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A hardware pattern matcher is presented, which searches for patterns on a data flow, such as characters read from a
disk. The backing up on the data flow, for a general pattern matching, is avoided by means of a set of cells running in
parallel. Each cell can search for a pattern independently, but requires only one one-character comparator. The
interesting feature of this search hardware is the use of a simple priority line which can dynamically allocate these cells.
Further, the number of cells required can be arbitrarily reduced by means of a marking technique which is also
accomplished by the priority line. Finally, an information retrieval system, based on this basic pattern matching
hardware is presented. Here the content as well as the context search are done by usign the same marking technique.

1. INTRODUCTION

Conventional pattern matching in large databases, where
the data is stored on direct access secondary storages, is
done by transferring blocks of data into main memory
buffer and then searching through it. This process
requires a lot of data transfer from the secondary
storages while only a small fraction of it may be useful.
One way to avoid this unnecessary data transfer is to use
indexes. But this can be done only at the cost of creating
and maintaining a large index database. And the
problem of accessing a lot of unnecessary data still exists.
Another approach is to search for data directly on the
secondary storages by means of hardware, while data are
on the fly. This approach requires additional search
hardware on the disk memory system. But it will filter
out much of the unnecessary data, and the host, in turn,
needs to process only a very small fraction of tae
database. A significant amount of research work (1 — 4,6
— 12) has been done in designing such backend
Pprocessors.

Here, we will first describe one such backend processor
for text processing applications. We will then show that
the critical part of such a system is the pattern matching
hardware. One pattern matching hardware design will be
illustrated. And finally the advantages of this design over
other existing systems will be given.

2. BACKEND SEARCH SYSTEM

An architecture of a backend search system (reference
15) is given in figure 1. The basic structure of this system
consists of a disk memory system, a controller, a term
matcher, a query resolver, and some overall controller
for the backend system. The main issue of this system
is the design for the term matcher, because it must be able
to find terms (strings of tokens representing characters)
at a speed less than the character delivery rate of the disk
memory system. The query resolver, which processes the
results of the term matcher, determines whether the terms
occur in the correct proximity or match the required
boolean expression. Its processing requirements are
substantially less than the term matcher’s and can be
implemented using a high-speed microprocessor perhaps
with hardware augmentation. The function of the search
controller can be performed by either the query resolver
or another microprocessor, while the disk controller will
only drive the positioner for the disk heads.

Control
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controller

Programming

To host ¢—]

computer

system Query Term Search
Result resolver | matcher database

Fig 1. A backend search system

This search processing system can be attached to the
disk system at several points. However, there are a
number of advantages if we attach it directly to the
output of the disk drive. Thus, it requires no buffer, and
data are transferred only a short distance from the drive.
Therefore, no elaborate cabling is required. Furthermore,
if it is connected to each disk drive, a high degree of
parallelism results.

The direct connection of the search system to the disk
drive without the use of a buffer memory imposes some
severe requirements on the term matcher. The small time
window between the consecutive characters read may not
allow the text characters to be processed completely. This
is because a rotating disk will not allow backing up in
text to try another alternative when a character mismatch
occurs. For example, to find ‘ISSIP’ in * MISSISSIPPI’,
we will detect a failure when trying to match the ‘P’ of
the pattern against the third ‘S’ in text, and we can not
start with the second ‘I’ of text again because this
character is already passed in the data stream.

In the following section, we will present a term matcher
design, which avoids this backing-up problem by using
parallel comparison cells. We will then evaluate this
design and show its advantages over the existing
methods. Finally, we will propose a detailed design of an
information processing system using this hardware
design.

3. TERM MATCHER BY CASCADING
CELLS

Figure 2 shows the basic construction of the term
matcher. This term matcher uses a small number of
one-character comparators. Each one-character com-
parator will be called a cell. These cells are selected by
a priority-line. Each cell finds a pattern match
independently without having to back up in the text
stream. Whenever a possible matching string appears in
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the text stream, one idle cell is activated to test for
complete match. (By possible matching strings, we mean
those substrings in the text that begin with the same
character as that of the pattern). This activation is done
by the priority-line. When there is no more idle cells, the
priority-line will mark the database. And this part of the
text stream which is not processed will require another
revolution to search for matching, starting from the place
where there is a mark. For example, the pattern ABAB
and text ABABA will result in the following scenario:
Cell 1 is activated first, and it will try to find a matching
string starting with the first text character. When the third
text character arrives, we already have a partial match
with the substring AB found in Cell 1. But this third text
character could be a start for another possible matching
string. Consquently, a second cell will be activated at this
point. Now we have two active cells and they search for
matching independently.

From Text character _

data flow  $Mark -
Cell 1 Cell 2] - -«
— Mark database

Priority line

Fig 2. Cells for pattern matching in parallel

The algorithm presented here has some similarity to the
cellular approach of Copeland? and Mukhopadhyay?®. In
their approach, each pattern character is stored in a
single-character comparator, called a cell. Propagation
of a status bit in the cellular array eliminates the need
for backing up in the text stream. In our approach, the
backing up in the text stream is avoided by using one cell
tocheck for one possible matching string. The priority-line
is used to activate idle cells when there is a possible
matching string, it is also used to mark the database when
all the cells are busy. Furthermore, these mark bits can
be used to search for complex patterns, allowing context
search. The work by Healy* also uses mark bits to avoid
backing up in the text stream. A mark is used to set up
the context for the next character in the pattern there. In
our approach, we mark the database only when there are
overlapping matching strings.

4. HARDWARE DESCRIPTION

Figure 3 provides a term matcher design where each cell
of the circuit contains a one-character comparator. A cell
compares a text character with the pattern character, and
if it is a match, it compares the next character with the
next pattern character, and so on. A complete match is
found by a cell when this has proceeded up to the last
character of the pattern. The selector in selection circuit
is used to load the next pattern character in the pattern
register for the associated cell. A status bit S is set in a
cell when the cell is active and is progressing with a check.
When there is a mismatch, this bit is reset and the cell
becomes available again. A priority-line (L-line) is used
here to dynamically activate one of those idle cells to
check for matching. It will always carry a one in the first
revolution to allocate the cells to check the whole text
stream. This signal is transmitted through the L-line to
the right. While travelling to the right, if it finds a cell
available, the search is initiated on the cell, and the signal

> Text characters

vX X — X
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Fig 3. Details of a matching hardware

on the L-line becomes a zero. On the other hand, when
all cells are busy, this signal travels all the way to the right,
and is used to mark the text character on the database.
In subsequent revolutions, L-line will carry a one only
when the mark detector detects a mark. This signal will
activate one idle cell to check that portion of text that
was not checked in previous revolutions, and it will delete
this mark, too.

The state of each cell is given in Table 1, and the
corresponding logic diagram is given in figure 4.

Table 1. State table for ith cell

Sit1 Mit Lit Lt Sit
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

Where

L, t=Si*" ' ALt
Sit = (St v Lit) A Mit
Mi=|1 when match occur
0 otherwise
t: instant at which the present character is read

Text
character
character

FIF

i+1

L;

1

Fig 4. Details of logic diagram of ith cell

One possible design of the selection circuit is given in
Figure 5, where each row of the flip-flops is called one
selector and corresponds to one cell. If the ith cell is idle,
S; of this cell will be kept at zero, and the output of FF1
in the selector of that cell is always one (we call it select
signal), and outputs of other flip-flops are reset to 0.
Thus, the selection circuit always loads the first character
of pattern string to cell i. When the ith cell is activated
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and finds a possible matching string, S; will become one.
Thus, a zero will be fed into the selector and the select
signal at the output of FF1 will propagate to the next
stage. Then, the second character of the pattern string
is loaded into cell i to check for matching, and so on.

Match

Fi

. [er)

2]

First nth
character character

Pattern
register

Fig 5. Details of selection circuit

To synchronize the operations of cells and selection
circuit, we can use one clock in the matcher. The
operations that are performed during each cycle are
shown in Figure 6. The clock is connected to selectors
as well as each cell. In this design, the loading of a pattern
character can be done in parallel with the propagation
of the priority signal. On the other hand, comparison of
characters and setting the S bit have to be done after the
loading. Taking a conservative estimation we will need
10-gate delays for loading a pattern character during time
T,. In the same time, we can propagate the priority signal
as many as 10 cells. Note that with the facility of
independent checking, one cell will be enough to search
for the whole pattern. Referring to Figure 4, the
propagation delay in each cell (ie delays to compare and
set S bit) is less than 10-gate delays. Thus, one clock with
cycle time equals to 20-gate delays would be sufficient to
process a complete one-character comparison.

| |
I¢—————————One cycle—o’
|

Ty——sfe——T,—|

: *Loading pattern H

|
| _character |
: *Choosing idle : *Setting status
| cells "

*Comparing

I
I
|
|
1
i
Fig 6. Clock cycle in the matcher

In the rest of this section we shall give one typical
example to show how the cells perform searching in
parallel, how they are allocated dynamically, and how
the marks are used to defer the searching until the cells
become available in subsequent revolutions. Here, we
assume that the term matcher consists of only two cells.
A tabular form to show the operations in each cycle is
also given in Figure 7.

Pattern = ABAB Text = ABABABC

First revolution: BABABC,
1 1
2
. s
Second revolution ABA\!}A,%
1 1
Revolution . . . 1 2
Text . .. A B ABABZC A B ABABTC
Cell 1
Pattern A B ABABA A A A A AAA
L, 1 11 1 1 1 1 0 0 01 01
M 111 14110 0 000 O0OTO
Cell 2
Pattern A A ABABA A A A A AAA
L, o111 0 1 1 0 0 00 00O
S, 00 11 1 10 00 00 O0O0UO
Mark-bit (L;) 0001010 0 000 O0O0TUO
Match-bit 00 01 010 0 0 00 0 0O
\__J: Characters that are checked in cell i

i
+ : Resetting the status bit when complete match occurs

* : Marking the text characters and indicating it is not examined

Fig 7. An example of finding matches by a two-cell matcher

S. PATTERN MATCHING IN MULTIPLE
TEXT STREAMS

From the discussions above, we can see that the main
features of this design are the ability to dynamically
allocate the cells by using a priority-line and to
independently check for matching in each cell. With these
features in mind, some simple extensions could lead to far
more complex functions, like searching a pattern in
multiple text streams in parallel or searching several
patterns simultaneously.

One extension is to add one-character comparators to
the matcher of Figure 3. This is shown in Figure 8, and
we shall call them start-up cells. Several start-up cells are
used to search for multiple patterns. A start-up cell will
always compare the text stream with the first pattern
character. When the start-up cell finds a match, it will
activate one of the idle cells by using the same priority
line, to go on to check that possible matching string. The
synchronizer swithes the right pattern to the right cell.
This will be explained further later.

Text characters

' x} ] X3 x}

Mark Start-
detector | |up Ly, Cell, Cell,
R cell |—f —»
Synchronizer
X l Y, Y,
Start- j |—.{;Selection circuit ]
up
cell I I
R =1 Infirst revolution Pattern [Pattem, | Patternz]
0 Otherwise register

Fig 8. Matching hardware with start-up cells
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Another extension is to modify the selectors by making
them programmable. With a little more hardware, we can
make the select signal in the selector starts propagating
from ith flip-flop and ends in jth flip-flop. Thus, in
addition to dynamically allocating cells, we can
dynamically load desired pattern characters to each cell.

Assume that we try to match m patterns with one text
stream. To implement it in a parallel fashion, we can use
one start-up cell to search for each pattern, and keep a
small set of cells in a central area. Whenever a start-up
cell finds a possible matching string for that pattern, it
will signal the synchronizer. The synchronizer will, in
turn, try to activate one idle cell and switch the specific
pattern characters into that cell by properly programming
the selector associated with that cell. This will require
some extra hardware to implement the switching circuit
(ie the synchronizer).

We can also dynamically allocate a set of cells for
multiple text streams. For each stream, we can use one
start-up cell to search for possible matching strings in
that stream. Still, we need only keep a small number of
cells in some central area to serve for all the text streams.
If there is one match found in any stream, the start-up
cell corresponding to that stream will switch this data
stream to one of the idle cells. Again, the switching circuit
will require some extra hardware.

6. COMPARISON

As mentioned before, the matcher design here has some
similarity to the cellular logic. In cellular logic, pattern
matching is done through a cellular array. In our
approach the text stream is first searched by a start-up
cell, and then it is checked for matching by other cells.
Though the cells in our approach function much
intelligently from those in cellular logic, they have similar
construction — both are one-character comparators. We
can use cells in cellular logic array to construct cells in
our approach, as shown in Figure 9. Comparing with our
design in Figure 4, we do not have to store pattern
characters in each cell, because this function is taken care
of by pattern register.

Text characters

v Xy Xy Xy

Ic\lllark Start-up

etector | cell Cell Cell

R 1 r----: f i -;,1 ! f i -;:sl 2 f
F M I—.D—' H j I q

Note: The Basic Cell in Cellular Logic is
Xy

) P f=1 IfF=1and C=X at time ¢ 1
i .
i-.'C ——> 0 Otherwise

Fig 9. Construction of matcher using cells of cellular logic

From the analysis before, we see that it takes 20-gate
delays to compare one character in our design.
Comparing with the cellular lagic (8) we use twice the
time. The longer dalay in our design is because we have
to load pattern characters in each cycle. With a 5 ns/logic
stage for monolithic circuits, pattern matching can be
performed at the data flow rate of 10 million

characters/second, which still exceeds the data transfer
rates of high-speed secondary storages.

The features which make our design different from that
of cellular logic are the dynamic allocation of cells by a
simple priority circuit and the use of mark bits. They are
further explained below:

With the ability of dynamic allocation, we can use only
a small set of cells to search for several patterns
simultaneously. We can also extend our design to search
on multiple text streams using the same set of cells. In
cellular logic, because the cells are statically allocated,
we have to use as many arrays of cells as there are
patterns. Dynamic allocation is possible in cellular logic
but it is done at the cost of more expensive
interconnection network. Thus, the hardware complexity
is reduced considerably in our design and yet a high
degree of parallelism remains.

Marking technique is used here to mark a possible
matching string in the text when all the cells are busy.
Subsequent revolutions are required to check for
matching within that marked string. In practical
applications, those overlapping subpatterns are seldom,
so the set of cells can be reduced arbitrarily without
degrading the performance of the matcher too much. In
this way, we can minimize the hardware complexity
considerably.

7. APPLICATION OF MATCHING CIRCUIT
FOR DATABASE RETRIEVAL

A more general pattern matching operation and
information retrieval primitives can be implemented by
controlling L-line of figure 3 by a more general control
circuit. The mark detector of figure 3 now becomes a part
of this control circuit. Besides L, we use another input
line ‘RESET’ to reset the status bits of all the cells. This
is used to terminate all partial searches that may be in
progress in a cell. Figure 10 shows the hardware
organization of a stage consisting of a control circuit and
a matching circuit. The matching circuit is simply the
cascaded cells of figure 3, while the control circuit
provides the hardware to control L,,, mark bits,
RESET-lines, all under program control. In fact, the
database queries can be implemented by properly
masking the pattern characters, and executing a sequence
of operation codes. The operations use two types of
marks, namely, type A and type B. With these marks a
more general context search can be performed.
Communication between adjacent stages is needed to
allow a record to reside across track boundaries. A line
is used for this purpose to transfer the values of the
counters of the ith stage to those of the (i+ 1)th stage at
the beginning of each cycle. A ‘DONE’ bit in each stage
indicates that the stage has completed the operation. The
controller activates the next operation code when all the
stages are done with the current operation.

The control circuit consists of several flip-flops. Values
of these flip-flops control the Anchor (ie L;,), RESET,
Mark/Unmark A, and Mark/Unmark B lines. Which
flip-flop(s) will control a particular line can be selected
by means of the different bits of the operation code. The
flip-flops are reset by the clocklines at the begnning of
each cycle. The other control lines, namely L,,, and
MATCH are coming from the matching circuit, and the
‘A’ and ‘B’ lines are coming from the mark detectors.
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Text Pattern
character 1 I characters
Matching circuit

From To
(I-1)th stage ™ (I + 1)th stage

L;, Reset Match L,
| | —»Done
From |A—# Mark/
storage | g — Control circuit unmark A{ To
|— Mark/ storage
unmark B

Lines for
operation code
from controller

Fig 10. Hardware organization of the ith stage

The context for every search operation is established
by the mark bits. Three types of contexts, namely, open,
semi-open and closed are used in the application
discussed below. In open context, the whole text is
searched and no mark is necessary; in semi-open context,
on the other hand, every search is initiated by a mark
representing the left context. In closed context all the
consecutively marked characters represent the context.
Any particular context can be selected by the appropriate
bits of the operation code. The bits of the operation code
are described below.:

OC: open context

SC: semi-open context

CC: closed context

ANCA: anchor A-mark (ie an A-mark will activate the
anchor line)

ANCB: anchor B-mark

MRKA: mark character with A-mark

MRKB: mark character with B-mark

Conditions under which actual marking will take place
depend on the values of the MARK A (MA), MARK
B (MB), CURRENT MATCH (CM) and PREVIOUS
MATCH (PM) flip-flops. Any subset of these groups can
be chosen by the operation code, not shown here, and
their values can be ANDed or ORed. These flip-flops are
described in Table 2 below. A more detailed description
of the control circuit is given in Reference 11.

Table 2. Description of the flip-flops

FLIP-FLOP OPERATION

MA Set by an ‘A’ mark

Reset by _

(SC A MATCH A ANCA) v (CC A A A ANCA)
MB Set by ‘B’ mark

Reset by B

(SC A MATCH A ANCB) v (CC A B A ANCB)
CM It is set by MATCH

Reset by

MATCH A (OC v SC) -

or CC A (MA A ANCA) v (MA A ANCB))

PM Set by CM

Reset by CM

The example given below explains the use of the
operation codes and the flip-flops.

Example:
Find all occurrences of the supplier record with
supplier

name = ? SMITH ? CO
? stands for any string

We assume that the records are separated by the special
symbol ¢ and the fields within a record are separated by
the symbol a. The field name at the beginning of each
field identifies the field and is separated from the field
value by the delemeter S. The field name for the supplier
name is assumed to be SUPNAM. The following steps
accomplish the above query. Each step below represents
the execution of an operation code.

Comments
Step 1
oC=1 Mark first character of all
Mark with A-mark the supplier name value
when PM =1 field with A-mark

Contents of Pattern
register: aSUPNAMp

Step 2
SC=1,ANCA =1
Mark with B-mark
when MA v CM =1
Contents of Pattern
register: a

Mark all characters of
supplier name value mark
with B-mark

Step 3
CC=1,ANCB =1
Mark with A-mark
when CM =1

Contents of Pattern
register: SMITH

Search for SMITH in the
string whose characters are
all marked B. If a match is
found, mark all characters
in the name field following
SMITH with A-mark

Step 4
CC=1,ANCA =1
Mark with B-mark
when CM =1

Contents of Pattern
register: CO

Search for CO following
SMITH

Step 5
SC=1,ANCA =1
Mark with A-mark

Mark all records with
A-mark which has a

when CM = 1 B-mark present on any
Contents of Pattern character within the record
register: ¢

The use of mark bits for both data structuring as well
as query processing was first suggested by Parhami®. The
search time there was prohibitively long because of a
complete revolution needed for each character of the
pattern. The mark bits have also been used in RAPS!3,
CASSM™ and others, providing a hardware cost versus
reponse time trade-off for processing queries. CASSM
also uses a one bit wide random access memory to mark
backwards as well as related tuples in another relation in
the subsequent revolutions. These schemes use marks at
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the tuple level and are not sufficient for information
processing systems where manipulation at the character
level is required. Character level marking, for example,
makes implementation of embedded variable length don’t
cares simpler.

8. CONCLUSIONS

A hardware pattern matcher for data while it is on the
fly is presented. The advantages of this approach over
the others are given. In general, pattern matching
hardware can be very simple if the patterns do not require
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