A Data Dictionary for Learning Data Analysis

R.N. MADDISON* AND A.J. GAWRONSKI**

* Mathematics Faculty and ** Academic Computing Service, The Open University, Walton Hall, Milton Keynes, MK7 6AA

A data dictionary system, DADICS, was conceived and developed as an online activity for students of an OU data
analysis course. The system holds a highly structured knowledge base of facts about a number of conceptual data
models, corresponding modelling rules, and the user’s session state. These all form a semantic network of sentences,
each with a subject, verb, and one or several objects. By simple commands the user may: choose a model representation
— eg entities, attributes and relationships; select a local or global model; and list as sentences the relevant JSacts about
any element. Alternatively he may update a model, insert facts as discovered, and command the system to highlight
inconsistencies. The implementation is a relatively short general-purpose Pascal program that interprets the stored facts

to determine what is required.

1. STUDENTS’> AIMS AND OBJECTIVES

Many people and organisations have information that
they may wish to hold, manage and manipulate using a
computer system. Some people in industry, commerce
and government need education and training in the
techniques of data analysis developed in recent years. So,
as part of its Continuing Education programme, The
Open University decided to create a 40-50 hour self-study
course on Data Analysis For Information System Design.
It will be available from about May 1983 to anyone over
21 living in the UK who wishes to study it.

The course is intended for those who want a grounding
in the principles and skills of data analysis; those who
wish to learn to analyse, model and manage data; and
those managers who may move into areas where the
techniques are relevant and who need to appreciate the
problems, either to manage users or creators of database
systems or to specify application requirements.

Students will learn:

— why and how to analyse the structure of information
and thus develop local and global conceptual data
models as the first stage of design; various strategies
combining data and functional analysis are covered;

— why and how to normalize;

— various ways of representing information structure —
e.g. as entities, attributes and relationships or as
normalized aggregates;

- how to transform between the various model
representations;

- how to choose appropriately between the different
techniques, including considering factors affecting
practical applications and the use of a data
dictionary.

After the course students should be able to apply,
analyse, evaluate and synthesise these generalisations and
principles.

The course materials include:

— Course Text, Activity Booklet, Standard Telephones
and Cables (STC) case study, and Study Guide;

— two 24-minute video cassettes on loan for three
months;

— an audio cassette;

— online access for up to five hours to any of the main
computer systems of the OU Academic Computing
Service.

270 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

There are two activities in which students will learn by
doing online practical work. The first is solely concerned
with normalization. For the second, which is far bigger,
we have provided a new data dictionary system,
DADICS. This holds the data models for the STC case
study and two of the other contexts that students will have
met in their earlier study of the course. The structured
exercises using DADICS bring in all the main concepts
in the course. In their first few exercises students will be
guided through retrievals and the various model
representations. Then they will progress to more
open-ended exercises until eventually they should be able
to analyse stated requirements, create their own model,
store it in a dictionary starting from scratch, and check
its consistency.

The main concepts include: functional dependencies,
local and global conceptual data models, entities,
attributes, relationships, aggregates, pure entity types in
3NF, identifiers, candidate identifiers, synonyms, homo-
nyms, normalization, transforming between model
representations, various types of retrieval from and the
updating of a data dictionary, consistency and complete-
ness checks, and various ways in which all these can be
combined.

2. OUR OBJECTIVES

Thus in summary our task was to design and implement
a system to provide online practical work for each student
to reinforce understanding of all these concepts and
techniques.

No software package that could form the basis of
satisfying these requirements existed. It was necessary to
start from scratch. To keep down the cost of course
development the DADICS design and development costs
had to be kept to a minimum, ie within three months work
by each of two people. This constrained the design and
features, yet essentially was achieved.

After itemizing in far greater detail than above both our
and the students’ objectives we had three main tasks to
construct the new practical activity:

— to create the rules and details of the main example
contexts round which the students’ exercises would
later be formed;

— to specify, design and implement the software;

— tocreate and test the students’ exercises and write the
descriptive text.

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

Our main purpose here is to describe the software. In
practice we iteratively refined the software design and
development as the three tasks interacted.

3. NON-DBMS METHOD

To base the design around an existing database
management system, eg the Codasyl-based DBMS or the
relational (RDBMS) software available on the Open
University Academic Computing Service DEC system
computers initially seemed ‘obvious’. But it was quickly
realised that any such data dictionary would very quickly
become highly inflexible, would not meet the detailed
teaching objectives, would take too long to implement
and cost too much.

For example in detail as shown in Figure 1 we wanted
a student to be able to choose an example context, eg
STC, being one of several with which he or she was
already familiar, and change easily between viewing its
global conceptual data model and any local model, eg Bill
of materials. We wanted students to view any such model
as any one of’:

- entity, attribute and relationship types (EAR) -
without duplicated attributes;

— pure entity types (PET), ie in third normal form -
where attributes may be duplicated in different entity
types and no relationship types exist;

— aggregates — where attributes are grouped according
to what they are fully functionally dependent on,
identifying attributes may be duplicated, and then
relationship types are added.

READY !

dadics
Welcome to DADICS 1B(1)-5,

Please choose context from:
NilL,
sTC,
Tv-Rental,
University,
Erroneous Tv-Rental,

by typing N, S, T, U or E > STC chosen.

> Select: Bill-of-materials
> Model: AR

> List: entity-type
Material-item
Method

Component

> List: Material-item
Material-item has-unrel-ident Product-code
has-unrel-fun-d Stocking-unit, (in-3ill-of-m), (in=-Routing-TD)

Description, (in-B8ill-of-m), (in-Routing-TD)

Status

Product-group
belongs-to Bill-of-materials
Routing
Routing-Transmission=Div
Routing-TXE&4
Costing
has-descript-at Description, (in-Bill-of-m), (in-Routing-TD)
has-cardinality 120000

indicates a product used or made

was-chckd-by-on 8.McAlister, 11Feb3d2

How-procured has-owner Material-item

Where-used has-owner Material-item

> Help: Stocking-unit
Sto abbreviates Stocking-unit
Stocking-unit is-of-type attribute-type

Stocking-unit indicates e.g. kilograms metres hundreds

> EXIT
Do you want to finish off (Y/N): Yes
If you've made any changes or defined your own dictionary,

would you like to retain this for another terminal session (Y/N): No

Figure 1. Brief example student online dialogue

We also wanted a student to be able to store in any order
all the items of information that an analyst would have,
like the order that an analyst might receive or deduce
them; and be able to command the system to list and
explain every inconsistency. Such inconsistencies and
incompleteness should indicate areas of the conceptual
data model needing further work. It was relatively easy,
though time consuming, to define the various rules
describing the information content as this is highly
structured.

We did not expect students to have met Codasyl or
relational database manipulations, or Codasyl schemas;
and we did not want them to be sidetracked by or have
to learn any such details. So if such features were present
underlying the implementation, for ease of use such
features would have to be hidden completely from the
student users.

We felt that to meet the requirements by developing an
application program that used an existing database
package would be impossible within the person months
available for analysis and programming.

4. SEMANTIC NETWORK

Instead we developed a relatively short Pascal program
that does not use an existing DBMS. It has a collection
of procedures that input, display and interpret the user’s
commands. These call other procedures that manipulate
a semantic network of stored facts. The database of facts
include the details of the local and global conceptual data
models for the chosen context, eg STC. The facts also
include the rules of the model representations, eg rules
about entities, attributes, relationships, consistency and
completeness. The facts also hold the user’s session state,
eg that the latest Model command requested EAR

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 271

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

R.N. MADDISON AND A.J. GAWRONSKI

Program procedures (in Pascal) —
each calls lower procedures.

Data structure envisaged

Execute a command, eg Select, List.

Perform a procedure on sentences;
eg for all sentences matching a
high level pattern do a procedure.

Perform a procedure on a short
sentence; eg insert, delete,
check if present.

Perform a low level procedure on an
element, eg insert, lookup, match
an incomplete word.

Semantic network of logical
sentences, with subject, verb,
objects.

Semantic network of short sentences,
with subject, verb, object.

Record structure of elements, with
pointer chains, forming the
dictionary.

Element with token of characters,
being a word, term or name.

Figure 2. Programmer’s view during development of DADICS

representation, and that the latest Select command
selected Bill of materials. The facts are to be used in many
different ways.

All this knowledge is held in the same form, as
sentences with a simple syntax. Each sentence has one
subject, one verb, and one or more objects. Each subject,
verb and object is an element, ie a token which is a string
of characters not including space or comma and
representing a word, term or name. The elements on their
own each have no meaning. Example tokens are: STC,
EAR, entity-type, Select, Bill-of-materials, Material-item,
Bom, et, Mati. We shall describe the semantic network
and the commands in turn. Figure 2 shows the structure
of the entire system.

The semantic network enables facts to be viewed in a
natural and straightforward way, as sentences. To the
student user each sentence consists of subject, verb and
one or more objects. Each subject, verb and object is a
word, term or name. In this logical view each sentence
represents a fact. Facts can be inserted and removed in
any order. Consistency and completeness are not
required at each update. Indeed an analyst may work with
local models that seem inconsistent. Although each
sentence individually makes sense, part of the meaning
and structure arises because the same word, term or name
occurs in several different sentences.

A command, Describe, is available to retrieve all
sentences containing a given word. More useful, however,
is the List command, which uses other sentences as rules
to decide whether or not a particular sentence should be
displayed, and if so then how. The output from the simple
command ‘List Material-item’ thus depends through the
semantics of related sentences on the model representation
— eg EAR, and the selected local model - eg
Bill-of-materials. This makes the list command easy to
understand and use by the student. Behind the scenes,
however, it needs efficient pattern matching procedures.

The physical storage structure is chosen for efficiency.
This structure is not seen by students. The words, terms
and names collectively form the elements. Each record
represents one element. Its data is: a token which is the
lexical character string for printing that element; together

with the pointers to link that node to others so as to
represent the semantic network.

The semantic network chains represent directly all
sentences that are subject, verb and single object, called
‘short’ sentences. Most logical sentences are short.
Logical sentences with two or more objects are
represented similarly. The higher level pattern matching
procedures deal with long to short sentence conversion
on the fly. Retrieval of all short sentences that involve a
given element in a given way, eg as subject, involves only
direct pointers, with no searching or testing. The pointer
chasing turns out to be very efficient. Most of these short
sentences will be a full sentence. Each other such short
sentence found will correspond to one long sentence that
can be reconstructed similarly. In practice the program-
ming requirement is not so often to retrieve each sentence
meeting a criterion, but more frequently to execute a
named procedure on each such sentence, and the middle
level procedures provide this directly. All elements and all
sentences are distinct. This is ensured by the insertion
procedures so it can be assumed by the retrieval
procedures.

5. THE COMMAND INTERPRETER

As each student works alone, and may be an
inexperienced or casual user of computer systems, the
system must be friendly, helpful and easy to use. We
wanted minimum student time spent on preparatory
reading before the first online session. So the system is
command driven, a technique we have found very
successful for many other student packages. Each keyed
command gives an immediate response. The commands
are simple to learn, powerful and versatile. Several kinds
of help are available, so that the documentation is hardly
needed.

Key strokes are minimised. For example each
command is invoked by a single key stroke for its initial
letter. For all commands the system fills out the rest of
the command word. It also prompts for a further word
or sentence if the command need:s it.

When keying as a word any element that exists already

272 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

in the dictionary the student needs only to key enough
characters to distinguish it — usually only two or three
characters. The student may make the system attempt to
recognise and complete the word by keying Escape.

All common words have abbreviations, usually of two
to four letters — eg ‘et’ abbreviates entity-type. Students
need these since some pairs of elements, eg Customer-no
and Customer-name, have too many matching leading
letters for quick easy distinct keying. ‘Cuno’ and ‘Cunm’
are easier.

At any time, ie when stuck, the student may key a
question mark. This can be when a command is expected,
or between words, or within a word. The system’s
response gives all options available at the current level;
then repeats the incomplete line and allows the student
to continue input.

The syntax is simple: a command word followed where
appropriate by one or several elements. The only
separators are space, comma and return. Any invalid
character produces an audible bleep, it is not displayed,
and the student can continue the line. Syntax is checked
as the command line is keyed, not at the end of the line
— except that word spelling is only checked at the end of
the word or when Escape is keyed.

The combination of these features facilitates the
implementation of a very simple command parser. Free
format is not a problem and error recovery is quite
straight forward.

Several forms of help are available. As stated above,
keying a question mark will produce the available
options, eg provide a list of the elements from the
dictionary that match the current incomplete word.

A powerful Help command is provided. The H for Help
may be used alone (followed by return) or followed by
any element, eg by the name of any command. Help alone
produces a list of the commands and control character
functions. Help followed by a command name produces
an explanation of that command. Help Model and Help
Select also state the current model representation and
what is currently selected, ie session state information.

Help followed by any other element produces text
stating its abbreviated and full forms; its type; and free
text indicating its meaning — provided such descriptions
exist in the knowledge base of stored facts. If the word
is undefined, ie not in the dictionary, then that is stated.
If the word is a synonym, or a synonym for the reverse
of some other word, then that is stated — eg owns is the
reverse of has-owner. A chain of synonyms is followed
recursively.

Using the simple List command, consisting of keying
just L (for List:) followed by one element, many kinds of
lists are available. These include, for example, the
following, where the bold characters are keyed by the
user.

— List the available conceptual data models (List : cdm).

— List details of a named conceptual data model (eg
List: Bom).

— List the attribute types of the selected model (List:
at).

— List its entity types (List: at).

— List its relationship types (List: rt).

— List functional dependencies, ie which attribute is
functionally dependent on which others (List: fd).

— List synonyms (List: syn).

— List identifiers of each entity, or candidate identifiers
of each, or functionally dependent attributes of each.

— List details of a named entity type, eg Material item
(List: Mati).

— List details of a name relationship type.

— List details of a named attribute type.

Where appropriate, many of the above commands will
produce different lists as output depending on:

— the context previously chosen, eg STC;

— the current model representation, eg EAR or PET or
Aggregates; from the latest Model command;

- the element(s) currently selected. This can be any
element, eg the name of a local model; or any
combination of elements; or ‘all’; from the latest
Select command.

For example with model EAR and with a selected local
or global conceptual data model such as Bill-of-materials
in STC, when listing a named entity type, such as
Material-item, the following types of information will

appear:

— the identifying attributes (where these are unrelated
to any other entity);

— functionally dependent attributes;

— descriptive attributes;

— optional attributes;

— which conceptual data model the entity belongs to;

— cardinality;

— free text description;

— the analyst who was responsible for the definition;

— the date of the analyst’s definition;

— relationships that this entity is owner of and those it
is a member of.

Theexecutionis accomplished by interpreting appropriate
stored facts to decide which others to display.

6. METALEVELS OF FACTS

These many kinds of lists and the consistency checking
of incomplete stored models are all implemented by
interpreting certain stored facts. The interpretation
controls procedures that act on other stored facts. We
designed the system so that we, as implementors, but not
the students, think of the stored facts as forming several
metalevels. For simple ease of use it is probably better
that the student is unaware of the underlying structure,
so the users can be completely unaware of what follows.

Each metalevel involves elements and facts that
represent rules that describe classes of allowable elements
and facts at the next lower level. Metalevel 0 means the
representation of the real world universe of discourse and
equivalent database item occurrences.

The student learning data analysis works at metalevel
1. For examples: Material-item is the name of an entity
type; it has full identifier Part #, Issue # and Location # ;
these three are named attribute types.

Metalevel 2 includes facts such as: the term entity-type
is-of-type modelling-concept; at metalevel 1 zero or more
elements may be defined to be an entity-type — eg
Material-item above. Metalevel 2 includes similar facts
aboutothermodellingconcepts, egthe termattribute-type.
It includes that the term has-full-identifier is a modelling

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 273

CcPJ 28

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

R.N. MADDISON AND A.J. GAWRONSKI

verb; and that each entity type may have a full identifier
consisting of one or more attribute types. Metalevel 2
includes many tens of similar facts. Each describes a valid
way of use at metalevel 1 of one particular modelling verb,
with appropriate particular modelling concepts. It also
includes facts stating which modelling verbs belong to
each model representation.

The metalevel 2 facts are sentences that can be both
interpreted by the programmed procedures and used
without change in help messages, explanatory error
messages, and warning messages to student users.

Our research showed that whether or not a particular
metalevel 1 fact belonged to a particular model
representation could be arranged to depend only on the
modelling verb — ie on the second word in the metalevel
1 sentence. The non-dependence on subject and on the
objects gives an enormously advantageous simplification.

Metalevel 3 has just a few facts representing in exactly
the same way rules that cover all metalevel 2 facts, and
SO on.

This structure was chosen for several reasons. First it
allows many kinds of list to be produced from a short
general Pascal procedure. Essentially it interprets facts at
metalevels 2 and 3 to cause printing of the appropriate
metalevel 1 facts in the appropriate sequence. Elements
such as attribute-type and has-full-identifier do not
appear in the procedure coding. Appendix 1 gives an
example. Appendix 2 gives the formal rules.

Second it allows users to insert and to remove facts in
any order. Most editor systems require the user either to
key commands to indicate the place eg where an insertion
is to be made, or to handle line numbers similarly. Since
in DADICS no information is carried by the sequencing
of (metalevel 1) facts, students do not have to learn any
syntax or semantics of editing operations.

Although retrievals and insertions seem quite natural,
there are associated problems. A user can key in nonsense
such as contradictory facts. This was a deliberate design
decision. For example while an analyst is creating a
conceptual data model a name that starts as an attribute
type may later become an entity type or a relationship
type. The fact that it was an attribute type name can be
removed as easily as it was inserted originally. This would
not be possible with a data dictionary that insisted that
at all times the incomplete stored facts were entirely
consistent. To help maintain consistency of the data
dictionary contents we have stored the meta rules and the
meta meta rules. These can be used to validate the
consistency of the contents. A command is available to
apply the consistency rules either to a named element or
to all. The checks include:

- that an element is a synonym or abbreviation for at
most one other;

— that elements used in facts other than abbreviations
or synonyms are defined to be of an appropriate type;

— that every fact conforms exactly to a meta-rule
allowing it to exist, with every element in it being of
an appropriate type;

— that in an EAR model no attribute appears in more
than one entity.

Third, it allows consistency checking to be done fast. The
command ‘ Apply rules to: all’ checks each element in the
dictionary in turn. While dealing with a particular
element, all the facts with that element as subject are

checked. Each fact is thus checked exactly once — when
its subject element is checked. If the element is the subject
in any sentence other than a synonym or abbreviation
then it must be defined to be of some type. Each sentence
in which that element is the subject must have its subject,
verb and objects matching by types those of a higher
metalevel rule that allows that sentence, else that sentence
is erroneous.

This same checking algorithm applies to all elements
and facts; it does not depend on the metalevel. When the
student commands a consistency check of a single named
element, its abbreviation (if any) is found, and synonyms
(if any) are followed through to find the preferred terse
form. The checking is then as above. If this element is the
subject in any sentence then it must be defined to be of
some type. Other sentences involving the element must
conform to rules.

For most elements the first facts inserted with that
element as subject give the abbreviation and type. Hence
these frequently needed facts are quickly found, later
insertions having been made at the end of the semantic
network chains.

Hence the entire dictionary can be checked with an
acceptable response time. When the OU ACS computer
is heavily loaded the response is about ten seconds for
checking all the STC information, which has about 1200
facts involving 500 elements. During development of
DADICS we used this procedure with considerable
success both to check our example context models and
to check our higher metalevel rules.

Fourth, the procedure during a list command is simple,
fast and straightforward. The procedure is essentially to
find and list the relevant appropriate metalevel 1 facts that
fit higher metalevel rules. Our algorithms and semantic
network pointers avoid any searching.

Fifth, if during the execution of a List command some
appropriate allowable facts are not found then the
student’s model may be incomplete. This gives quite a
different kind of check from the Apply rules command.
Whereas the apply command looked at each metalevel 1
sentence and checked whether it fitted a metalevel 2 rule;
the list command takes each metalevel 2 rule and finds
the metalevel 1 sentence(s) that fit it. For each metalevel
2 rule that says something should have or may have
corresponding metalevel 1 facts, and for which no such
facts exist, the student’s model should have or may have
further facts added. This procedure can thus produce
warnings of all the possible types of missing yet allowable
metalevel 1 facts. Each omission can optionally produce
a warning message, part of whose text will come from the
relevant higher metalevel fact. Using the Warnings
command the student can opt for such warnings to be
either suppressed or printed. Data dictionaries usually
hold details such as analysts’ names, dates and
information sources. We did not want warnings to
students about omissions of such facts, since they are not
relevant to the teaching objectives and might be
frustrating. So we have arranged that unimportant
warnings are always suppressed. This is achieved by the
interpretation of further stored facts — eg ‘information-
source-is belongs-to no-warning-verb’.

Sixth, having all the metalevel facts stored in the same
way made our testing and development easier. We could
insert and remove facts representing rules easily during
a test run. Source coding changes and recompiling were

274 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

rare. As a consequence the project never became bogged
down in program or data testing or system development
because the system could tell us immediately of any gaps
or inconsistencies.

The student is completely unaware of the existence of
meta-facts and rules and of any implementation details.
The sentences do not form a natural language or very high
level data description language, though at first sight they
may appear to do so. The only structure embedded in the
Pascal program is that a sentence consists of elements as
subject, verb and objects. There are only a small number
of element names referred to in the source coding of the
Pascal program. These include the names of the
commands and a few elements such as modelling-concept,
may-have, is-of-type, belongs-to. The program is the
coding of the procedures that give the real meaning of the
sentences involving these reserved element terms. This
gives extensive flexibility from an operational point of
view. For example, a new kind of conceptual data model
representation could be added without alteration to the
Pascal program.

Each fact does not make reference to any other fact.
Each fact may be thought of as a meaningful association
between particular elements — the class of meaning being
carried by the verb element. This essentially allows the
user to store almost anything.

Since the rules are logically separate from the program,
the system is general purpose — suitable for a number of
different application areas. In principle it can be extended
to cover schemas, conceptual process models, programs
and the interrelationships of all these. In principle each
collection of sentences that has a particular verb can be
thought of as a relation with the subject, verb and object
as items which together form the useful identifier.

7. QUALIFIERS

In STC there are several local data models. These are not
fully consistent with each other. For example in
Bill-of-materials the entity type Material-item is identified
by Product-code. In TXE4-routing there are two entity
types, Part-issue and Material-item. Part-issue has
identifier Part-no and Issue-no; and amongst its other
attributes some of the dependent attributes of the
Material-item of Bill-of-materials. The TXE4-routing
Material-item has as its identifier Part-no, Issue-no and
Location-no; and amongst its other attributes some of the
other attributes of the Bill-of-materials Material-item.

Some of the differences can be resolved because they
are synonyms. But others cannot. In developing a global
conceptual data model some discrepancies can be
resolved by adopting a more general structure. But to
correctly store all the STC local views needs qualifiers on
certain facts, such as on what is the identifier of
Material-item. Qualifiers are our way of representing
time, manner and place phrases of ordinary english
sentences.

A qualifier is an element for which there is a stored fact
that says it is of type qualifier-type. Any fact that includes
a qualifier among its objects is regarded as only true
within the situation in which that qualifier is true. For
example the qualifier ‘(in-Bom)’ is arranged to be true
within Bill-of-materials, by the existence of the fact
‘(in-Bom) belongs-to Bill-of-materials’.

8. SELECTION

The student can select a particular local conceptual data
model — eg Bill-of-materials. Alternatively he can select
any main element, e.g Material-item, which is an entity
type, or Part-no which is an attribute type. He can also
select a list of elements, but rarely needs to do so. Select
‘all’ is available.

It is possible to test by various simple algorithms
whether or not any particular fact is currently selected.
The command Select Bill-of-materials essentially only
stores the fact that ‘ Select has-currently Bill-of-materials’,
to remember the current state. During the execution of
acommand such as List Material-item a number of stored
facts are retrieved internally. Each of these is a potential
fact for printing. Each such potential fact is subjected to
a test-select procedure. If the stored facts include * se]ecto
includes all” then the potential fact will indeed be printed 2 3
Otherwise whether or not it is printed depends on:

peoju

— whether or not any of its elements are among the llstg
of selected elements;

— whether or not any of its elements are related to any3
selected element through a fact using belongs-to asc
the verb;

— whether or not the potential fact has got quahﬁersO
and whether or not the qualifiers are so related; %

— whether or not the potential fact involves a modellmgo
verb which is only appropriate to a particular model2
representation; for example model EAR does not

(e31}

include candidate identifiers; 3
whether the subject of the potential fact is among theo
selected elements or belongs to a selected element, m—
the case where the verb belongs to a particular classm
defined by a higher metalevel statement; this ensures
appropriate selection of facts such as that aZ
relationship has a particular entity as owner, since®
the relationship need not belong to a local model even™>
if the owner entity does;

whether or not at least one of the objects of the3
potential fact is similarly related. Thus for exampleh
a potential fact that a particular entity has az
particular dependent attribute will only be selected ifo
the attribute belongs to the currently selected local

S0¥/0.2/€

model.

9. NORMALIZATION

The Normalize command is used to synthesise Third
Normal Form structures from the functional dependenCIes N,
that involve the selected attribute(s). Attributes can
alternatively be selected by selecting the local model(s)
that they belong to. Thus for example new local models
that are combinations of existing ones can be synthesised.

Thecommand to normalize the functional dependencies
uses the same test-select procedure to retrieve those facts
about functional dependencies that involve any attribute
that is currently selected. These attributes are then listed
inalphabetical order. The selected functionally dependent
facts are then listed. The attributes are then grouped
according to what they are functionally dependent on. All
those in a particular group are functionally dependent on
the same collection of attributes. That collection becomes
the identifier for an entity type in third normal form.
There are special procedures for dealing with and
showing candidate identifiers.

Z Iudy 01 uo}

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 275

18-2

R.N. MADDISON AND A.J. GAWRONSKI

10. OTHER COMMANDS

The Create command allows the user to define a new
element and optionally to give it an abbreviation. Behind
the scenes this creates two new elements linked by a fact
such as ‘Bom abbreviates Bill-of-materials’.

The Describe command prints all known facts that
involve a particular element. This works irrespective of
whether or not the facts are consistent.

The Help command gives help such as a description of
any other command, or help with any named element.
For an element it gives the abbreviation, what it is a
synonym for, that the element is of a particular type, and
any free text description indicating the meaning of the
element. Commands such as ‘Help model’ and ‘Help
select’ also give the current state.

The ‘Insert fact’ command does just that. But if the
user types an element that does not already exist then he
is asked whether it is spelt correctly. If yes then Create
is invoked - giving an opportunity to create an
abbreviation, then the original insert fact command is
continued. With over 1000 words in the dictionary this
gives an automatic spelling checker, since an attempt to
insert a fact using a non-existent word produces a prompt
asking if it is spelt correctly.

The Remove fact command removes an existing fact.

The commands Terse and Verbose control the use of
abbreviations in output.

The Overlay command allows the fast insertion of a
collection of facts held one per line in a named file.

The Exit command asks the user for confirmation — in
case the user keyed an E by accident, and gives
opportunity to store the current data dictionary contents
as a file to allow continuation later.

The Warnings command allows the user optionally to
switch on or off the printing of warnings about missing
facts during execution of a List command. However, even
with warnings switched on, the suppression of distracting
classes of warnings such as concerning information
sources or analyst’s names can be automatically arranged
by the presence of suitable stored metalevel facts.

Each command is programmed as a Pascal procedure
— in some cases less than twenty statements. These call
other high level procedures, eg to enable the user to input
the rest of the command line — being a fact or an element
or a list of elements; and appropriate processing and
output. The high level procedures can call other
procedures — eg one of which will cause a named
procedure to be carried out for each sentence that has a
particular element as a verb.

11. FURTHER DEVELOPMENT

After the student version was completely developed the
use of DADICS for research was considered. A facility
has been added whereby the user may insert facts that
define new commands and procedures in terms of existing
commands and the 30 or so low level procedures and
functions that are explicitly programmed in Pascal. A new
named procedure is defined by inserting one or more
sentences with the name as subject and ‘means-do’ as
verb. The rest of the sentence looks like a statement or
block in Pascal. Available constructs include: repeat ...
until ...; if ... then ... else ...; begin ... end; boolean
expressions involving parentheses, and, or, not; and

unlimited nesting of all kinds. Since facts can be inserted
and removed in any order, the definition of inner
procedures can be inserted or altered after the outer ones.
They can be missing when execution of an outer
procedure is attempted, producing an execution error. In
general whenever an error occurs during the execution of
a user-defined procedure a trace is automatically invoked.
This produces details of the interpreted execution of the
command that caused the error, including details of all
calls of inner procedures. During the testing of new
procedures the tracing can be controlled, for example to
suppress the trace of some inner construct that is known
to be correct, by inserting or removing metalevel facts
involving the element ‘ want-trace’.

To cut development time and cost, in a few places our
existing Pascal coding explicitly represents some rule.
These places could be reprogrammed in a more general
way to interpret new stored facts representing those rules.
Thus one could give further generality and remove from
the Pascal coding all knowledge of the rules of the data
dictionary, its model representations, and its user’s
procedures. The explicit coding of most of the existing 15
commands of Table 1 as blocks of statements that call
lower level procedures could be replaced by stored facts
which could be interpreted to have the same effects. These
procedures could then easily be further enhanced if
required.

Table 1

The following commands are available.

Apply consistency rules Create element Describe
Exit Help Insert fact
List Model Normalise
Overlay Remove fact Select
Terse mode Verbose mode Warning

It might be possible to formalise the current system and
make it more general purpose than a data dictionary. It
could provide a means of defining rules of a high level
language and the types of data structures involved and
testing out examples. It could also be arranged to behave
more as an intelligent knowledge-based system with a
general structure of facts and rules about the facts and
rules of procedures.

12. CONCLUSIONS

Dadicsis a general purpose data dictionary system mainly
driven by interpretation of stored facts. This gave easy
and cheap implementation. Students have been able to
learn to synthesise data analysis concepts by using it.

Great flexibility results from having the metalevel facts
stored and manipulated just like the ordinary data
dictionary contents. Rules of model representations can
be created and changed online without reprogramming
or recompiling. Powerful new procedures using combina-
tions of existing ones can similarly be created and
interpretively executed.

There is scope for further work to store further
procedures as interpretable data. This would facilitate
easy creation of further even higher level procedures and
model representations.

276 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

User dialogue

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

Table 2

Programmed procedure

> Select: Bill —of —materials

> List: entity-type

Material-item
>Model: EAR

> List: Material-item

— Deal with abbreviation.
Insert selection.

— Deal with abbreviation.
Check for et is-of-type ?

Check for mc is-of-type ? (not found)
If absent:

for each case of 7S is-of-type et:

if selected, e.g.

Mati belongs to Bom

« then print S (verbose by default).
(Repetitions omitted.)

— Check valid.

Insert model.

— Deal with abbreviation.

Check for Mati is-of-type ?

Check for et is-of-type ?

If present and = mc:

for each metarule, e.g.

et may-have 7V ?0-type

where V is-of-type modelling verb
and belongs to current model

do: for each Mati V ?0:

check it fits metarule, e.g.

O is-of-type O-type

If selected, e.g.

O belongs to Bom

« then print sentence Mati V O.

Material-item has unrel —ident Product —code

If no fit found and warnings on then print
warning.
(Repetitions omitted.)

> Apply rules to: Mati— If to all then repeat as below

for all elements.
Check synonyms, abbreviations.

Check only one Mati is-of-type ?

If present: for each Mati ?V 70:

find V is-of-type 7V-type

find O is-of-type ?0-type

Check for metarule(s), e.g.:

et may/should-have V O-type

Attributes such as Prcd should appear only
once in the entities of an EAR model, i.e.
using unrelated verbs.

If metarule not found or other error then
print explanation.

Consistency check completed.

THE COMPUTER JOURNAL, VOL. 28, NO

Stored facts

« Bom abbreviates Bill-of-materials
— Select has-currently Bom

« et abbreviates entity-type
« et is-of-type mc
mc abbreviates modelling-concept

« Mati is-of-type et

« Select has-currently Bom

« Mati belongs-to Bom

« Mati abbreviates Material-item

« EAR is-of-type Model-representation-type
— Model has-currently EAR

« Mati abbreviates Material-item

« Mati is-of-type et

« et is-of-type mc

mc abbreviates modelling-concept

« et may-have hui at

at abbreviates attribute-type
« hui is-of-type mv

mv abbreviates modelling-verb
« Model has-currently EAR
« hui belongs-to EAR

« Mati hui Prcd

« Prcd is-of-type at

« Select has-currently Bom

« Prcd belongs-to Bom

« hui abbreviates has-unrelated-identifier

« Mati abbreviates Material-item
« Mati is-of-type et

« Mati hui Prcd

« hui is-of-type mv

« Prcd is-of-type at

« et may-have hui at

. 3,1985 277

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

R.N. MADDISON AND A.J. GAWRONSKI

Table 3. Contents of a ‘Nil’ data dictionary

ab ab abbreviates wcbo ab was-chckd-by-on

it ab is-of-type el ab element

ow ab owns-relationship maho ab member-may-have-related-owner

ho ab has-owner muho ab member-must-have-related-owner

id ab is-domain-of oahm ab owner-may-have-related-members

hm ab has-member ouhm ab owner-must-have-related-members

mc ab modelling-concept ouhlm ab owner-must-have-one-related-member
mv ab modelling-verb mnco ab member-must-not-change-owner

et ab entity-type maco ab member-may-change-owner

rt ab relationship-type

at ab attribute-type

degt ab degree-type

domt ab domain-type

cdm ab conceptual-data-model
prt ab property-type

rolet ab role-type

afa ab arises-from-at

Int ab Integer-domain
Stlg ab Sterling

Nam ab Name-domain
qt ab qualifier-type

nwv ab no-warning-verb
mvea ab m-verb-ent-att
mvre ab m-verb-rel-ent

acty it mc

afr ab arises-frm-role at it mc
hca ab has-cardinality cdm it mc
hfd ab has-funct-dep degt it mc
hufd ab has-unrel-fun-d domt it mc
acty ab activity et it mc

ev ab event ev it mc
sch ab schema exct it mc
ssch ab subschema prt it mc
agg ab aggregate-model qt it mc
ear ab ent-att-rel-model rolet it mc
pet ab pure-ent-type-model rt it mc
hmv ab has-modelling-verb sch it mc
model ab model-representation ssch it mc
isf ab is-synonym-for mv it mc
sh ab should-have ab it mv
mh ab may-have afa it mv
cr ab consistency-rules afr it mv
be ab belongs-to be it mv
cbib ab can-be-ident-by hci it mv
hfi ab has-full-ident hda it mv
hci ab has-cand-ident hdeg it mv
hui ab has-unrel-ident hdom it mv
hupi ab has-unr-part-id hca it mv
isi ab info-source-is hexc it mv
iro ab is-reverse-of hfd it mv
cont ab contains hfi it mv
syn ab synonym hfor it mv
fd ab functional-dependency hm it mv
hda ab has-descript-at hmv it mv
ind ab indicates ho it mv
hdeg ab has-degree hoa it mv
hdom ab has-domain hpr it mv
hoa ab has-optional-at hui it mv
hfor ab has-format hufd it mv
hpr ab has-property hupi it mv
ifdo ab is-funct-dep-on ifdo it mv
hexc ab has-exist-condn ind it mv
exct ab exist-condn-type isi it mv
OorltoOorl ab none-or-one-to-none-or-one iro it mv
Oorltol ab none-or-one-to-one isf it mv
Oorltom ab none-or-one-to-many it it mv
1to0orl ab one-to-none-or-one mh it mv
1tol ab one-to-one sh it mv
1tom ab one-to-many wcbo it mv
mtoQOorl ab many-to-none-or-one at mh ifdo at
mtol ab many-to-one et mh hui at

mtom ab many-to-many

278 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

et mh hupi at

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

et sh hfi at

et mh hci at

et mh hufd at

et mh hfd at

rt sh ho et

rt sh hm et

rt sh hdeg degt
rt mh hexc exct
rt mh afa at

rt mh afr rolet
et mh be cdm

rt mh be cdm

at mh be cdm

et mh hda at

et mh hoa at

et mh hpr prt

at mh hpr prt

at mh hdom domt
et mh hca el
cdm mh ind el
et mh ind el

rt mh ind el

at mh ind el
domt mh hfor el
domt mh ind el
rolet mh ind el
qt mh be el

qt mh ind el
cdm mbh isi el

et mh isi el

at mh isi el

cdm mh wcbo el
et mh wcbo el
at mh wcbo el
rt mh wcbo el
acty mh wcbo el
ev mh wcbo el
domt mh wcbo el
rolet mh wcbo el
prt mh wcbo el
mveat it mc
mvea it mveat
mv mh be mveat
mv mh ind el
nwv it mveat

cr it mveat

hci be mvea

hfi be mvea

hui be mvea
hupi be mvea
hfd be mvea
hufd be mvea
hda be mvea
hoa be mvea
mvret it mc
mvre it mvret
mv mh be mvret
hca be mvre

ho be mvre

hm be mvre

ind be mvre

isi be mvre
select it mc

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

Table 3 (cont)

model it mc
model mh hmv mv
ear it model
pet it model
agg it model
tra it model
ear hmv be
ear hmv hui
ear hmv hupi
ear hmv hufd
ear hmv hda
ear hmv hoa
ear hmv ho
ear hmv hm
ear hmv hdeg
ear hmv ifdo
ear hmv hdom
ear hmv hfor
ear hmv hexc
ear hmv hca
ear hmv ind
ear hmv isi
ear hmv wcbo
pet hmv hfi
pet hmv hci
pet hmv hfd
pet hmv hda
pet hmv ifdo
pet hmv hdom
pet hmv hfor
pet hmv ind
pet hmv isi
pet hmv webo
agg hmv be
agg hmv hfi
agg hmv hfd
agg hmv hda
agg hmv hoa
agg hmv ho
agg hmv hm
agg hmv afa
agg hmv hdeg
agg hmv hexc
agg hmv ifdo
agg hmv hdom
agg hmv hfor
agg hmv ind
agg hmv isi
agg hmv wcbo
tra hmv afa
tra hmv ho
tra hmv hm
tra hmv afr
tra hmv hdeg
tra hmv hexc
tra hmv be

sh be cr

mh be cr

ind be nwv

isi be nwv
hpr be nwv
hfor be nwv
hmv be nwv

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 279

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

R.N. MADDISON AND A.J. GAWRONSKI

Table 3 (cont)

mh be nwv

sh be nwv

ab be nwv

isf be nwv

iro be nwv
wcbo be nwv
maho it exct
mubho it exct
oahm it exct
ouhm it exct
ouhlm it exct
mnco it exct
maco it exct
OorltoOorl it degt
Oorltol it degt
Oorltom it degt
1to0orl it degt
Itol it degt
1tom it degt

APPENDIX 1 PATTERN MATCHING

The semantic network is interrogated by pattern
matching. Some of these features have been copied and
enhanced from SOLO, a programming language de-
veloped for the Open University’s third level course:
D303, Cognitive Psychology. Some of the DADICS
procedures and functions coded in Pascal are as follows,
where * denotes a known element as a parameter and ?
denotes an element to be found.

check for *S *V *O; if present: ... if absent: ...

check for *S *V ?0; if present: ... if absent: ...

check for 7S *V *O; if present: ... if absent: ...

check for one & only one object *S *V ?0; if present:
.. if absent: ...

check for one & only one subject ?S *V *O; if present:
... if absent: ...

for each case of 7S *V *O do: ...

for each case of *S *V 20 do: ...

for each case of *S ?V 70 do: ...

for each case of 7S *V 70 do: ...

for each case of *S ?V ?0 do: ...

for each *element {among objects} do: ...

if elements *E1 = *E2 then ... else ...

if descriptions *D1 = *D2 then ... else ...

The Table 2 example is rather simple, but is quite
adequate to demonstrate a number of features of the
system.To help you follow the logic: arrows denote flow
of data, parameters and variables in the procedure
description have been replaced by their actual values,
some abbreviations have been expanded, and substantial
further generality has been omitted. In general Select and
Model just update the current state, List takes metalevel
2 rules and prints metalevel 1 sentences that fit, and Apply
consistency rules takes each sentence with a particular
subject and checks that higher metalevel rules justify its
existence.

mtoQorl it degt

mtol it degt

mtom it degt

Code it prt

Stlg it domt

Int it domt

Nam it domt

Yrmthda it domt

ow iro ho

cont iro be

syn isf isf

fd isf ifdo

cbib isf hci

Stlg hfor signed-integer-and-2-decimals
Nam hfor up-to-55 characters
Yrmthda ind Year Month Day
Int hfor digits

afa ind rt arises from at

afr ind rt arises from role

APPENDIX 2 META MODELS

The referee and the editor have asked us to include an
appendix giving formal details of the meta models at both
our meta levels 2 and 3.

We have a file of about 400 facts held as text, one fact
per line. Table 3 shows most of it, for brevity omitting
free text descriptive facts such as ‘has-member indicates
relationship-type has entity-type as member’, which

— about 100 abbreviations, each gives a terse and a
verbose element;

— 19 elements where each is-of-type modelling-concept;

— 30 elements where each is-of-type modelling-verb;

— about 50 rules such as x may-have/should-have y z,
described below;

— the 8 modelling verbs that belong-to mvea; these may
appear in sentences such as ‘Material-item has-
unrelated-identifier Product-code’, which is selected if
its object belongs-to those selected;

— the 5 modelling verbs that belong-to mvre; these may
appear in sentences such as ‘Where-used has-owner
Material-item’, which is selected if its subject
belongs-to those selected;

— ear, pet, agg, tra each is-of-type model;

— 17 verbs for which ear has-modelling-verb; these can
appear in the output from a List command with
Model ear;

— 10 that Model pet has, similarly;

— 16 that Model agg has, similarly;

— 7 that Model tra has, similarly;

— 11 verbs for which no warning is given if no suitable
facts exists when listing;

— various existence conditions for relationships;

— examples of property-type and domain-type;

— synonyms. A ‘Nil’ dictionary for a user starts with
these 400 facts from the file, together with a few
inserted during program initialisation. These few are
15 such as ‘List is-a command’ covering Table 1,
and the default ‘select includes all’. The meat is the
rules of the form x may-have/should-have y z. This

280 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A DATA DICTIONARY FOR LEARNING DATA ANALYSIS

means one or more facts such as s v 0... may/should
occur; where the subject s is-of-type x, the verb v
is-of-type y, and each object o... either is-of-type z or
is-of-type qualifier-type. If z is ‘element’ then every
element is allowed among the objects.Conversely, for
self-consistency, almost every fact must conform to a
rule of that form. Here ‘almost’ covers the
exceptions: the verb being ‘ abbreviates’, ‘is-synonym-

REFERENCES

1. PM681 Data Analysis For Information System Design.
Activity Book. The Open University (1983) SUP 09646 1.

2. M352 Computer-based Information Systems: Case Study:
Standard Telephones Cables. Open University (1980) ISBN
0 335 14005 X.

for’, ‘is-reverse-of’, ‘is-of-type’, or ‘includes’; the
verb and object being ‘is-a command’; and where the
subject s is-of-type st, and either st is-of-type stt and
stt is not modelling-concept or st is-of-type stt is not
found. Thus both the few facts inserted during
initialisation are self-consistent, having no rules;
and a ‘Nil’ dictionary from the file is self-consistent.

. C. Beeri, & P.A. Bernstein, Computational Problems

Related to the Design of Normal Form Relational
Schemas. ACM Transactions on Database Systems. Vol. 4,
No. 1 (March 1979) 30-59.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 281

¥20Z I4dy 01 uo 1senb Aq 8¥5501/0.2/€/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

