Structuring two-level grammar specifications

M.H. WILLIAMS

Department of Computer Science, Heriot-Watt University, 19 Grassmarket, Edinburgh EH1 2HJ

The two-level grammar notation is a powerful tool for specifying the syntax, static semantics and even dynamic
semantics of programming languages. However, it can also be a very difficult notation to follow. For this reason an
approach to writing two-level grammars is advocated which explicitly indicates the ‘direction of propagation’® of
metanotions. This suggests the requirement that the direction of propagation of each metanotion within a given
hypernotion should be consistent and enables one to test a two-level grammar specification for circularity.

1. INTRODUCTION

The two-level grammar or W-grammar notation! is a
powerful tool for describing languages. By introducing
parameters (metanotions) into nonterminal names and
by using a separate set of productions (metaproduction
rules) to define these parameters, it is a simple matter to
produce grammars with an infinite number of production
rules, and hence generate not only context-free languages
but also context-sensitive and unrestricted (Type 0)
languages?. This notation has the advantage that static
semantic restrictions (and even dynamic semantics) can
be expressed along with the syntax of a language in a
single definition — but the disadvantage that for anyone
who is not expert in the notation, it is considerably more
difficult to follow than a simple notation such as BNF
or an extended notation such as attribute grammars.

With a conventional single-level grammar it is very easy
to construct a parse tree to assist one to visualize the way
in which productions are applied to generate sentences
of the language but with a two-level grammar this is much
more difficult to accomplish owing to the complexity of
the productions. In an attribute grammar the productions
describing the syntax can be used to construct a parse
tree, after which the passage of the attributes about the
parse tree can be traced using the directions laid down
in the specification. However, in a two-level grammar
specification metanotions cannot be dealt with in
isolation nor is there any indication of the ¢ direction’ to
be followed by individual metanotions. The Algol 68
report®* is evidence in itself both of the power of the
two-level grammar notation and its imperspicuity to all
but a few.

The main problem of the two-level grammar notation
is not dissimilar to the problem associated with the goto
statement in programming languages. If goto statements
are avoided and the control structures used in any
program are restricted to certain simple types, it is
possible to look at parts of a program in isolation and
follow the flow of control through these sections. On the
other hand by permitting uncontrolled usage of goto
statements one may have a more general and flexible
language but one forfeits the ability to look at a segment
of code in isolation without first obtaining a picture of
the overall control structure surrounding the segment in
question.

The two-level grammar notation suffers from precisely
this defect. In general it is not possible to look at part
of a specification in isolation and master it without a
reasonable understanding of the interface with the

remainder of the specification. Again the definition of
Algol 68 is evidence of this fact.

This problem could be overcome if, where metanotions
are used to carry information about the parse tree, a
‘direction of propagation’ is associated with these
metanotions in the same way as directions are associated
with attributes in an attribute grammar. This will
certainly assist anyone who is not expert in the notation
to obtain a clearer understanding of any particular
two-level grammar in a shorter period of time. At the
same time it will also benefit the language designer in that
portions of a specification can be dealt with in isolation.

2. BRIEF OVERVIEW OF TWO-LEVEL
GRAMMAR APPROACH

Whereas in a conventional one-level grammar one has a
fixed and finite set of nonterminal symbols, the power
of the two-level grammar approach lies in the idea that
nonterminal symbols need not necessarily be fixed but
may be treated as variable strings which are in turn
controlled by a set of productions at a higher level. Thus
a two-level grammar is composed of two finite sets of
rules called metaproduction rules (or metarules) and
hyper-rules. From these two sets the set of production
rules is derived.

For example, in a one-level grammar one might have
<assignment stm> ::=
< numeric variable > = <numeric exp >
| <boolean variable > = <boolean exp >

In a two-level grammar this might be written as
Metaproduction rules
TYPE:: boolean; numeric.
Hyper-rules

assignment stm: TYPE variable, equals symbol,
TYPE exp.

In van Wijngaarden’s notation for metasyntax, the
nonterminals (called metanotions) are written in upper
case letters, the terminals (which form part of the
nonterminals of the syntax) are written in lower case
letters, “::” is used to stand for ‘is defined as’ (in place

250 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

STRUCTURING TWO-LEVEL GRAMMAR SPECIFICATIONS

of “::="), *;” is used to separate options (in place of
vertical bar) and ‘.” is used to mark the end of each
metaproduction rule.

The notation for hyper-rules is similar using * :” instead
of “::="and ‘;’ and ‘. as before. In the metaproduction
rules if a nonterminal or terminal is to be followed by
another, they are simply juxtaposed (as in BNF); in the
hyper-rules the symbol ,” is used as a separator
indicating concatenation.

If the metaproduction rules are substituted into the
hyper-rules in the above example, the following
productions are obtained:

assignment stm: boolean variable, equals symbol,
boolean exp.

assignment stm: numeric variable, equals symbol,
numeric exp.

In these three types of rules, three types of symbols are
used:

(i) A protonotion is a possibly empty sequence of
lower case letters and spaces (eg assignment stm)
which is the nonterminal/terminal of the
production rules and the terminal of the metapro-
duction rules. In a production rule a protonotion
which ends in ‘symbol’ is a terminal, one which
does not, is a nonterminal.

(i) A metanotion is a non-empty sequence of upper

case letters (eg TYPE) and is the nonterminal of the

metaproduction rules.

A hypernotion is a possibly empty sequence of
metanotions and/or protonotions (eg TYPE
variable) and is the nonterminal/terminal of the
hyper-rules.

These are summarized in Table 1.

The term ‘terminal metaproduction’ of a metanotion
refers to any protonotion which can be derived from that
metanotion by applying the metaproduction rules. To
change a hyper-rule to a production rule:

(1) Each metanotion found only once in the hyper-rule
is replaced with a terminal metaproduction for that
metanotion.

(2) If a metanotion occurs more than once in the
hyper-rule, each occurrence of that metanotion must
be replaced with the same terminal metaproduction.
This is referred to as the uniform replacement rule
or consistent substitution rule.

(iii)

For more details see Cleaveland and Uzgalis® or
Marcotty et al®.

3. DIRECTION OF PROPAGATION

In order to understand a particular grammar and see how
it is used to parse a string, it is helpful to have some idea
of when the values represented by metanotions are being

passed up the parse tree, when they are being passed
across from one node to another at the same level (within
a production) and when they are being transmitted down
the tree. In other words it is useful to be able to follow
the ¢ direction of propagation’ of metanotions in the same
way that one can follow the direction of propagation of
attributes in an attribute grammar.

For this purpose a metanotion m occurring within
some hypernotion will be said to be synthesized (or
upward propagating) if the protonotion which that
metanotion represents is determined in the process of
expanding the hypernotion to obtain a terminal string.
Such a metanotion will be marked with an upward arrow.
Likewise an occurrence of metanotion m is said to be
inherited (or downward propagating) if the protonotion
which the metanotion represents is determined elsewhere
and is ‘passed down’ to the hypernotion concerned from
an ancestral node in the parse tree. In this case m will
be marked with a downward arrow. These arrows can be
regarded as an addition to the subscripting mechanism
and are ignored in applying the consistent substitution
rule.

To illustrate this convention, consider the example
given by Cleaveland and Uzgalis® of a two-level grammar
which generates the set of strings of letters in which no
letter is repeated.

Metaproduction rules

1. ALPHA::a;b;c;d;e;f;g;h;i;j;k;l;m;
N;0;p;q;5T;58;E UV WXy 52,

LETTER:: letter ALPHA.

TAG::LETTER; LETTER TAG.

EMPTY :..

NOTION::ALPHA ;NOTION ALPHA.

NOTETY ::NOTION;EMPTY.

b

Hyper-rules

7. s:TAG unique.

8. LETTER TAG unique: LETTER symbol,
TAG unique, where LETTER is not in TAG.

. LETTER unique: LETTER symbol.

10. where LETTERI is not in LETTER2 TAG:
where LETTER 1 isnt LETTER2,
where LETTERU is not in TAG.

11. where LETTERI1 is not in LETTER2: where
LETTERI isnt LETTER?2.

12. where letter ALPHAL isnt letter ALPHA2:

where ALPHA1l precedes ALPHA2 in
abcdefghijklmnopqrstuvwxyz;
where ALPHA2 precedes ALPHAl in

abcdefghijklmnopqrstuvwxyz.

13. where ALPHA1 precedes ALPHA2 in NOTETY1

ALPHAI1
EMPTY.

NOTETY2 ALPHA2 NOTETY3:

Table 1. Nomenclature used for nonterminal/terminal symbols in the three types of rules

Type of rule nonterminals

terminals

metanotions
hypernotions

Metaproduction rules
hyper-rules
production rules

protonotions not
ending in ‘symbol’

protonotions
hypernotions
protonotions
ending in ‘symbol’

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 251

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

M. H. WILLIAMS

This specification can be made easier to understand if the
hyper-rules are rewritten with the direction of
propagation of the metanotions indicated as follows:

7. s: TAG* unique.

8. LETTER/ATAG?" unique: LETTER+4symbol,
TAG+4unique,
where LETTER/ is not in TAG.

9. LETTER‘unique: LETTER4symbol.

10. where LETTERI1, is not in LETTER2, TAG,:
where LETTER1, isnt LETTER2|, where
LETTERYI, is not in TAG,.

11. where LETTER1y is not in LETTER2}: where
LETTERL1, isnt LETTER?2;.

12. where letter ALPHAL, isnt letter ALPHA2,:

where ALPHAIL| precedes ALPHA2, in
abedefghijklmnopgrstuvwxyz;
where ALPHA2|, precedes ALPHAIl| in

abcdefghijklmnopgrstuvwxyz.
13. where ALPHAL, precedes ALPHA2 in NOTETY1,

ALPHA1y NOTETY2, ALPHA2\NOTETY3,:
EMPTY.

An example of a parse tree for a sentence of this language
is given in Fig.1. This shows where the protonotions are
associated with the metanotions and how they propagate
about the parse tree.

It is not intended that this tracing of the direction of
propagation of a metanotion should be regarded as
something fundamental to two-level grammars as it is in
the case of attribute grammars, but is introduced as an
aid to the user in seeing how productions are selected.
As will be seen in the next section some specifications have
to be rewritten in order to be able to do this.

Nevertheless, where a direction of propagation can be
established, it does make it easier for the reader,

particularly in the case of complex grammars with a large
number of hyper-rules.

4. TYPES OF HYPERNOTION

As a first step to determining the direction of propagation
of metanotions, consider the different ways in which
hypernotions may be used. Suppose that one has a
hypernotion 4 containing one or more metanotions m;
(1<i<n). This hypernotion may be classified according
to the way in which it is used, into at least one of the
following categories:

(@) Predicate with no return value (PNR). h can produce
only the empty string or protonotions which cannot
be reduced to terminal strings (blind alleys), and all
metanotions m; are passed down to 4 from above (all
m; are inherited). Examples of this include:

where LETTERI is not in LETTER2, TAG,,
where letter ALPHA, isnt letter ALPHA2,,

from the example in the previous section.

(b) Predicate with returned value (PR). Once again h can
produce only the empty string or blind alleys.
However, in this case some of the m;, are inherited and
some are synthesised. The simplest example of such
a hypernotion is one which passes down a symbol
table and an identifier and returns the mode of the
identifier, or passes down an array name and a
symbol table and returns the number of dimensions
of the array.

(c) Terminal with no inherited metanotions. Here h can

- "[letterc | letter a letter t 7 unique

~
~

=T ¢ - — - — — A

RN ~ 3\ ;
where | letter ¢ is not in Uetter a | lettert
‘:\ H ;

-~ LETTER _ - -~
LETTER __----- "TAG*+— __- " "-7- "7--"
letter ¢ | symbol ‘u’nique
il JLETTER TTAG

-

LETTER/ T

~

. TA RN
symbol letter t unique wher

1
1
1
1
|

1

/

1
|

' {
l EMPTY
where precedes

in abcdefghij . . . z

EMPTY

i l !
I
: where E_—, precedes

|
N 7 !
Val ’
VAN
, N I
/ |
where \ ,/ where | letter ¢ |
T X . .
is not ip letter t l isnt I letter a ' \ is not 'in letter t
1

|
1
, g
. ’
! \

wher precedesE in abcdefg . .. z

EMPTY

in abcdefg . . . z

Fig. 1. Parse tree for a sentence of the language given in first example

252 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

@)

202 udy 01 uo 1senb Aq 961501/052/S/82/81o1ue/|ulWwoo/wod dno-olwapede//:sdiy Wolj Papeo|umo

STRUCTURING TWO-LEVEL GRAMMAR SPECIFICATIONS

produce only a terminal string (or the empty string)
and none of the m; are inherited. An instance of this
type of hypernotion taken from the example in the
previous section is:

LETTER* unique

(d) Terminal with inherited metanotions. Again h can
produce only a terminal string (or the empty string)
but in this case at least one of the m; is inherited. An
illustration of this type of hypernotion might occur
in Algo168 where either begin-end or () may be used
to encompass a construction provided that the pair
of delimiters used is of the same type (ie one cannot
have begin...)). For example

Metaproduction rules
DELIM::end;close bracket.
Hyper-rules

stmt group: begin symbol, end group;

open bracket symbol, close bracket group.
DELIM group: DELIM stmt;

stmt, separator symbol, DELIM group.
DELIM stmt: stmt, DELIM symbol.

(e) Mixed hypernotion. This is a hypernotion which is
capable of producing both terminal strings (including
the empty string) and protonotions which cannot be
reduced to terminal symbols (blind alleys). Referring
again to the example in the previous section, an
instance of this type of hypernotion is

LETTERY TAG#* unique

For the inexperienced reader it is confusing when
different directions of propagation are associated with a
particular occurrence of a metanotion within a given
hypernotion depending on where the hypernotion is
used. This can even result in a hypernotion falling into
two different categories.

To illustrate this consider the example (taken again
from Cleaveland and Uzgalis) of a grammar which
generates all strings of the form a™ ="+ c" where a,b,c
and n are positive integers, n> 2.

Note that Fermat’s last theorem (which has remained
unproven for generations) states that there do not exist
any positive integers a,b,c,n satisfying the equation
a™+b"=c" for n>2; thus any string generated by this
grammar will be a counterexample which disproves the
theorem.

Metaproduction rules

1. N::one; N one.

2. EMPTY:..

3. NETY::N; EMPTY.

4. RADIX:: one one one one one one one one one one.
5. EXP:: one one N.

Hyper-rules

6. fermat: EXP poweresult N1, equal symbol,
EXP poweresult N2, plus symbol,
EXP poweresult N3, where N1 is N2 N3.
7. NI poweresult N2: N3 number, power symbol,
N1 number, where N2 is N3 to the N1 power.
8. where N1 is N2 to the NETY one power:
where N3 is N2 to the NETY power,
where N1 is N3 times N2;
where N1 is N2, where NETY is EMPTY.
9. where NETY1 N is N times NETY2 one:
where NETY1 is N times NETY?2;
where NETY1 NETY2 is EMPTY.
10. where NETY is NETY: EMPTY.
11. N1 number: N1 token; N2 number, NETY token,
where N3 is N2 times RADIX,
where N1 is NETY N3.
12. EMPTY token: zero symbol.
13. one token: one symbol.
14. one one token: two symbol.
15. one one one token: three symbol.
16. one one one one token: four symbol.
17. one one one one one token: five symbol.
18. one one one one one one token: six symbol.
19. one one one one one one one token: seven symbol.
20. one one one one one one one one token: eight symbol.
21. one one one one one one one one one token: nine
symbol.

If one attempts to classify hypernotions in this
specification one finds that in hyper-rule 6, ‘where N1
is N2 N3’ is a PNR hypernotion since the values of N1,
N2 and N3 are passed down to it and it can produce only
the empty string or protonotions which cannot be
reduced to terminal strings; however, in hyper-rule 11,
‘where N1 is NETY N3’ is a PR hypernotion in which
the values of NETY and N3 are passed down to it and
the value of N1 is returned. A similar conflict occurs in
several of the other rules.

It is obvious that if a hypernotion is being used in
different ways at different points in the specification,
resulting in confusion about the direction of propagation
of its component metanotions, this hypernotion could be
replaced by two or more different hypernotions each of
which performs a single function. Alternatively it may be
better to rewrite the hyper-rules in such a way that this
confusion is removed. In the case of the above example,
rules 6-11 can be rewritten and directions assigned to the
metanotions as follows:

Hyper-rules

6. fermat: EXP+ poweresult N14, equal symbol,
EXP4 poweresult N24, plus symbol,
EXP+ poweresult N34, where N1, is N2} N3y.
7. NI14 poweresult N24: N34 number, power symbol,
N14 number, where N24 is N3{ to the N1{ power.
8. where N14 is N2| to the N4| one power:
where N34 is N2| to the N4| power,
where N1+ is N3| times N2|.
8A. where N24 is N2| to the one power: EMPTY.
9. where NETY14N# is Ny times N2| one:
where NETY 14 is N{ times N2|.
9A. where N4 is N| times one: EMPTY.
10. where NETY/{ is NETY|:EMPTY.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 253

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

M. H. WILLIAMS

11. NI14 number: N14 token;
N2+ number, NETY* token,
where N34 is N24 times RADIX{,
where NETY| N3| is rewritten as N14.
11A. where NETY| is rewritten as NETY+: EMPTY.

5. RULES FOR ESTABLISHING
DIRECTION OF PROPAGATION

The next step is to formulate a set of rules which will
enable one to establish the direction of propagation of
metanotions within a given grammar in some instances.
Four fairly obvious rules are given below. These rules are
straightforward and place no restrictions on the
specification. However, they only establish a direction of
propagation when certain obvious conditions hold.

(1) Absence from right-hand side. If a hypernotion on the
left hand side of a hyper-rule contains a metanotion
m and at least one of the alternatives on the right
hand side of the hyper-rule contains neither m nor
any hypernotion derived from m, then the occurrence
of m is inherited. For example, in a slightly simplified
form of one of the hyper-rules from the definition of
Algol 68 (Revised Report)

VIRACT declarer: VIRACT declarator;
TALLY applied mode indication with TAB.

VIRACT must be inherited since there is no
occurrence of VIRACT or a hypernotion derived
from VIRACT (virtual, actual or formal) in the
hypernotion ‘TALLY applied mode indication with
TAB’. Similarly in the case of:

formal row NEST rower: up to token option.

there is no hypernotion derived from NEST on the
right hand side, and hence NEST must be inherited.

(2) Absence from left hand side. 1If one or more
alternatives on the right hand side of a hyper-rule
each contains a single occurrence of a meta-notion
m and the hypernotion on the left hand side contains
neither m nor any hypernotion from which m might
be derived, and if m can generate more than one
possible protonotion, then the occurrences of m are
synthesised. For example, in the simplified form of
hyper-rule from the definition of Algo168 considered
in the previous rule:

VIRACT declarer: VIRACT declarator;
TALLY applied mode indication with TAB.

both TALLY and TAB must be synthesised since no
ancestor of either occurs on the left hand side and
both generate more than one protonotion. Hence one
can write the rule as:

VIRACT|declarer: VIRACT declarator;
TALLY?* applied mode indication with TAB4.

(3) Consistency within a hypernotion. If one occurrence
of a hypernotion 4 contains a metanotion m marked
as synthesised (inherited) then any other occurrence
of h in the grammar containing a corresponding
occurrence of m (or a derivative or ancestor of m)
must have m marked as synthesised (inherited). For

254

instance, in the example of Fermat’s last theorem, the
hypernotion

EXP4 poweresult N14

occurring in rule 6 will require all other occurrences
of this hypernotion such as

EXP4 poweresult N2+ in rule 6
N14 poweresult N24 in rule 7

to have synthesised metanotions in the first and last
positions.

(4) Consistency within a hyper-rule. If metanotion m
occursin a hypernotion 4 and there are corresponding
occurrences of m in the alternatives on the right hand
side of the hyper-rule defining A, and if each
appropriate occurrence of m on the right hand side
is synthesised (inherited) then the corresponding
occurrence of m in h is synthesised (inherited).
Similarly if there is only one occurrence of m on the
right hand side of the hyper-rule defining 4 then if
either occurrence of m is synthesised (inherited) then
the other must be synthesised (inherited) too. Thus
the hyper-rule discussed in rules (1) and (2) would
become:

VIRACT/declarer: VIRACT|declarator;
TALLY#applied mode indication with TAB*.

As mentioned these rules only establish a direction of
propagation for certain limited cases. Unfortunately they
are not sufficient in themselves to determine the direction
of propagation of most of the metanotions in any
specification. Indeed it is usually possible to determine
the direction of propagation after a careful study of the
context, but at this stage no general set of rules has been
established which will do this automatically.

6. THE PROBLEM OF CIRCULARITY

Just as one of the problems in one-level grammar
specifications is that of cycles, and for any practical
purposes a grammar must be cycle free, likewise one of
the problems which can arise in an attribute grammar
specification is that of circular definition of attributes.
Knuth? drew attention to this problem and gave an
algorithm for detecting such circularity.

The introduction of directions of propagation into a
two-level grammar specification naturally raises the
possibility that circularity might occur in such a
specification. To illustrate the problem consider an adap-
tation of the example considered by Knuth.

Suppose that one wants to extend the definition of a
binary integer, viz

<bit>::=0|1
<string>::=
<integer>::=

<bit>|<string> <bit>
<string>

to incorporate the value of the integer. Following the lines
of Knuth’s solution using an attribute grammar, a

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

STRUCTURING TWO-LEVEL GRAMMAR SPECIFICATIONS

two-level grammar specification (with direction of flow
indicated) for this might be:

Metaproduction rules

VALUE:: NUMBER.

SCALE:: NUMBER.

LENGTH:: NUMBER.

NUMBER:: one NUMBER; EMPTY.
EMPTY ..

SNAEWD -

Hyper-rules

6. bit with VALUE? and SCALE;|:
zero symbol, where VALUE? is EMPTY/;
one symbol, where VALUE#? is SCALE,.

7. list with VALUEY and LENGTH#* and SCALE\:
bit with VALUEt and SCALE|, where

LENGTH?* is one;

list with VALUEl4 and LENGTHI14 and
SCALEl,,
bit with VALUE24 and SCALE,,
where VALUE? is VALUE1] VALUE2|,
where SCALEI14 is SCALE| SCALE;,
where LENGTH* is one LENGTHI1,.

8. integer with VALUE#: list with VALUEt and
LENGTH* and SCALE,,
where SCALE? is one.

9. where NUMBER* is NUMBER,|: EMPTY.

If one had unintentionally written hyper-rule 8 as:

8. integer with VALUE#?: list with VALUEt and
LENGTH+* and SCALE;,,
where SCALE? is VALUE,.

the definition can easily be shown to be circular. Fig.2
illustrates this with the parse of the string ‘ 1°. Clearly the

metanotion VALUE in the hypernotion ‘integer with
VALUE"’ is not uniquely determined by the parse. If the
above specification with the incorrect version of
hyper-rule 8 had been written without any indication of
the direction of flow, the circularity (if it can still be
referred to as such) would not be easily detectable.
Nevertheless, it still exists and the grammar will be
ambiguous in this case. '

7. CONCLUSION

While the two-level grammar notation is both powerful
and flexible, it does suffer from the drawback that
specifications in this notation can be very difficult to
follow. In view of this a case has been presented for
indicating the ‘direction of propagation’ of metanotions
wherever possible in a two-level grammar specification.

For the inexperienced reader tracing the direction of
flow enables him to view sections of a specification in
isolation and to obtain a better understanding of the
specification as a whole. However, determining the
direction of propagation of a metanotion within a given
hypernotion is, in general, not an easy task. Two different
approaches have been suggested which may assist the
reader in this respect, namely

(a) Classification of hypernotions. This is based on an
understanding of what the hypernotion does.

(b) General rules about propagation. These are based
purely on the form of the hyper-rules.

Language designers who use the two-level grammar
notation to specify their languages should determine the
direction of propagation of metanotions in their
specification in order to ensure that this is consistent. The
advantages of doing so are:

(a) It will make the specification easier for the reader to
understand.

r integer with VALUE?®

T
i
1
1
1
!
[}

[where NUMBER® is NUMBERY |]
X .

~ -

where LENGTH?1 is one I

/
/
| bit with VALUEt and sCALEL © | [

~ -

N

[one symbol |

where VALUE? is SCALE]

where NUMBER? is NUMBER]

||

i

| where NUMBER? is NUMBER{]
A

~

Fig. 2. Parse tree for the string ‘1’ using the incorrect two-level grammar definition. The passage of the values represented by the
metanotions VALUE and SCALE about the tree are traced with dotted lines indicating inherited values, dashed lines indicating
synthesised values and a sequence of dots and dashes indicating horizontal transfer.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

255

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

M. H. WILLIAMS

(b) It enables part of a specification to be considered in
isolation from the remainder of the specification
thereby making it less prone to error.

(c) It enables the designer to check for circularity in a
specification.

The net effect of a practice such as this is to
improve the readability and understandability of a
specification and reduce the probability of errors,
without any significant sacrifice to the power of the
notation. In some ways this approach to writing two-level
grammars can be compared with the discipline of
structured programming in a conventional programming
language. Thus just as indiscriminate use of the goto
statement in computer programs is undesirable, a
non-unique direction of propagation of a metanotion
could be considered ‘harmful’.

Acknowledgement

The author is indebted to the referee for helpful
comments leading to the revision of this paper.

REFERENCES

1. C. H. A. Koster, Two-level Grammars, in Compiler Con-
struction An Advanced Course, Ed. by G. Goos and J.
Hartmanis, pp.146-156. Springer-Verlag, Berlin (1974).

2. M. Sintzoff, Existence of a van Wijngaarden syntax for
every recursively enumerable set, Ann. Soc. Sci. Bruxelles
81, 115-118 (1967).

3. A.van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A.
Koster, M. Sintzoff, C. H. Lindsey, L. G. L. T. Meertens,
and R. G. Fisker, Revised report on the algorithmic language
ALGOLG6S, Springer-Verlag, New York (1976).

4. A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck and
C. H. A. Koster, Report on the algorithmic language
ALGOL68, Numer. Math. 14, 84-218 (1969).

5. J. C. Cleaveland and R. C. Uzgalis, Grammars for Pro-
gramming Languages, Elsevier, New York (1977).

6. M. Marcotty, H. F. Ledgard and G. V. Bochmann, A
sampler of formal definitions, ACM Computer Surveys 8,
191-276 (1976).

7. D. E. Knuth, Semantics of context free languages, Math.
Syst. Theory 2, 127-145 (1968).

256 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 961501/052/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

