
Corporations, version 1.0 (September 1980)

2. W.P.Sharpe and A.R. Cash, Cambridge Ring 82 —interface
specifications. UK Science and Engineering Research
Council (September 1982)

3. J.Larmouth, Cambridge Ring 82 — protocol specifications.
UK Science and Engineering Research Council (November
1982)

4. R.M. Metcalfe and D. R. Boggs, Ethernet: distributed
packet switching for local computer networks. CACM 19
No. 7, 395 — 404 (July 1976)

5. A.D. Birrel, R. Levin, RM. Needham and M.D.
Schroeder, Grapevine: An exercise in distributed comput-
ing. CACM 25 No. 4, 260 — 274 (April 1982)

6. RM. Needham and A.J. Herbert, The Cambridge
Distributed Computing System. Addison-Wesley (1982)

7. D.Hutchison and W D. Shepherd, A Direct Comparison of
Ring and Ethernet-like Local Networks. Internal Report,
Dept. of Computer Science, University of Strathclyde,
Glasgow (1981)

8. J. Dion, The Cambridge file server. ACM Operating
Systems review 14, 26 — 36 (1980)

9. D. Hutchison and W.D. Shepherd, Strathnet — a local area
network. Software and Microsystems 1 No. 1, 21 — 27
(October 1981)

10. Polynet product description. Logica VTS Ltd. (April 1981)

11. D. Swinehart, G. McDaniel and D. Boggs, WFS — A simple
shared file system for a distributed environment. Proc. of
the Seventh Symposium on Operating Systems Principles
Asilomar, California, 9 — 17 (December 1979)

12. H.E. Sturgis, J.G. Mitchell and J. Israel, Issues in the design
and use of a distributed file system. ACM Operating
Systems Review 14 No. 3, 55 - 69 (July 1980)

The Arca performance has been investigated along
lines previously adopted for other file servers (see XDFS
and CFS details in'4), and has been found to be
comparable given the normalisation of the following
factors: disc average access times, disc file block sizes and
communications overheads.

Using the Remote Procedure Call interface described
earlier (section 6), it is our intention to integrate the file
server into a network operating system being developed
in the department?!.

We are also considering using stable storage instead of
cylinder maps so that there will be no need, in the event
of crashes, to rebuild these maps by traversing the
undirected graph. Atomic updates will thereby be
speeded up and the need for intending to allocate/de-
allocate block pairs may, in addition, be circumvented.

One final area of interest is the idea of distributing the
file server over two or more machines. This will allow for
maintenance and expandability, and will improve file
server reliability.

Acknowledgements

The work reported in this paper is being supported by the
UK Science and Engineering Research Council. Thanks
are due to Jeremy Dion at Cambridge University
Computer Laboratory for his kind help throughout the
early stages of this project.

13. D.P. Reed and L. Svobodova, SWALLOW: A distributed
data storage system for a local network. Proc. of the
International Workshop on local networks Zurich,
Switzerland (August 1980)

14. J.G. Mitchell and J. Dion, A Comparison of Two
Network-based File Servers. CACM 25 No. 4, 233 — 245
(April 1982)

15. C.N.R. Dellar, Removing backing store administration
from the CAP operating system. ACM Operating Systems
Review 4, 41 — 49 (October 1980)

16. B.W. Lampson, Atomic Transactions. Distributed Systems
— Architecture and Implementation Lecture Notes in
Computer Science No. 105, Springer-Verlag, 246 — 264
(1981)

17. R.D.H. Walker, Basic ring transport protocol. Internal
report, Computer Laboratory, University of Cambridge
(1978)

18. N.J. Ody, A protocol for ‘single-shot’ ring transactions.
Systems Research Group, Computer Laboratory, Cam-
bridge (April 1979) :

19. G.S. Blair, J A. Mariani and W.D. Shepherd, A Practical
Extension to UNIX for Interprocess Communication.
Software — Practice and Experience 13, 45 — 58 (1983)

20. R.M. Needham, A.J. Herbert and J.G. Mitchell, How to
connect stable memory to a computer. ACM Operating
Systems Review 17 No. 1, 16 (January 1983)

21. G.S. Blair, D. Hutchison and W.D. Shepherd, MIMAS -
a network operating system for Strathnet. Proc. 3rd
International Conference on Distributed computing systems
Fort Lauderdale, Florida, 212 — 217 (October 1982)

248 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

ARCA: A LOCAL NETWORK FILE SERVER

Appendix
A list of the functions provided by Arca

CREATE INDEX (existing index PUID, offset in this
index, size of new index)
returns: PUID of new index

RETRIEVE (existing index PUID, offset in this index)
returns: PUID

RETAIN (PUID of retaining index, PUID to be
retained)

DELETE (PUID of retaining index, offset to be deleted)

READ INDEX SIZE (PUID of index)
returns: high water mark, maximum allowed size

CHANGE INDEX SIZE (PUID of index, new size)
CREATE FILE (existing index PUID, offset in this
index, size of new file, ‘uninitialised’ value, special’ flag)

returns: PUID of new file

SSP_READ (UID, start address, number of bytes)
returns: number of bytes, data bytes

SSP_WRITE (UID of file, start address, number of
bytes, data bytes)
returns: number of bytes

READ FILE SIZE (PUID of file)
returns: high water mark, maximum allowed size

CHANGE FILE SIZE (PUID of file, new size)

OPEN (PUID of file, ‘writing allowed’ flag)
returns: TUID

ENSURE (TUID, ‘update’ flag)

CLOSE (TUID, ‘update’ flag)

EXPLAIN (return code)

return: length of string, string explaining return code in
English

ZERO _INDEX (PUID of index)

ZERO FILE (PUID of file)

COMMUNICATIONS TEST ()

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 249

¥20Z I4dy 01 uo 1senb Aq L 8¥S0Y/EY2/S/82/2101 e/ |ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

