The Computability of Stack Non-Underflow

D.T. GOODWIN
University of Keele, Newcastle, Staffs ST5 5BG

In a number of previous articles a model of arithmetic behaviour at run-time was set up and studied. In the last of these,
Goodwin®, sufficient conditions were presented under which an infinity of different program runs may use the stack
without underflow. This paper shows these conditions to be necessary, so that it is computable at compile-time whether

or not such an infinity exists.

1. INTRODUCTION

This paper continues and probably concludes a series of
articles in which a model of arithmetic stack behaviour
was set up and studied. The first of these was Goodwin!
and the last was Goodwin?®. It is supposed that a user’s
program is written in a high-level language which makes
implicit or explicit use of an arithmetic stack. Any
conventional high-level language is acceptable, and Pop2
is the most general case known — distinct in that it uses
a stack explicitly and also in that its individual statements
may cause a net gain or loss of items on the stack.
(Equally general are micro-computer machine codes
where a stack is often employed.) Under conditions
always satisfied in (say) Algol, Fortran or Pascal, and
frequently satisfied in Pop2, the user’s particular
program is shown to act as a context-free or BNF-type
grammar whose function is to generate a sequence of
symbols, as the program runs. These symbols denote
commands to add or remove items from the arithmetic
stack. The whole sequence or string of symbols varies
depending on the data, so that in general an infinity of
such strings has to be considered.
The subjects of the previous papers have been:

1977: Conditions for the stack-length to be totally
bounded above and below.

1980: Conditions under which an infinity of program
runs, not necessarily all, may use a bounded
stack.

1985: Sufficient conditions under which an infinity of

program runs may use a stack which is only
bounded below.

This article shows that the final conditions already
presented as sufficient are also necessary. This leads to
the conclusion that it is computable at compile-time
whether or not an infinity of program runs exists whose
stack-lengths are at all times bounded below.

2. CONCEPTS AND NOTATION

This paper relies on the concepts and notation of its
predecessors, but a very brief account of useful ideas is
given below. Theorem and lemma numbers are
continued, previous theorems and lemmas being
distributed as follows:

(1977): Theorems 1-6, lemmas 1-4.
(1980): Theorems 7-16, lemmas 5-6.
(1985): Theorems 17-20, lemmas 7-12.

In the examples of formal grammars and strings,
individual non-terminals are denoted by capitals, while
small letters denote strings of terminals, or terminals and
non-terminals, as explained in the context. Hopefully
confusion with small letters that denote integers is
minimal. Individual terminals have the effect of increment-
ing or decrementing the length of the stack. The
significance of these actions is not relevant to the model
being studied, but in the arithmetic stack application
incrementing would take place if an item were fetched
from store, while decrementing would correspond to a
transfer of the top item of the stack to store, or to the
combination of the top two items using an arithmetic
operation. The particular grammar under discussion,
which corresponds to the text of the user’s particular
program, is called G, and the examination of its
properties corresponds to computation carried out at
compile-time. The special non-terminal of G which is
expanded to form a string of the language is called S.

A ‘cycle’ is used in the sense of a number of
production-rule applications which together generate
uNv from N. This is written N == uNv, where u and v
are in general mixtures of terminals and non-terminals.
The ‘length’ of a cycle C is written 1(C), and is the net
number of items that u and v together add to the stack.
The left-hand-length 1hl(C) of the cycle is the net number
of items that u alone adds. These lengths may vary
depending on the expansions into terminals of the
non-terminals of u and v. 1,(C) is a length of uv when all
their non-terminals are expanded non-cyclically, ie with
no repeating non-terminals down any branch of the tree
of such an expansion. ‘Basic’ cycles are a finite set of
cycles from which all cycles may be generated, by
‘composition ’ (ie combination) or repetition.

3. ANINVALUABLE TOOL

The following simple but powerful numeric lemma is the
basis of all the subsequent theorems. No originality is

claimed.
Lemma 13

Let an integer n be fixed, and let S be an infinite set of
distinct vectors X = [X,,X,...X;,...X,], where each x;, (1
< i < n), takes integer values which are bounded below.
Then there exists an infinite sequence of vectors X, X,,
<. Xpsee-Xgs-.. all in S such that for all p, q, p < q, then:

x; of X, = x; of X, for alliin 1 < i < n, for which
the set of x; values in S is also bounded above.

x; of X, < x; of X foralliin 1 < i < n for which
the set of x ; values in S is not bounded above.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 257

cpJy 28

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

D. T. GOODWIN

Proof

There is a simple proof by induction on n. It is certainly
true for n = 1, (when the x; values must be unbounded
above). The task now is to show it true for n+1 if it is
true for n.

Consider the infinity of vectors [X;, X,,...Xp4,]- Then
each vector has an n-vector [X,,...X,,] within it. Consider
the set of all such vectors [X,,...X,,,]. Since some may
coincide there are two cases:

1. The number of distinct [x,,...X,,] is finite. Then for
at least one particular [X,,...X,4,] vector there exists
an infinity of original (n + 1)-vectors which contain it,
with an infinity of different x, values. The desired
infinite sequence is obtained by listing these
(n+ 1)-vectors in order of ascending x, values. The
other x; remain constant which is as the lemma states,
since case 1 implies boundedness above for x, to x,,.

2. The number of [X,,...X,;,] is infinite. Then the
theorem can be applied to them, using the inductive
hypothesis, and there exists a sequence
Xy5-e-Xpse - Xgo.. Of them. Consider now the X,,...
associated with their original x, values — (called
respectively x,(1), x,(2),...X,(p),..-X,(qQ)...). These
constitute the sequence (x,(1),X,), (x,(2), X,), -..
(x,(p), Xp),... , and again two cases are
distinguishable:

(a) The x, values are unbounded above. Then choose
any p and one can always find q, q > p, for which x,(q)
> x,(p). Now take the value of q and use it as p in
a repetition of the above step — thus one can find an
infinite increasing sequence of integers p;, Py, ---Pr---
whose x, values are strictly increasing. Thus the
required infinite sub-sequence of vectors is (x,(p,),
X(P1), (x1(P2), X(P2)s--. -

(b) The x, values are bounded above. Let the upper and
lower bounds of x, be u and | respectively. Then there
exists t,]| < t < u, for which there exists an infinite
number of p-values for which x,(p) = t. This again
defines the required infinite sub-sequence of vectors.

The lemma is therefore true for all n.

One useful aspect of this lemma is that any
dependencies there may be between the components of
the vectors do not affect the result. The existence of an
infinity of vector-instances is a sufficiently powerful
condition.

4. S-CYCLES ONLY IN THE S-CHAINED
DERIVATION

A simple case of the general theory of Theorem 25 is first
developed, so that the kernel of the argument may be

presented without added complications.
Theorem 21

Let there be an infinity of non-underflowing strings, each
with the property that in its parse-tree there is an instance
of S which has a non-cyclic expansion into terminals, and
in the infinity let the depth of such S-instances be
unbounded. Then there exists a cycle C such that 1hl(C)
= 0and I(C) = 0.

Proof

In the parse-tree of each non-underflowing string, let S*
be an instance of S which expands non-cyclically. Hence

258 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

there exist one or more cycles S = u,Sv,, S = u,Sv,, ...
S = u;Sv,, ... to S = u,,Sv,, not necessarily distinct, such
that the base-node S expands thus:

S = u,Sv,
= u,u,Sv,v,

= Uy U,... U S*V L. VeV,

Here the u and v symbols denote strings of terminals and
non-terminals. The integer m may vary from string to
string, and denotes the depth of S* (ie the number of
cycles between the first S-instance and S*). The idea of
the proof is to show that certain sums of the lengths of
the u; and v; are non-negative, and then to demonstrate
the existence of a cycle which has just such a length and
left-hand-length. Consider the lengths of u; and v; in S

= u;Sv;. Each non-terminal in u; and v; may expand
into terminal strings whose lengths are generated by a
finite number of formulae as in Lemma 6. Let such a
non-terminal be N, and let N = s(N) be one of the finite
number of non-cyclic expansions of N into terminals. Let
C,, ..C;, ...C, be a set of basic cycles of G. Then,
rephrasing the result of Lemma 6:

IN) = I(s(N)) + Zj'-Xstlo(Cj),

where the xy; are non-negative integers distinct for every
combination of N, s(N) and j. Whereas in Lemma 6 the
formulae were used as generators of all possible lengths
(by assigning all integers to the x variables), here the use
is different — they are to be used to denote just those
lengths that actually turn up when N is used in cycles
in the given infinity of strings. Thus any particular Xyg;
may never take a certain value, and indeed some may
never differ from zero, because for convenience all the
zero-cyclic lengths 1,(C;) of G have been included, some
of which may not be accessible in expansions of the
non-terminal N. There is also no information about
whether any of the xy; are bounded above.

Returning again to the typical cycle S = u;Sv;, seeking
a formula for 1(u;) means selecting one of a finite number
of formulae for 1(N), for each N in u,. The difficulty of
thinking about this is resolved by regarding the original
cycle as a number of distinct cycles, one for each of the
finite number of distinct combinations of I(s) values for
all the non-terminals of u; and v;. (This had already been
implicitly assumed in using the 1,(C;) values in the
formulae). Suppose the original S = u;Sv; cycles have
been renumbered to allow for this, and let u; =
wN|N,..N,.. N}, and v; = ViM;M,..M,..M,,, where
u] and v] are strings of terminals only. Then as various
expansions of the non-terminals are considered, the
lengths of u, are given by:

) = l(u;)+$ IN,)

n n
=lu)+ X Is(N,)+ Z 2 X npi lo(Cy)
p=1 =1)
= U+ Z x;;1(Cy),
j

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

THE COMPUTABILITY OF STACK NON-UNDERFLOW

for some integral constant U; and new non-negative
variables x;;. (Again it is stressed that the x;; may not take
all integer values). Similarly denote:

lv;) = V;+ ? Vi 1(C)).

It was stated earlier that the cycles S = u;Sv; are not
necessarily distinct. For any one string of the infinity of
non-underflowing strings, let the i’th distinct cycle S =
u;Sv; be repeated r; times, possibly with different values
of the x;; and y;;. Then the total length of all 1(u;) for
all these repeats, for fixed i, is:

T lw;) = r; Ui+ Z (X xi)l(Cy)
all j all

repeats repeats

and similarly for ZI(v;).

Then returning to the original cycle S =

U U,... Uy Svy..uvy,

luy...uy,) = §[31:l I(u;)]

repeats

Z r; U; +§:{Zz:(§l Xij lo(Cj)

repeats

= X(r; U)+ X k; [,(C)), say,
i i

where the variables over all the strings of the infinity are
the r; and the k;. Similarly:

lvy..v)= Z(ri Vi)+2j‘,nj I,(C)), say,

where the variables over the infinity are the r; and the n;.
Now let the lower bound of the stack- length be L. Then
for every string considered:

l(ui...um) > L

and luy...uy) + Iw) + l(v,,...v;) =L

Consider the infinity of vectors X = [m,
I3 LgpesKysee Uy, uy), 1(W), 1(0y.cupy) +1(Vi...vy))
The number of r values is fixed because this is the number
of distinct cycles involving S. The number of k and n
values is fixed because this is the number of distinct basic
cycle-lengths in all G. Furthermore every component of
X takes integer values only and is bounded below. Thus
the conditions of Lemma 13 apply and there exist strings
T, and T, and associated vectors X, and X, such that
[X.lq = [X,], for every component q of X taken in turn.
The only component known to be bounded above is I(w),
for which the equality holds. Let the variables for T, and
T, be pre-superfixed 1 and 2 respectively. Then:

My) —UW(uy...up) = Cry=r) U, +§(2k,- =1kl (C))

= *ri Ui +Z *kj IO(C])
J

for constants *r; and *k; just shown to be non-negative)
i il

Similarly
uy.. . uy)+ 1(w)+2U(0,y,. . .0,) — Uy, . .u,,)
—Hw)—Uv,,...v,

=2*r(Ui+ V) +E K+ ny)lo(C;)

(for non-negative *n;)
=0.

These two sums just shown to be not less than zero are
remarkably like the left-hand and total lengths of a cycle.
To prove the theorem it would be sufficient to show that
a cycle with these lengths could be constructed. If all the
*r; are non-zero this follows at once, and in Theorems
23 and beyond this will be assumed at the start. There is
a problem however if for some i, *r; = 0. (Certainly *r;
cannot be zero for all i because the depth m has been
included in the vector - it is given as unbounded, and
hence the depths of T, and T, differ). It could then
happen that the cycle S = u;Sv; contained in u; the only
instance (in all of the possible u,u,,...u,) of a
non-terminal on to which instances of a particular basic
cycle C; could be attached. Omission of the ith cycle from
the composed cycle now being constructed would thus
prevent the addition of the number *k;l,(C;) to the
left-hand and total cycle lengths. This addmon would
only be of value if *k;l,(C;) were positive and could
otherwise be ignored. Thus in the difficult case, for some
i and j, there exists a cycle S = u;Sv;, where u; = aNb
for some strings a and b, and N = uNv, where I(uv) =
1(C;) > 0. It follows then that by repeated application of
the cycle N = uNv, the cycle S = u;Sv; may have its
left-hand and total lengths increased as much as desired,
until both are non-negative, thus provmg the theorem.

There remains the similar difficulty in the case where
for some i,j,*r; = 0 and *n; > 0. It has already been dealt
with if at the same time *k > 0, but suppose *k; = 0.
Then for some i and j there ex1sts acycle S = u,Sv,, where
v; = cNd for some strings ¢ and d, and where N = uNv,
where I(uv) = 1,(C;) > 0. Using the C; cycle, I(v;) can be
increased as much as desired. If l(ul) = 0, the theorem
is now proved. If 1(u;) < 0, it is still possible to prove
the theorem if 2l(u,...up) — '(u,...u,) t 0. Then the
constructed cycle contains S with a positive left-hand-
length and negative total length, while S = u,Sv; has a
negative left-hand length, and arbitrarily large total
length. Since both contain S they may be composed to
form a single cycle, and with suitable multiples the
resulting left-hand and total lengths can both be
non-negative.

Summarising, there remains the case where the cycle
being constructed has zero left-hand length, negative
total length, *r; = 0 for some i, and *k; = 0 and *n;
> 0 for the basw cycle N = uNv of length 1(C;)= l(uv)
> 0, where S = u;ScNd such that 1(u;) < 0. If now l(u)
> 0, the theorem is proved using the C; cycle, so suppose
l(u) < 0. Then it is impossible to find any acceptable ratio
in which to compose the constructed and i’th cycles, as
happened before. In fact the situation is very puzzling

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 259

17-2

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

D.T. GOODWIN

since the intuitive conditions hopefully to be proved do
not appear to hold. This is all resolved by showing that
the state of affairs cannot in fact occur — it only presents
itself in the argument because of the crudeness of the tests
for underflow which were applied — the requirements
were just that underflow should not occur after all the
terminal symbols before w had been processed, and after
all symbols whatsoever had been processed.

To show the above state must lead to underflow,
consider the deposition of the symbols of the string T,.
The symbols before w reduce stack-length by a finite
amount r;l(y;), since r; is bounded in the infinity. After
w the contributions are from the S = u;Sv, instances and
all the others, mingled in some order. The latter each
contribute negatively — indeed positive contributions
from the right-hand lengths of C; instances cannot begin
until after an unbounded number of negative C;
left-hand-lengths have been loaded. Thus underflow is
certain to occur, in whatever order the cycles appear. The
same argument would hold if more than one C; cycle were
involved at a time. The theorem is now proved.

An interesting aspect of the theorem and its proof is
that it imposes no restrictions on the nature of the
expansions of the left-hand and right-hand sides of the
cycles of S, apart, of course, from underflow. Thus
S-cycles can occur in them, and an unbounded profusion
of branches, as well as cycles, may develop, when
permitted by the grammar. (The author found this case
a stumbling-block for a long time). These remarks apply
as well to the more general theorems below.

5. T-CYCLES ONLY IN THE S-CHAINED
DERIVATION

A small extension of Theorem 21 is now undertaken.
Theorem 22

Let there be an infinity of non-underflowing strings, each
with the property that in its parse-tree there exists an
instance T* of a non-terminal T which has a non-cyclic
expansion into terminals, such that S = a,Tb,
(non-cyclically) = a,uT*vb, . It is assumed as well that
I(a,) is bounded in the infinity, and that the depth of T*
is unbounded. Then there exists a cycle C such that
1hl(C)>0 and 1I(C)=0. (This reverts to Theorem 21 by
choosing the subset of grammars in which S and T are
identical).

Proof
The argument is as for Theorem 21, reading T in place
of S. However the non-underflow conditions are now:

I(a,) + 1(u,...uy)

L
I(a,) + I(u;...uy) + I(w) + 1(vy,...v,) L

\AY

from which I(u,...uy,) and I(u,...u,) + 1(vpy...v,) are
bounded below as before. Hence the theorem follows.
The purpose of presenting this trivial extension is to
discuss the variation in conditions. From the position of
a, at the beginning of strings in the infinity, 1(a,) must
be bounded below to prevent underflow. The first
inequality above only works if 1(a,) is bounded above.
If this condition is false, then T* instances further to the
left in the parse trees should have been chosen instead.
However no such instances may be available. So far the

cycles on the path to T* have been restricted to those
which involve T. Other non-terminals may appear, but
always in between T-instances. Another way of expressing
the same point is to say that so far T*, the last instance
of T, expands non-cyclically. In general there is an
integer p (distinct from any p mentioned before) such that
a path from S to a non-terminal T, which expands
non-cyclically is explained as follows. As discussed in and
around Lemma 3, the grammar G is in one-to-one
correspondence with a directed graph Gg, in which the
nodes are the distinct non-terminals and terminals and
each arc goes from a non-terminal to a symbol in one
of the expansions using a production-rule. Then the path
from S to T, corresponds to a path in Gy from the S
node to the T, node. In general this path in Gy has
circuits in it, there being only a finite number of S-to-T,,
paths which are without circuits. Circuits cause repetition
of non-terminals on the path. Sometimes also there are
circuits within circuits, or ‘second-level’ circuits. For
example, the trivial grammar:

S-M M- N
M->d N-M

N->N

yields the pathsS 5 M - N - M —»... - M — d, where
the bracketed rules introduce cycle-instances into the
path. However each such cycle may be interrupted by an
arbitrary number of second-level N « N cycles, thus:

S M5>5N-o-N->-M->-N->N->N->M->d.

Again in a more complex grammar a third level of cycle
could be introduced, and so on.

To find the first level cycles proceed down the path from
S to identify the first non-terminal T, which repeats at
some later point on the path. (This could of course be
S). Move down the path to locate the last instance of T,.
Thereafter begin again to identify the first non-terminal
T, which repeats later. Now move to the last instance
of T, and so on until the last instance of T, is reached,
after which no non-terminal is found which later repeats.
The sequence S, T,, T,,...T,, is certainly finite, because
the members of the sequence are distinct and all in G. In
a similar way the identities of non-terminals which repeat
in second, third and higher-level cycles can be
determined, by searching for repeating instances inside
respectively first, second and higher-level cycle instances
which occur down the path.

Now let the first-level cycle-instances be T, = u, T, v,
where s refers to the particular cycle instance (out of the
finite number that can arise), followed by T, =
Uy TyVss,... up to T, = up Tvys. Denote all higher level
cycles occurring within T; instances by Ny, = u;;Nj;Viye-
Here i varies indicating the top-level non-terminal, t
varies to fix the second or higher-level non-terminal, and
s indicates the choice of particular cycle out of the (finite)
number which involve N;,. Denote by r; the number of
times the s’th cycle-variant of T; (T; = u;T;v;s) occurs
on the path, and let r;;; be the number of times the s’th
cycle-variant of N, (N;, = u;,NjVvys) occurs in all the
instances of T, cycles. Also let S = a,T,b, for the first
instance of T, on the path, and let T,_, = a;T;b;, for the
last instance of T;_, and the first of T;.

260 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

THE COMPUTABILITY OF STACK NON-UNDERFLOW

A more general theorem can now be given, of which
Theorems 21 and 22 are special cases.

6.. THE THEOREM FOR A CHAIN OF

CYCLES

Theorem 23

Let there be an infinity of non-underflowing strings, each
with the property that in its parse-tree there exists a path
from S to T, as described above, where the last T,
instance expands non-cyclically to w, and where in the
derivations S = a,T,b,, T, = a,T,b,,...T;_, = a,T;b;,...
Tpi = a,,Ty by, the lengths 1(a;) and 1(a;b;) for all
i, 1 < i < p, are bounded. Furthermore let each of the
1;5 and ry,, the cycle repetition variables, be unbounded
in the infinity.

Then there exists a sequence of cycles S, = x,S,y,, ...S;
= X;Si¥i»-- Sy = X 8.y, for some non-terminals
S,,...8;,...S, of G such that for some c;, d;, S, = c,S,, ...
Si_; = ¢;Sid;,... Sy, = ¢,S,d,,, and with the numeric
properties that for alliand j, 1 < 1i,j < p,

i P P
T Ux)>=0 and X Ix)+ X ly)> =0.
S=1 S=1 S=j

Proof
The general scheme is as in Theorem 21. First define the
combined left-hand and right-hand lengths of all the T,
portion of the path as
Lq =X Tys l(uqs) + tz Tqts l(“qts)-
8 8
and Ry =X rg l(vgs)+ 'Z Tats I(Vgts)-
i 8 8
Thenlet P, =X L, foralli 1= <i= <p,
1

P
and Q;=P,+X R, forallj,l=<j=<p.

a=j

This time the demands for non-underflow give the
inequalities:

%
Xla)+P;, >=Lforl=<i=<p

q=1

)S/(aq)+1(w)+Qp >=1

P P
Zlal))+lw)+ X (b)+Q; > =L,
1 q=j+1

forl <j<p-1.

Since the 1(a;), I(b;) and I(w) are given as bounded, it
follows that all the P; and Q; are bounded below. Also,
following Theorem 21,

Lq =3 Tys qu + zt Fyst qut +§kqh lo(Ch); say,
s s,

where the U, and U, as s and t vary, are the distinct
lengths of non-cyclic expansions of the cycles involving

T, (and its higher-level included cycles), where the kg
are the numbers of basic cycles C; involved in the
expansion of the whole q’th left-hand side. Similarly let

R, =Xr,sus+ Zt Fasr Upst +§ ng, L, (Cp).
S s,

Now consider the vector:

X = [I115 TygseeesT111seee> Kigseees Mygseces

e TigseeTipgaees Kigseens Dypyens,

<+Tp1> Tpaseees Tprpsees Kpppeesy Dpyyees,

Pl, P29-~'Pp, Q19 Q2""Qp]‘

Then all the components of X are integral and
bounded-below, so that Lemma 13 applies, and there
exist strings whose vectors X, and X, have components
with the properties: 'r;; < 2r;;, for all i and j, and 'r;y,
< 1y, for all i, j and h, since all the r;; and r;, are given
unbounded above. Similarly 'n;; < 2ny; and 'k;; < %k;;.
The most useful results are that 2P; — 'P; > 0 and 2Q;
- 1Q; = 0 for all i and j, and the relations established
between the r, k and n variables show that these partial
sums always correspond to a constructible system of
cycles, as required by the theorem. The S; iidentify with
the T;, and higher-level cycles, when required, may be
inserted into their own T; cycle to form, for fixed i, a
single composed cycle.
As discussed so far the theorem is very restrictive:

1. For each T, certain T cycles could well arise only
a bounded number of times in each of all the infinity
of paths considered. There might be a T whose total
number of cycles was bounded.

2. Assumptions are made about the boundedness of the
a;andib;.

The first restriction is removed as follows. The infinity
of paths from S to T, can be regarded as having a
common path executed in every case. On this path there
are a finite number of points at which an arbitrary
number of additional cycles can be inserted. The most
obvious form of common path is a non-cyclic one. When
admitting cycles with bounded numbers of repetitions,
Lemma 13 allows an infinity of strings to be chosen in
which the repetitions are constant. These also are
admitted to the common path.

A general path in the infinity can thus be considered
to have a finite number of ‘constant regions’ which are
the portions of the common path. These constant regions
are separated by ‘unbounded regions’ which are
arbitrary insertions of unboundedly repeating cycles,
governed only by the restriction of non-underflow. An
interesting case is where a first-level T; has unbounded
repetitions, a second-level cycle is bounded, while a third
is unbounded. What happens is that the second level
instances are added to the common path, further
instances of first and third-level cycles being inserted at
quite different points on the path. Thus a chain of two
cycles is established where in the last theorem one
composed cycle would have sufficed.

Now the theorem can be restated with restriction 1
lifted, no further proof being given.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 261

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

D.T. GOODWIN

Theorem 24

Let there be an infinity of non-underflowing strings, each
with the property that in the parse-tree there exists a path
from S to T, where the last T, instance expands to the
terminal string w, where 1(w) is bounded, and where in
the derivations S = a,T;b,, T, = a,T,b,,... T;_, =
a;T;b;,... T,_; = a, T b, the lengths I(a;) and I(a;b;) are
bounded, for alliin 1 < i < p. However this time for
some i, T;_, and T; may be identical non-terminals, as
determined in the above discussion, and the expansion
T;_, = a;T;b, would then have a number of T; or other
cycles in it, the number being fixed, for this given i,
throughout the infinity of strings. The integer p now
measures the number of ‘unbounded regions’ down the
path. Then, as before, there exists a finite sequence of
cycles S; = x,8,y, ...8; = X;8;¥1,... Sq = XS4, for some
non-terminals S, ... S,,...S, (not necessarily distinct) of
G such that for some c; and d;, S, = ¢,S,d,,...S;_;, =
¢;Sid;,... Sq—; = ¢4Sqd, and with the numeric properties
that foralliand j, 1 <1i,j < q,

Zi: I(xs) > =0, anqu‘, I(xg)+ Zq:. I(yy) > =0.

§=1 8§=)

(It must be emphasised that the notions of ‘unbounded’
and ‘constant’ regions refer to the numbers of cycles on
the path being considered, not to their lengths — ie not
to whether any left or right-hand branches are bounded
or unbounded).

7. THE THEOREM FOR A TREE OF
CYCLES

The second restriction of the last section was that the
1(a;), 1(a;b;) and 1(w) had to be bounded. However in
general the a; etc will have non-terminals which expand
unboundedly in the infinity. In all the a; and b, there are
only a finite number of such non-terminal instances, and
the expansion of each can be developed exactly as the
expansion of S has been treated so far. Where
unboundedness occurs to the left or right, these
sub-branches can also be developed similarly. There is
only a finite number of branches, each containing only
a finite number of unbounded regions.

Consider the order in which terminals of a string whose

parse-tree corresponds to the structure are deposited on
the stack. When as usual the base-node S is at the top,
deposition occurs in the order the terminals are
encountered as one inspects the periphery of the tree in
an anti-clockwise direction. As in Theorems 21 to 24, in
Theorem 25 the concern will be to form a finite list of
partial sums of the lengths of the left-hand and right-hand
sides of the unbounded regions. Each of these sums will
then have a lower bound placed on it, so the partial sums
of one, two and more left-hand and right-hand sides of
unbounded regions will have to be made from the
beginning of deposition, and in ‘deposition order’.
~ Theorem 25 :
Let there be an infinity of non-underflowing strings which
have an identical tree-structure of bounded and
unbounded regions. Then there exists an identical (and
finite) tree of cycles whose partial sums of left-hand and
right-hand lengths, as determined by deposition order,
are in no case less than zero.

262 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

Proof

If written for a particular tree-structure, the proof would
be analogous to Theorem 23, but with a far more
unwieldy suffix notation!

8. GENERAL INFINITIES OF
NON-UNDERFLOWING STRINGS

In each of the theorems so far only a specific class of
non-undeflowing infinities has been treated. The general

result is:
Theorem 26

Let there be an infinity of non-underflowing strings. Then
there exists a tree of cycles whose partial sums of left-hand
and right-hand lengths, as determined by deposition

order, are in no case less than zero.
Proof

Most of the full procedure for finding such a cycle-tree
structure has already been described. It is now sufficient
to show that for any non-underflowing infinity of strings
a sub-infinity can be found with a common S to T, path
of constant and unbounded p regions. The previous work
shows how this simple result is used repetitively to
develop the whole common tree of constant and
unbounded regions. Furthermore it is just path-
determination that needs discussion below — division of
a path into regions has already been described.
Consider in the graph Gy, the finite set of all paths (with
no R circuits) from S to every non-terminal. Consider
also the infinity of all paths, in the given non-underflowing
infinity of strings, from S to non-terminals which are
expanded non-cyclically. When all cycles are removed
from such paths there is sure to be an infinity of the latter
paths which correspond exactly with one of the set from
Gg. Many such paths from Gy may thus have an infinity
associated with it, which is not surprising — just choose
one such to determine a suitable infinity of strings.
Theorem 27
There exists an infinity of non-underflowing strings if and
only if either:

1. There exists a cycle N = uNv, not necessarily basic,
for whichu > 0 and u+v = 0, — or

2. there exists a cycle-tree of depth two, (in which the
upper cycle’s u, v etc are unsuffixed, the lower cycles
being suffixed from left to right), for whichu > 0 and
uy, <Oforalli, 1 <i<n, R>1R; > 1forall
i, and R < R,R,..R,, for some n > 1.

Proof

Sufficiency is proved first — if the first condition is true
the result follows at once by repetition of the cycle to
generate all the infinity of strings required. If the second
condition is true then the result follows from Theorem
19. Necessity: Theorem 26 shows the existence of a
cycle-tree with non-negative partial sums. By constructing
equal repetitions of all the cycles in the tree an infinity
of different strings are generated, all non-underflowing.
Thus the conditions of Theorem 20 are satisfied, which
leads to the required result.

9. COMPILE-TIME COMPUTABILITY

The final theorem, the aim of the whole article, can now
be presented.

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

THE COMPUTABILITY OF STACK NON-UNDERFLOW

Theorem 28
It is computable by examining the grammar G whether
or not an infinity of non-underflowing strings can be

generated.
Proof

By Theorem 27 if a cycle or cycle-tree of depth two as
described there, can be found in the grammar, then the
infinity can be generated. The argument following
Theorem 17 shows that only basic cycles need be
examined in the search for sufficient conditions. Hence
the search is finite, and either succeeds or fails. From

REFERENCES

1. D.T. Goodwin (1977) Conditions for Underflow and
Overflow of an Arithmetic Stack, The Computer Journal
Vol. 20, pp.56-62.

2. D. T. Goodwin (1980) Partial Non-Underflow and Non-

Theorem 27 also, failure to detect these simple conditions
means that the desired infinity cannot be generated.

10. CONCLUSION

Happily all questions have turned out to be computable.

Acknowledgment

This series of articles would never have been completed
without my wife Valerie’s enthusiasm and
encouragement.

Overflow of an Arithmetic Stack, The Computer Journal
Vol. 23, pp.153-160.

3. D. T. Goodwin (1985) Further Study of a Stack-Length
Model, The Computer Journal Vol. 28, No.1, pp. 9-16.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 263

¥20¢2 I4dy 60 U0 1senb Aq ¥1G501/.52/€/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

