The Architecture of a Generalised Distributed Database System

— PRECIT*

S.M. DEEN, R. R. AMIN, G. O. OFORI-DWUMFUO AND M. C. TAYLOR
PRECI PROJECT, Department of Computing Science, University of Aberdeen, Aberdeen AB9 2UB, Scotland

A research prototype of a generalised distributed database system called PRECI* is currently being developed at the
University of Aberdeen in collaboration with a number of research centres, mainly in Britain. The system is fully
decentralised, with both retrieval and update facilities, permitting heterogeneous and even pre-existing databases as
nodes and supporting links to other (external) distributed databases. The system supports both location transparent and
transaction-oriented queries to fulfil differing user requirements. Nodal autonomy, data integration, metadata and
staged binding of queries may be seen as its other main features. The basic design of the system is now complete, and a

partial implementation is in progress.

1. INTRODUCTION

PRECI(Prototype of a relational canonical interface) is
a database research project which was originally
undertaken at Aberdeen' in order to provide a
framework for research in all aspects of databases. To
date the project has produced a research prototype called
PRECI/H which is a generalised DBMS, based on a
canonical data model supporting relational, network and
other data models as user views. It uses the
ANSI/SPARC architecture, its ¢ conceptual schema’
(called canonical schema) being written in a relational
form. The principal data manipulation language used
includes an extended relational algebra called PRECI
Algebraic Language (PAL), which supports all the
traditional relational commands (including functions)
and a number of special commands for data integration.
The result of any of these commands is another relation,
thus all operations have the closure property.

PRECT* (pronounced presi-star)isa research prototype
within the PRECI project for a generalised distributed
database management system (DDBMS), which is being
developed in collaboration with a number of research
centres. Its principal architectural characteristics are:

(1) A decentralised control system with heterogeneous
databases (including pre-existing databases) as
nodes.

(2) Both inner and outer nodes to suit differing user
requirements (see later).

(3) Retrieval and update facilities for global users, with
full location transparency for the inner nodes.

(4) Ability to allow new nodes to join.

(5) Ability to link with other distributed databases
(external DDBs) at peer level.

(6) Maximal nodal autonomy as described below:

(i) A nodal database retains its nodal users, independent
of the distributed database management system
(DDBMS).

(i) A database can join the DDB as a node by
contributing only a logical subset of its data, the
subset containing none to all of the data.

(iii) Each nodal database retains full control of itself, with
means to withdraw itself or its data. It can specify
who can update and retrieve its data, and under what
conditions.

282

(iv) Data contributed by a nodal database (home node for
these data) to a DDB can be replicated and
distributed by the DDBMS to other nodes (foreign
nodes for those replicated data), if so permitted by
the home node. This facility applies only to the inner
nodes.

(v) A database may participate as a node in several
DDBs and can itself be a DDB.

These characteristics have been discussed initially in
reference 14, and taken together they distinguish
PRECT* from the current prototype implementations?-13,
It should be noted that we have used the term node to
imply a logical site, one for each nodal database and its
associated global module.

The architecture of PRECI* is meant to support the
characteristics listed earlier. In Section 2 we present a
five-level schema architecture, followed by a discussion
of nodal and global control systems in Section 3. For a
clearer understanding of the architecture and its impact,
we have outlined the elements of the global query

processor in Section 4. A conclusion is given in Section
5.

2. ARCHITECTURAL LAYERS

We define a distributed database as a database
representing a logical collection of data from other
inter-linked databases. It is possible for the same
computer to support several databases, and hence several
nodes. Therefore the nodes of a DDB may not necessarily
be connected via data communications links. We
categorise DDBMS broadly into two classes: closed and
open. A closed DDBMS permits only a purpose-built
DDB where all nodal DBs are designed to suit the
requirements of the DDB. Typically this could be a
homogeneous system with the DDBMS having the final
control over all data distribution. In contrast, an open
DDBMS allows pre-existing databases, ideally of any
data model, to join the DDB - potentially at any time.
Thus the interfaces provided by an open DDBMS are
open to all. An open DDB is typically a confederation
of nodes, each node retaining full control over its data.
PRECI* is intended as an open DDBMS.

The architectural framework used in PRECI* can be
viewed as an extension of the ANSI/SPARC model by

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

A GENERALISED DISTRIBUTED DATABASE SYSTEM -PRECI

User User User User
Transaction Transaction Transaction Transaction
GES GES
GDS
PS PS PS PS
NDS NDS NDS NDS
(INNER) (INNER) (INNER) (OUTER)
NES NES NES NES

Figure 1. PRECI* schema levels

two additional layers: the global conceptual schema
referred to as global database schema (GDS) and the
global external schema (GES)(figure 1).

Although a nodal database can be a DDB, we shall
generally assume a node to be a leaf node supporting a
leaf database (ie a non-distributed data base) except
where indicated otherwise. A nodal database in PRECI*
is fully autonomous, with its independent nodal DBMS
(NDBMS) and nodal external schemata (NESs). It must
however provide a relational, preferably a PAL interface
to the DDB which uses PAL as the standard language
for communications. The DDB may be assumed to be a
nodal user via a relational external schema to the nodal
database, called the participation schema (see later). A
node can participate in a PRECI* DDB in one of two
ways:

(i) as an inner node : which contributes to the GDS
(ii) as an outer node : which does not contribute to the
GDS

We describe them more fully below.

2.1 Inner Nodes

In general, the inner nodes provide the best available
service to their global users (inner users), through the
global database schema and global external schemata.
The special facilities not available to the outer users (the
users of the outer nodes) are:

Integrated data

Meta data

Location transparency

Replicated data (for faster queries)
Easier query formulation

Global Database Schema (GDS)

The GDS is formed by the participation schemata (PSs)
of the inner nodes, each relation in the GDS retaining
the identity of its home nodes by means of a logical node
name. The presence of this logical node name is not
intended to curtail location transparency. It rather
enables the user to find the node name of a relation,
should he require it. However the user does not have to
specify node names in a query unless he wishes it (see also
GES). We have chosen a relational representation mainly
because of its simplicity and decomposability!®.

The GDS supports integration data and meta data,
which are assumed to be stored in a subsidiary database
(discussed later). The need for data integration arises
chiefly from the different practices at different nodes for
expressing the same information. For instance one nodal
database may represent distance in miles, and anothero
one in kilometres. Likewise one database may store the £
price and sales tax of an item separately, while another &
one might store only the sum of the two as the total price. &
To take another example, one node may represent three =
exam marks in a relation R as R(STUDENT EXAMI1§ g
EXAM2 EXAM3) while another may use a ternary 3
relation R(STUDENT EXAMNO MARKS) for the@
same information. The GDS itself does not provide an &
integrated view, say by converting all distances to miles. §
Instead we represent the total information at the GDS §
level without any loss, but recording addmonally as o
integration data, the necessary units, conversion factors13
and other relevant information. The desired integration 3
can thus be carried out at the global external schema as =
needed, eg permitting one GES to express distance in
miles and another in kilometres. Therefore our GES and
not GDS is closer to the global schema of Multibase®.

Figure 2 shows a sample global database schema, 2
where we have dellberately chosen the university names N
to be absent in node 1 and node 2, thus makmg S
communications with node 3 difficult. This difficulty is 00
removed by creating a new relation UNODE as 4>
integration data. EID means entity identifier or primary %
key, which can be composite. The non-EID attributes are =
identified as ATT. If an attribute is a foreign key, then<
its type is FKEY quahﬁed by the name of the relation € S
where this attribute is the EID. Unit gives the unit m 2
which a numerical value is expressed, eg £ for pounds S
sterling.

The meta data described in the GDS represents
optional information typically held in a data dictionary.
This facility can be used to declare semantic groupings
of selected relations, attributes, domains and so on. Thus
in figure 2, we have declared a meta relation R
(relationnames, attributenames). The user can access
these meta relations like any other relations except that
their update is restricted.

There is a global mapping schema (GMS) associated
with the global database schema. It has two functions:

peoju

|:)!J,,IE/|u[Luoo

¥20z Iudy 60 U

(i) todistribute (ie replicate) permitted relations to other
nodes (foreign nodes).

(ii) to associate node names with their participation
schema names (including those for subsidiary
databases).

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 283

S. M. DEEN, R. R. AMIN, G. 0. OFORI-DWUMFUO AND M. C. TAYLOR

ITEM NATE TYPE
NODE NODET{UNIVERSITY}

REL DEPT

EID DNO INTE &
ATT DNAME CHAR 20
REL TEACHER

EID TDN FKEY DEPT
EID TNO CHAR &
ATT SAL INTE S
NODE NODE2{UNIVERSITY-B)

REL DEPT

EID DNO INTE 5
ATT DNAME CHAR 25
REL TUTOR

EID TNO CHAR 6
ATT SAL INTE 5
ATT DNO FKEY DEPT
ATT GRADE CHAR 10
NODE NODE3 {STUDENT-UNIONSY
REL UNION

EID UNIVERSITY CHAR 20
ATT POPULAION INTE 5
ATT FEE INTE 2
NODE INT {INTEGRATION-DATA)
REL UNODE

EID UNIVERSITY CHAR 20
ATT NODE CHAR 6
NODE META {META DATA}

REL R

EID REL-NAME CHAR 10
EID ATT-NAME CHAR 10

UNIT

/*TDN is teacher's department
numberx/

In relation TEACHER the EID is <TDN><TNO>

whereas in relation TUTOR,

the EID

is TNO alone.

Figure 2. Global Database Schema

Global External Schema (GES)

The global external schema can support relational and
possibly other user views, provided that the data model
and the language are convertible into our standard form
(that is PAL). The GES with the help of its mapping
entries can support additional meta data description and
an integrated, location transparent view. As indicated
earlier PAL is intended to provide powerful data
integration commands and to be used both as a data
manipulation and description language. An indication of
these facilities is given in Figure 3 which is derived from

284 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

the GDS of Figure 2. The entry ATT* implies that the
attribute concerned can have null values and hence
cannot be used for, say calculation of an average. The
Mapping Division given shows some PAL commands for
data integration. A publication on PAL data integration
and data manipulation facility is under preparation.

Participation Schema (PS)

The participation schema describes the nodal data along
with various authorisation controls. An example is
shown in Figure 4 where the global users of the NODE2

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

A GENERALISED DISTRIBUTED DATABASE SYSTEM - PRECI

DATA DIVISION

REL DEPARTHMENT

EID DNO INTE S

ATT DNAWME CHAR 25

REL TEACHER

EID DNUWM FKEY DEPARTMENT
EID THO INTE 6

ATT SAL INTE 6

ATT* GR CHAR 10

/*ATT*

implies that this attribute can

have null valuesx/

MAPPING DIVISION

DEPARTMENT == NODET1..DEPT ++
TEACHER ==
++(NODE2..TUTOR::

where N..R
ReA
R:sEXTC(A)
R::REP(B BY C)
attribute C

and "++" and "==ll

(NODE1..TEACHER::REP(TDN BY DNUM).,
REP(DNO BY DHNUM).,

indicates relation R of node N ;
indicates attribute A of relation R
indicates relation R extended by new attribute A

indicates relation R with attribute B replaced by new

NODE2..DEPT

EXT (GR=NULL)
REP(GRADE BY GR)

are the symbols for union and definition respectively

Figure 3. A Sample GES and its Mapping

PS NODE1-PS

REL DEPT

REPLICATION ALLOWED TO NODEZ2.,
NODE2, NODE3

RETRIEVAL ALLOWED TO

UPDATE NOT ALLOWED

EID DNO INTE 4
ATT DNANME CHAR 20
REL TEACHER

REPLICATION NOT ALLOWED
RETRIEVAL ALLOWED TO WNODE3
UPDATE ALLOWED TO NODEZ2

NODE3

EID TDN FKEY DEPT UPDATE HNOT ALLOWED
EPD TNO CHAR 4
ATT SAL INTE 5

Figure 4. A Participation Schema

have a general permission to update relation Teacher but
not its attribute TDN. Each participation schema has a
version number which is updated every time the PS is
changed.

Subsidiary database

Since we allow a DDB to support pre-existing databases,
it is unreasonable to expect that they will be changed to
incorporate replicated data. We therefore associate with

each inner node a small database, to be called a
subsidiary database (SDB), to be managed by an
SDBMS (subsidiary database management system) under
the control of the DDBMS at this node. The basic
contents of the SDB are:

(1) Integration data of the could be the same in all

GDS ; :
(2) Metadata of the inner nodes, subject to
GDS nodal authorisation.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 285

dno-olwepeoe)/:sdyy woiy papeojumo(

202 Iudy 60 uo 1senb Aq L9G501/282/S/82/3101e/|ulWwod/wod

S. M. DEEN, R. R. AMIN, G. 0. OFORI-DWUMFUO AND M.C.TAYLOR

vary from one inner

node to another.

GES

(3) Metadata of the}
(4) replicated data

The SDBMS is expected to support a fuller set of PAL
commands, with the ability to process external data (see
later).

The database schema of the subsidiary database is
assumed to act as the participation schema as well, there
being no separate participation schema defined for it.

2.2 Outer Nodes

If the number of nodes in a DDB is large, say in the tune
of several hundreds, and if the expected usage frequency
of the DDB is low, so that a user accesses only a few of
those hundreds of databases at any one time, then the
overhead of the creation and maintainance of the GDS
and GES could be too high. What we require, therefore
is a transaction-oriented facility, which permits the user
to formulate his query through a suitable language for
specific nodes. He could also be allowed, if he needs, to
navigate through the nodes until he finds his node of
interest. This we may refer to as the seek and search
approach.

The need for such a facility without any elaborate GDS
and GES has been re-emphasised in a recent EEC
feasibility study for a distributed facility to seek and
search medical records in the community!?. Typically a
doctor in Aberdeen might need to access a medical
database in Capri. The doctor might know about his need
to access the Capri database, from another database or
from an exogeneous source such as the patient. In this
case the location transparency is not relevant, the doctor
would only want a simple capability to send his query to
Capri. We provide this capability within the PRECI*
architecture by what we call outer nodes (cf. reference
6).

Our outer nodes do not contribute to the GDS, but they
must provide participation schemata in a relational form
like any other node; however there is no structural
difference between the participation schemata of inner
and outer nodes. The outer user can access several
participation schemata directly and address queries to
one or more of them. The outer user does not normally
get meta-data, data integration or replicated data,
although he can create a partially integrated view by PAL
commands.

Note that, although the outer nodes do not contribute
to the GDS, the DDBMS has to maintain the necessary
control information on them. Subsidiary databases are
optional for outer nodes, but can be used to provide
additional PAL commands (see below).

3. NODAL AND GLOBAL CONTROLS
3.1 Nodal Controls

As mentioned earlier, each node is independent and is
expected to have its nodal users independent of the
DDBMS. By insisting on a node to provide a relational
view, we are localising the problem of heterogeneous
mappings to the sphere of the nodes but have not resolved
it. Some of the issues of such mappings have been
discussed in reference 14, and are currently being studied

by us. To minimise the changes in a node we basically
require a node to support the following minimal set of
operations:

Selection
Join
Division
Projection

either in a relational algebra, or in a calculus, but
preferably in PAL. It is recognised that an NDBMS may
not be able to process external data, that is, relations not
stored in this database, but sent to it over the
communications lines for processing. The capability to
process such external data, and other PAL commands, is
provided by the local SDBMS. However, due to machine
restrictions or other limitations, a given SDBMS might
not be able to handle all PAL commands. In that event,
the DDBMS of this node would despatch the relevant
data and the query to the SDBMS of another node which
can process the required command.

If a node withdraws from a DDB, then the relevant
participation schemata are made inoperative with a null
version number. Each node has essentially a bilateral
arrangement with other nodes, thus stipulating in the
participation schema the conditions under which the data
can be accessed. Since the participation schemata are
controlled by the node, and not by the DDB, the latter
cannot violate the authorisation stipulation of the
former. It is recognised that a node may change its data.
Any such change should cause the NDBMS to alter the
version number of the relevant participation schema.

3.2 Global Control

The decentralised control system of PRECI* is shown in
Figure 5, except that the outer nodes do not necessarily
have any subsidiary databases. The DDBMS together
with SDBMS and SDB, if present, constitutes what we
call the global module. An initial description of the
functions of a global module is given in reference 14.

PRECI* also supports interactions with other dis-
tributed databases. This is done in two ways:

(i) asubordinate node: in this case the DDB in question
acts as a PRECI* node (either inner or outer)
complete with a participation schema and a global
module. Thus this DDB becomes an internal DDB.

(ii) an external DDB: in this case the other DDB, called
an external DDB, behaves like an outer node but
without having the global module of the PRECI*.
However an external DDB can provide to PRECI*
more than one PS, each being treated as if it were
an outer node. Conversely PRECI* can provide
suitable external schemata to the other DDB. All
commands and data between PRECI* and the
external DDB are converted into an intermediate
standard form via what is called an external protocol
(see also later).

4. TRANSACTION PROCESSOR

All global transactions are compiled and executed in three
stages, the compiled version normally being retained for
subsequent execution. In order to ensure the integrity of

286 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

A GENERALISED DISTRIBUTED DATABASE SYSTEM - PRECI

Global Global
User \ User
DDBMS DDBMS
SDBMS SDBMS
SDB SDB
~_ NDBMS NDBMS N~
Nodal - Nodal
User
User NDB
DDBMS Global
> User
SDBMS
NDBMS \
Nodal
User
>

Figure 5. Decentralised Controls with subsidiary database

the DDB, global update is permitted only on base
relations. It is assumed that a participation schema will
not grant update permission on a relation unless it is a
base relation. The queries however can be more complex
and operate on any set of authorised relations or their
derived views. The basic query processing steps are
sketched below:

4.1 Global Query Preprocessor (GQP)

Each user query at the originating node (ie the requester)
is validated by the GQP against the GES in the case of
inner nodes (inner queries) and against the PS in case of
outer nodes (outer queries), along with appropriate
authorisation checks. The query is then resolved, where
appropriate, into a set of intermediate queries, one or
more such queries for a given node (execution node). The
intermediate queries are further subdivided, eventually
into subqueries, by an optimiser, taking into account:

(i) replicated data where available and relevant

(i) availability of operations. For instance if an
intermediate query has an operation that cannot be
performed by either the NDBMS or SDBMS of the
designated execution node, then the subquery would
be divided into secondary subqueries which can be
performed at the designated node. The results of
these secondary subqueries would be sent to another
execution node to evaluate the original subquery.

(iii) communications cost

The original global query is now transformed into a tree,

made up of subtrees, a subtree representing a global
subquery, with one or more subqueries for each selected
execution node. As the first stage of compilation the GQP
produces a global query plan (Q-plan) containing:

(1) the tree

(2) addresses of the execution and destination nodes
(where the result should be sent after the execution
of a query)

(3) version numbers of the GES, GDS and PS

(4) input/output data structures and parameters and,
where relevant, a list of actions to be invoked on
specified execution conditions.

Note that all inner queries are mapped against the PS
entries via the compiled version of the GES and GDS,
whereas all outer queries and external queries are
mapped directly against the relevant PS.

From the Q-plan, the GQP prepares subquery
execution plans (S-plans) one for each subquery. S-plans
contain:

(1) the subtree

(2) pre-execution instructions

(3) post-execution instructions (ie what to do with the
result)

(4) relevant input/output data structures and other
parameters (such as version numbers of the involved
schemata)

(5) alist of actions to be invoked on specified execution
conditions.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 287

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

S. M. DEEN, R. R. AMIN, G. 0. OFORI-DWUMFUO AND M. C. TAYLOR

S-plans form part of PRECI* protocols, of which there
are two:

(i) internal protocol for communicating with PRECI*
nodes, and hence understood by all PRECI*
DDBMS.

(ii) external protocol for communicating with external
DDBs. Such protocols are currently being studied in
collaboration with several European research centres
under EEC grants.

4.2 Global Subquery Preprocessor (GSP)

The principal task of the GSP is to transform a subquery
in the S-plan into one or more nodal queries and submit
them to the next stage for compilation. There are two
reasons why a subquery may require splitting/
modifications:

(i) If an operation of the subquery can be performed
only by the SDBMS, but not by the NDBMS.

(i) If the NDBMS does not support a PAL interface, in
which case the subquery has to be transformed into
the relational language supported at that node. This
part of the GSP will vary from one node to another.

The GSPeventually generates a nodal query plan (N-plan)
which includes compilation/execution instructions.

4.3 Nodal Query Preprocessor (NQP)

NQP is a part of the NDBMS, beyond the control of the
DDBMS and hence implementation-dependent. We
assume here only its conceptual existence as part of the
nodal query processor which must compile/translate
each nodal query. (The NQP should not distinguish
between a query from a global user and one from a nodal
user.) Similar compilation also takes place in the
SDBMS, but under the control of the global module.

After a successful compilation, the Q-plan, S-plans and
N-plans are suitably updated making them ready to be
used for execution. We recognise that some nodal
DBMSs may translate and execute a query at the same
time, without retaining a compiled version for subsequent
use. This requires only a trivial modification to our
strategy and hence is not discussed here.

4.4 Query Execution

The execution of a query also proceeds in three stages (via
a global query executor (GQE), a global subquery
executor (GSE) and a nodal query executor (NQE),
paralleling the preprocessing stages. At every execution,
the version numbers of GES, GDS and PS are matched
where relevant, rejecting the query with an appropriate
message in the case of a mismatch. If the query is not
affected by the new versions, it can be recompiled
immediately without any change. We however, do not
expect too many changes of version numbers.

This architecture permits the use of an intermediate
node of the DDB to execute subqueries if so required by
the optimiser. In Figure 6, the requester node A asks
execution nodes B and C to forward relations R1 and
R2 respectively to node D, which is required to perform

288 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

NODE A

GENERATE R3=RI1*R2 GENERATE
R1 R2

NODE D

R1 R2

NODE B NODE C

Figure 6. Use of an intermediate node D

a join on them — with the help of its SDBMS if necessary
— and to transmit the result back to A.

4.5 Internodal Integrity

By internodal integrity, we mean the consistency of data
among the participating nodes. There are two possible
sources of inconsistency!2,

(1) Replicated data: if data is replicated over several
nodes, then the database will be inconsistent if all the
copies are not updated every time.

(i) Dispersed update-unit: if the data in the read/write
set of an update transaction is dispersed over several
nodes then we have a dispersed update-unit. Such a
situation would occur if the employee salary details
are maintained in the branches (nodes), and total
salary expenditure in the department record at the
head office (another node).

Consistency can be weak or strong. If weak, the database
can remain in a transient inconsistent state without
corrupting the data, whereas if strong, the database must
be maintained in a consistent state at all times. Strong
consistency must be enforced in the case of dispersed
update-units, but not necessarily so in the case of
replicated data.

Data is generally replicated for ease of access in cases
where the frequency of retrieval exceeds that of update.
It seems to us that the retrieval requests do not always
need the latest version of the data, and in those cases
(referred to as retrieval Mode A) a weak consistency
should suffice. Thus our Mode A transactions use
replicated data if it is cheaper, but all update
transactions, and those retrieval transactions which
require the latest data (retrieval Mode L), are directed
to the home node which always maintains the latest
version of data. Once an update is performed, the home
node immediately broadcasts the update message to all

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

A GENERALISED DISTRIBUTED DATABASE SYSTEM - PRECI

Dublin

Belfast

."L

L]

Dundee \

Internal Protocols

Belfast

Leeds

[=%

Two no

Node 1 Node 2
Honeywell

\

es on Honeywell

N\

External
Protocol

B ABA DDB

INRIA —Paris

Figure 7. PRECI* Environment

relevant foreign nodes which then copy the update in
their databases with the highest priority. The delay in
effecting the update in the foreign nodes is expected to be
very short, and hence most retrieval users should be
satisfied in the transaction Mode A.

A nodal user may not be allowed to update data given
to foreign nodes or those which form part of dispersed
update-units. This must be enforced at the nodal level,
transforming all such nodal transactions into global
transactions either manually or automatically.

We assume that each node maintains a set of mail
boxes, one for each node in the DDB. The mail boxes
are used for holding messages sent out to those nodes
but not yet acknowledged. When a node starts a session
or restarts after a breakdown, it must first take two
recovery actions. It reads its mail boxes at other nodes,
and takes action on the messages, such as completing lost
updates. Then it broadcasts all its outstanding messages
to other nodes, and these messages include those which
have been sent out earlier, but their acknowledgements
were not received. Such retransmission of a message does
not cause any update problem to replicated data, since
the update version numbers of replicated data units are
always checked before an update is effected. Strong
consistency based on what we call a delayed two-phase
commit protocol is being planned for dispersed
update-units.

5. CONCLUSION

The architecture presented here is meant to capture many
of the facilities of an open and generalised DDB, in
particular the ability to provide location transparency
and transaction-oriented queries, the former providing
data integration and meta data. An associated activity is
the development of a standard protocol for communica-
tions between distributed databases, mentioned in the

- text as external protocol. The basic design of PRECI*

is now complete and we are implementing a pilot system,
with only a subset of the design features described above.
The pilot system is expected to include an initial version
of an external protocol for linking to EEC countries over
national data-communication networks. In the imple-
mentation we plan to have two nodes at Aberdeen
co-existing in the same Honeywell computer, one node at
Belfast in a VAX and another one in Dublin, in another
VAX, with an external link to Litwin’s Multidatabase
project (Figure 7). Connections to our collaborators at
Leeds and Edinburgh are also envisaged.

Acknowledgements

We wish to thank the British SERC, and the EEC COST
11 BIS for supporting this project by several grants. We
also wish to thank all our internal and external
collaborators, for suggestions, discussions and comments,

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 289

cpJ 28

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

S. M. DEEN, R. R. AMIN, G. 0. OFORI-DWUMFUO AND M.C. TAYLOR

in particular to David Bell of Ulster Polytechnic, Jane
Grimson of Trinity College, Dublin, W. Litwin of INRIA
(France) and Peter Apers of Vrije University
(Amsterdam).

We are grateful to R. Carrick, and D. Kennedy of
Aberdeen University for suggesting improvements to the
earlier version of this paper.

REFERENCES

1 (a) S.M. Deen et al, The design of a canonical database
system (PRECI), The Computer Journal, Vol.24, No.3,
(1981)

(b) S.M. Deen et al, The run — time system of PRECI, Proc
of the Second British National Conference On Databases,
July 1982, ed. Deen & Hammersley, J. Wiley, (1982).

2 J.B. Rothnie et al, Introduction to a System for Distributed
Databases (SDD—1), ACM TODS Vol 5:1, (March 1980)
pl. There are a number of other articles on SDD —1 in the
same issue of TODS.

3 T.Landers and R.L. Rosenberg, An overview of Multibase,
Distributed Databases, (Proc. of the Second International
Symposium on Distributed Data Bases, Berlin, 1982), ed.
by H.J. Schneider, (North —Holland) p153.

4 R. Williams et al, R*: An overview of the architecture,
RJ3325, IBM San Jose, California.

5 W. Litwin et al, SIRIUS systems for distributed data
management, published in the Proceedings of the Second
International Symposium on Distributed Databases, Berlin
Sept 1—3, 1982, ed. H.J. Schneider, North—Holland
(1982), p311.

6 Litwin et al, reference 5 includes a section on the B A BA
project.

290 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

7 (a) K.C. Toth, et al, The ADD System: An architecture for
DDBs, Proc. of the 4th VLDB, Berlin 1978.
(b) K.C. Toth, et al, Query Processing Strategies in a
distributed database architecture, as in reference 14, p117.

8 E.JJ Neuhold and B. Walker, An Overview of the
Architecture of the DDBs POREL, as in reference 3, p247.

9 R. Munz, Realisation, synchronisation and restart of
update transactions in a DDBs, Distributed Data Bases
(Proc. of the first International Symposium on DDB, Paris
1980), edited by C. Delobel and W. Litwin (North—
Holland), p173.

10 A.J. Borr, Transaction monitoring in ENCOMPASS...
Proc. of the Tth VLDB, Cannes 1981, p155.

11 R. Elmasri, et al, Notes on DDRs — an apparatus for
experimental research in DDBMS, Tech Rep
HR —81—-252, Honeywell CCSC, Bloomington, Minne-
sota, February 1981.

12 M. Adiba, et al, Polypheme —, as in reference 9, p67.

13 P.R. Tillman, ADDAM — the ASWE DDBMS, as in
reference 3, p185.

14 S.M. Deen, A general framework for the architecture of
distributed database systems, Proc. of International Seminar
on Distributed Data Sharing, Amsterdam, June 1981, edited
by W. Litwin and R. Van de Riet (North —Holland), p153.

15 E.F. Codd, Relational database: A practical foundation for
productivity, Comm. ACM, Vol.25, No.2, Feb 1982 (ACM
Turing Award Lecture).

16 ISO/TC97/SC5/WG3, Report on Concepts and Ter-
minology for the Conceptual Schema and the Infor-
mation base, ed. J J van Griethuysen, N. V. Philips
ISA—-TMF —ET, Geb.Hsk, 5600 MD EINDHOVEN,
THE NETHERLANDS

17 David Bell, EEC Medical Project, Ulster Polytechnic
(private communications).

¥202 I4dy 60 U0 1senb Aq L9G501/282/€/82/2101e/|ulwoo/woo dnoolwspeoe//:sdpy wolj papeojumoq

