A Design of a Data Model Based on Abstraction of Symbols

T.D. KIMURA, W.D. GILLETT, AND J.R. COX, Jr.

Department of Computer Science, Washington University, St. Louis, Missouri 63130, USA

Abstract Database System (ADS) is introduced as a data model in which the notions of symbol and abstraction play a
fundamental role in the formal description and structuring of databases. The mechanism of abstraction in ADS is
based on the abstraction operator of the lambda calculus. Important concepts in data modeling, such as entity set,
entity type, property, attribute, relation, association, constraint, type checking and cardinality, are Sformally
representable in the framework of abstractions on symbols. Thus, the number of primitive concepts in ADS is relatively
small. ADS is part of an effort to develop a design methodology for an enduring medical information system, an area
where frequent changes in the conceptual schema are anticipated and multi-level abstraction is advantageous.

1. INTRODUCTION

This paper discusses the design philosophy of a new data
model Abstract Database System (ADS) and describes
some of its unique features. The design of the ADS data
model and language is a part of a broader research
project whose goal is the development of a design
methodology for composite medical information systems
capable of dynamic system evolution in response to user
needs. The design methodology will be tested by the
implementation of a composite medical information
system in an operational environment that combines
clinical and research activities®-®-18,

A set of conceptual tools organized for representing a
user’s knowledge about reality is called a data model®>.
Different data models utilize different sets of conceptual
tools. The relational data model” uses the concept of
mathematical relation. The Entity-relationship data
model* uses the concepts of entity set, relationship set,
and mapping among them. The functional data model
in DAPLEX?3 uses the concepts of set and multi-valued
function. A binary data model (eg, in reference 1) uses
the concepts of category (set) and access function (binary
relation). The semantic network data model in TAXIS?
uses the concepts of class, property, and generalization
(IS-A relationship). The logical data model in MRPPS*®
uses the calculus of many sorted logic!®.

The ADS data model provides abstraction on symbols
as the basic conceptual tool. The abstraction operator in
ADS is the abstraction (lambda) operator in logic (eg, the
lambda calculus of reference 5). A lambda expression is
used to specify a set as well as a function. Thus, other
functional or set-theoretical data models can be
represented within the framework of ADS.

The main characteristics of ADS are as follows:

(1) Symbols: An ADS database is a collection of symbols
(data) whose syntax and semantics are formally
defined. The ADS database system enforces semantic
consistency among the symbols in the database by
rejecting any symbols that would result in an
inconsistent database.

(2) Naming and Describing: Symbols are used to name
real world entities and to describe the relationships
among them. They are also used to name and

This research was supported in part by the Department of Health and
Human Services under Grant HS-03792 from the National Center for
Health Services Research and under Grant RR-00396 from the
Division of Research Resources of the National Institute of Health.

298 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

describe other symbols and abstractions on symbols.
The database can be thought of as a set of names,
each name having an intensional descriptor and
(possibly) an extensional descriptor.

(3) Intension and Extension: The intensional descriptor
of a name describes what the name can denote, and
the extensional descriptor describes what the name
actually does denote. Names can be used to refer to
entities in a possible (intensional) world as well as
entities in the actual (extensional) world. The
consistency between the possible world and the
actual world is maintained by enforcing the fundam-
ental law of semantic cons1stency One user’s actual o o
world may be another user’s possible world. Derived S S
data can be separated from but easily integrated with 8
raw data.

(4) Abstractions on Symbols: Users can name and
describe generalizations on symbols (and therefore
indirectly on real weorld entities). They can be used
to represent the concepts of set, function, relation,
property and attribute. By nested applications of
abstraction operators, arbitrary levels of abstraction
can be represented with a parsimonious set of
language primitives.

(5) Unstratified Control: A symbol can be used to denote
itself (when quoted), its denotation (when not
quoted), or its denotation’s denotation (when
evaluated). With this capability, the object database
and the meta database can be integrated into one
database. Data, schema of data, schema of schema,
and so on can be treated uniformly.

"OlWepeo.//:sdny WoJj papeojumoq

202 Iudy OL uo jsenb Aq 2/650%/862/€/8Z/8101e/|ulwod/Wwoo"

2. SYMBOLS

A database is a collection of symbols (data) representing
a set of views of reality as held by each member of a user
community. Users share knowledge and perceptions of
reality by communicating their judgments about reality
through a depository (database) of symbolic representa-
tions of such judgments. A precise and unambiguous
interpretation of data is required for sharing knowledge.

2.1 Sense and Denotation

A precise specification of a rule of interpretation is the
central issue in semantic database design. Analysis of
different kinds of meaning that can be associated with
a symbol contributes to the precision of such a
specification. According to Frege!! there are two kinds

DESIGN OF A DATA MODEL BASED ON SYMBOL ABSTRACTION

of meaning associated with each symbol: sense and
denotation. For example, let us assume that Cox teaches
CS360, and is also the chairman of the CS department.
The following two symbols (expressions):

(1) the chairman of the CS department
(2) the instructor of CS360

denote the same person Cox. Thus, in one way, they have
the same meaning, called the denotation. However, the
two symbols are not synonymous (having the same
meaning in all respects) because the following symbols
(sentences) are not synonymous:

(3) The chairman of the CS department is the instructor
of CS360
(4) The instructor of CS360 is the instructor of CS360.

Frege associates a meaning other than denotation, with
(1) and (2), which he calls sense.

A symbol denotes its denotation and expresses its
sense. When two symbols express the same sense, they are
synonymous. When two symbols denote the same
denotation, they are equivalent. We will represent
synonymy by ‘=’ and equivalence by ‘:=:’. For
example, under most circumstances, we may assert,

“the chairman of the CS department”
= “the head of the CS department”,

and

“the chairman of the CS department”
1= "the instructor of CS360".

2.2 Intension and Extension

In the literature of logic and semantics, different terms are
used to refer to sense and denotation. For denotation
there are ‘reference’, ‘designatum’, and ‘extension’,
and for sense there are ‘connotation’, ‘concept’ and
‘intension’.

In the database literature!?, the term °‘extensional
database’ is used to refer to the set of relational tuples
(elementary facts), and the term ‘intensional database’
is used to refer to the set of general laws (general facts)
with which the individual tuples must be consistent. The
following example is a small logical database in which
the first order predicate calculus is used to specify the
intensional database:

Elementary Facts (Extensional database)

FACULTY (person) TEACHING (instructor, course)

Cox Kimura CS135
Gillett Gillett CS236
Kimura Cox CS360

General Facts (Intensional database)

(Vx)(Vy)(TEACHING(x,y) - FACULTY(x))
:In any instance of teaching a course, the instructor
is a faculty member.

(Vx)(Vy)(Vz)((TEACHING(x,2)
A TEACHING(y,z)) - x =)
:Every course is taught by at most one instructor.

We will use the terms ‘intension’ and ‘extension’ in
accordance with the above database usage.

2.3 Significance

Symbols in a database are expected to be meaningful. A
symbol, occurring in a particular context, is called
nonsignificant if it denotes nothing; i.e., it has no
denotation. A symbol is nonsensical if it has no sense. For
example, assuming that John is a student who is not
taking CS360,

the grade of John in CS360

is nonsignificant in the present context but is not
nonsensical. On the other hand, presuming that ‘ EE280°
denotes a course

the grade of EE280 in CS360

is nonsensical and is nonsignificant in any direct
(nonquoted) context.

In ADS, the predicate “x is significant” is represented
by ‘/x/’ asin:

“the grade of John in CS360” is significant
= /"the grade of John in CS360"/
:=: Falsehood (if John is not taking CS360).

2.4 Unquote

We will use a left square bracket ([) preceding and a right
square bracket (]) following a symbol to represent what
is denoted by what the enclosed symbol denotes (indirect
denotation). Thus, a symbol inside a pair of square
brackets will be evaluated to a symbol which, in turn,
will be evaluated when the symbol containing the square
brackets is subsequently evaluated. We call the square
brackets the unquote operation because it corresponds to
the inverse of the quoting operation. (The expressive
power of a similar operation has been studied in
reference 20 within the framework of the first order
predicate calculus).
Consider for example the following symbols:

(5) "The most common name” denotes “John”
(6) [The most common name] is a student

(7) ["John”] is a student

(8) [John] is a student.

Statement (5) establishes a semantic relationship between
two symbols; the first phrase ‘the most common name’
is a symbol that denotes another symbol ‘John’.
Statements (6) and (7) are equivalent to ‘John is a
student’, because the bracketed expression in (6) ‘[The
most common name]’ and that in (7) ‘["John”]’ denote
the same object as the name ‘John’ denotes. The symbol
‘[“John”]” denotes a person John because it is what is
denoted by what the symbol ‘“John”’ denotes, i.e., what
is denoted by ‘John’. However, statement (8) is
nonsignificant, because the symbol ‘John’ denotes a
person and not a symbol, and a person does not denote
anything. Only a symbol has the ability to denote
something. Thus, the expression including the brackets

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 299

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

T.D. KIMURA, W.D. GILLETT AND J. R. COX

‘[John]’ is nonsignificant and nonsensical. Note that in
this paper, we differentiate between quotes in data () and
quotes in English (*°).

2.5 Conditional Control

The conditional control symbols ‘—’ and °;’ select the
next symbol to be evaluated and is similar to the
conditional expression in LISP. For example,

(John has an advisor — the advisor of John;
the department chairman)

is equlvalent to ‘the advisor of John’ if ‘John has an
advisor’ is true; otherwise it is equivalent to ‘the
department chairman’. In general, for arbitrary symbols
a, b and c, the following equivalences (:=:) hold:

(a—-b;c) :=:b if a :=: "Truth”,
=:¢ if a :=: "Falsehood”,
is nonsignificant otherwise.

Similarly,

(a->b) := ifa :=:"Truth”,

is nonsignificant otherwise.

Note that the meaning of the conditional control symbol
‘>’ in ADS is different from that of the implication
symbol in logic. The symbols a and b in the above
definitions need not be symbols that denote logical
values. Even if the symbol b (or c) is nonsignificant, (a
— b; ¢) may be significant. These are the only control
symbols in ADS for sequencing.

2.6 Abstractions on Symbols

Smith and Smith?* were the first to propose that the
concept of abstraction be included in a data model. Their
notion of abstraction consists of three operations for
constructing new objects from existing ones: generaliza-
tion (set union), aggregation (cartesian product), and
classification (set formation). These three operations are
valuable conceptual modeling tools.

However, our notion of abstraction is different than
theirs. Their theory of abstraction is a theory of objects
in which abstraction is independent of the symbolism
used for representing it. Our theory is a theory of symbols
in which abstraction is possible only through symbolism.

2.6.1 Generalization

In ADS, the mechanism of abstraction, called generaliz-

ation, is the same as the abstraction operator or the

lambda operator in symbolic logic®. It is used to make an

abstraction of similar patterns into one general pattern

by identifying the similarity among the patterns.
Consider the following statements:

(9) John is a student
(10) Dave is a student.

These two statements (symbols) have the same form as

is a student,

any___

where the blank can be filled with a symbol denoting a
person. This form displays the similarity between (9) and
(10), i.e., they share the symbol ‘is a student’. The form
can be interpreted as an abstraction of many symbols
similar to (9) and (10). This interpretation of (11),
generalization, is represented in ADS by (12),

(12) (Ax:Person)(x is a student).

The symbol ‘x’, called the abstraction variable, plays
the role of a place holder corresponding to the blank in
(11). The common symbol ‘x is a student’ is the
abstraction body.

Symbol (12) is a generalization descriptor or an
abstraction descriptor. ‘x:Person’ indicates that x must
be of type Person (ref. 2.7). ADS abstractions are
primarily used to represent sets, functions and types. For
example, abstraction (11) may represent the set of
persons who are students, the predicate function on
persons for recognizing students, or the type Student,
with appropriate interpretation rules.

2.6.2 Instantiation

The inverse of abstraction is called instantiation. If
abstraction (12) is the result of generalization on (9) and
(10), then the instantiation of (12) yields (9) when based
on the symbol ‘John’ and (10) when based on the symbol
‘Dave’.

We differentiate between intensional instantiation and
extensional instantiation based on the synonymy/equiv-
alence distinction. An intensional instantiation is
represensed by the dot notation:

(13) “John” . (Ax:Person)(x is a student)

Here the symbol specified by the expression preceding the
dot in (13), ‘John’, is the basis of the instantiation, and
the result of (13) is ‘John is a student’.

Recall that two symbols are synonymous (=) if they
express the same sense. We define (13) to be synonymous
with (9). Thus,

“John” . (Ax:Person)(x is a student)
= “John is a student”.

An extensional instantiation is represented by the
lowered star notation as follows:

(14) “John” « (Ax:Person)(x is a student)

Instantiation (14) is synonymous, by definition, with a
symbol that is equivalent to (having the same denotation
as) (9). Since there are many symbols equivalent to (9),
(e.g. (10)), (14) is synonymous with an indefinite symbol
that is non-deterministically chosen from the set of
equivalent symbols. Thus, the following hold:

“John” « (lx Person)(x is a student)
: "John is a student”

: “Dave is a student”

: “Truth”.

Here ‘Truth’ denotes the logical value, Truth, the
denotation of all true sentences.

300 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

DESIGN OF A DATA MODEL BASED ON SYMBOL ABSTRACTION

In summary, the following are the semantic definitions
of intensional and extensional instantiations:

Let a and b denote arbitrary symbols, A(x) be an
arbitrary abstraction body, and A(a) be the result of
substituting a for all free occurrences of x in A(x). Then,

a.(Ax)Ax)=b iff A(a) =b,
and

as(AX)AXx)=b iff A(a) :=:b.
2.7 Type

In order to maintain the semantic integrity of a database,
it is important that the database be free of nonsensical
data and nonsignificant symbols. We define type as a
linguistic mechanism that increases semantic data
integrity by rejecting syntactically correct but semantically
meaningless symbols.

Type checking is used to ensure the consistency
between an abstraction and its instantiations. For
example, when (9) and (10) are abstracted (generalized)
into (12), it is intended to be a generalization of more
than just (9) and (10). The intended extent of
generalization is specified by the type Person associated
with the abstraction variable ‘x’, which specifies the
range of the variable. Any instantiation of (12),
therefore, must be within the intended range of
abstraction. Thus,

“CS135” . (Ax:Person)(x is a student)
is considered as a nonsignificant symbol because

CS135 is a student

is not within the range of generalization intended by (12).

Note that the above concept of type is akin to the one
used in logic, particularly in the theory of types?!, where
logically paradoxical symbols are discarded as non-
significant due to type violation. However, it is different
from common notions of type in programming language
and database literature (eg, in reference 13), where a type
is defined as a category of objects. Russell?2 characterizes
his theory of types as a theory of symbols. In
programming language the theory of type is a theory of
objects. A more detailed discussion about the concept of
type in ADS is presented in reference 15.

2.8 Transparent Quote

ADS has two kinds of quotation marks: bar (J) and
double quotation marks (). (Note that in this paper the
single quotation marks (‘ ’) are used in our English
exposition.) When a symbol with free occurrences of
variables is quoted by bar quotation marks, the
occurrences remain free. When such a symbol is quoted
by double quotation marks, the occurrences are bound.
The bar quotation mark pair is called a transparent quote.

Without the transparent quote the expressive power of
abstractionissomewhatlimited. Consider a generalization
of the following two symbols:

(15) “John” is the name of John
(16) "Dave” is the name of Dave.

If we try to generalize the above symbols into
(17) (Ax:Person)("x” is the name of x),

then the first occurrence of ‘x’ in the abstraction body is
not free, and the intensional instantiation of (17) based
on ‘John’ will yield ‘”x” is the name of John’, instead
of (15). With the transparent quote, the proper
generalization of (15) and (16) is

(Ax:Person)(|x| is the name of x)

whose intensional instantiations will yield (15) and (16).

2.9 Description Operator

In logic, ‘(x)P(x)’ means ‘the x such that P(x) is true’
where P(x) is a predicate. ‘1” is called the definite
description (iota) operator. In ADS, for an arbitrary
predicate P(x), we define the iota operator by

x)P(x) = a iff P(a) :=: "Truth”
for an arbitrary symbol a.

Thus, ‘(1x)P(x)’ means ‘an x such that P(x)’, and it is
nonsignificant only when P(x) is true of nothing. We call
the iota operator the description operator.

3. DATABASE USE OF SYMBOLS

In the previous section we discussed some of the
important concepts about symbols. In this section, we
will discuss the relationship between symbols and a
database.

A database is a depository of symbolic representations
of user judgments. A judgment is an act of representing
some aspect of reality in symbolic form, usually as a
declarative sentence which asserts the proposition
expressed by a sentence.

3.1 Naming and Describing

When a database user represents a judgment in symbolic
form, he may refer to an object in two different ways,
by naming the object or by describing the object. Naming
by a proper name (eg, ‘John’), allows us to refer to an
object without necessarily involving its structure,
properties, or relationships to other objects. A name
hides every aspect of the object except for its identity. On
the other hand, describing by a description (eg, the best
student in CS135’) provides a method of modeling (or
characterizing) the object either through its structure, its
properties, or through its relationship to other objects.
A description hides selective aspects of the object. The
selection reflects a view of the author of the description.
Both naming and describing are processes of abstracting
reality into symbolic representations. For other views of
naming, see Church® and Carnap?.

In naming, any symbol can be a name, i.e., the
association between a name and its meaning is arbitrary?.
There is no logical necessity to call some person by a
particular name, such as ‘John’; it can be any other
symbol, such as ‘ABC’. The structure of a name has no
bearing on its meaning. It follows that (i) the meaning of
a name must be defined externally; there is no intrinsic

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 301

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

T.D. KIMURA, W.D. GILLETT AND J. R. COX

meaning associated with a symbol used as a name, and
(ii) a name, as a proper name, has a denotation (what
it names) but no sense.

In describing, the choice of symbols and their
arrangement (syntax) cannot be arbitrary. For example,
‘the best CS135 in student’ is nonsensical. The syntactic
structure of a description not only determines the object
it describes (its denotation) but also determines the way
of identifying the object (its sense). A description is called
a descriptor.

3.2 Definition of Names

A definition of a name is an association between a name
and a descriptor. There are two possible ways of
establishing such an association: the symbol can be
defined as naming the sense of the descriptor or as
naming the denotation of the descriptor. In ADS these
two types of name definitions are distinguished as
follows:

(18) ABC = = the best student in CS135
(19) DEF := the best student in CS135.

Definition (18) defines ‘ABC’ as a name expressing the
same sense that the descriptor expresses, and (19)
defines ‘DEF’ as a name denoting the same denotation
that the descriptor denotes in the current context. The
symbol ‘ABC’ becomes a synonym for ‘the best student
in CS135° (i.e., having the same intension). The
symbol ‘ DEF’ becomes an equivalent symbol to ‘ the best
student in CS135’ and becomes a proper name for the
best student in CS135 at the time when (19) is performed.
Thus, the definitions have the same effect as letting the
following statements be valid:

"ABC” = ”the best student in CS135”,
and “DEF” :=: "the best student in CS135".

Definition (18) is an intensional definition of the
name ‘ABC’ where the sense (intension) of the descriptor
defines the intension of the name. Statement (19) is an
extensional definition of name DEF’ where the denotation
(extension) of the descriptor defines the extension of the
name but does not define the intension. The descriptor
in an intensional definition is called the intensional
descriptor of the name, and it can be referenced as a
symbol in the ADS data language by prefixing the name
with ‘@’.

3.3 Intensional and Extensional Use of Names

When a name is defined both intensionally and
extensionally, there may be possible ambiguity over what
the name refers to. For example, assume that the
following intensional and extensional definitions of the
name ‘ABC’ are asserted when John is the best student
in CS135.

(20) ABC = = the best student in CS135
(21) ABC := John.

Then, the statement

(22) ABC takes EE280

302

is ambiguous as to whether it is synonymous with (23) or
only equivalent to (24):

(23) The best student in CS135 takes EE280
(24) John takes EE280.

When (22) is intended to mean (23), we say the
name ‘ABC’ is intensionally used. When it is intended to
mean (24), the name is extensionally used.

In order to eliminate such ambiguity, an extensional
usage of a name is prefixed by the symbol ‘4, and the
name by itself indicates an intensional usage.

Thus, the following is implied by (20) and (21),
respectively:

"ABC takes EE280” = ”The best student in CS135
takes EE280”, and
” 4 C takes EE280” :=: “John takes EE280".

3.4 Consistency in Name Definitions

When a name is defined both intensionally and
extensionally the definitions cannot be independent. If
a name represents some entity in the user’s perception
of reality, it is natural to expect that the object denoted
by a name be consistent with the concept expressed by
the name. This is called the fundamental law of semantic
consistency.

When this fundamental law is enforced, it is compatible
with the following observation about how a name is used
in ADS: The intension of a name specifies what the name
can possibly represent and the extension of the name
specifies what the name does actually represent.

In order to uniformly preserve the fundamental law of
consistency, ADS requires that every name be defined
intensionally first before any extensional definition. In
other words, the objects the name can denote must be
defined before the name is actually used to denote a
specific object. This is analogous to the requirement in
a programming language that a variable type must be
declared before a data value can be assigned to the
variable.

All names in ADS have an intension while some have
both an intension and an extension. No name has only
an extension. When a name has no extension, a name
with the prefix ‘#’ is nonsignificant but is not
nonsensical.

3.5 Statement (Boolean Descriptor)

A descriptor is called a statement if it denotes a logical
value (Truth or Falsehood) and expresses a proposition
as its sense. Thus, a statement is called a boolean
desoriptor. For example,

(25) John is a student

expresses the proposition that John is a student and
denotes Truth if John actually is a student.

In ADS, there are two different ways of representing
statement (25): by the generalization operator or by the
description operator. Assume that the concept of student

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

DESIGN OF A DATA MODEL BASED ON SYMBOL ABSTRACTION

can be decomposed into more primitive concepts such
as a person who has paid tuition, i.e., assume that (25) is
logically equivalent to:

John has paid tuition.
Then, we may define a generalization named Student as:
Student = = (Ax:Person)(x has paid tuition)
and represent (25) by its (intensional) instantiation as:
(26) “John” . Student.

If the abstraction Student is interpreted as a certain class
of person, then (26) expresses set membership. If it is
interpreted as a predicate function, then (26) expresses
a function application.

The other way is to consider that it expresses the
identification of John with some person who has all the
necessary properties for being a student. Assuming again
that any person who paid tuition is a student, we may
define an indefinite object, student, as:

student = = (x:Person)(x has paid tuition).
Then we can represent (25) by:
John = student,

where in ADS a = b iff a :=: b by definition.

Thus, in ADS, a statement (boolean .descriptor) is
represented either with ‘=" or ‘.’ or a logical composi-
tion of these statements with the standard logical
operators, ‘A’ (and),‘ v’ (or),‘~’ (not), ‘' V’ (for all), and
‘3’ (for some).

3.6 Assertion of Statement

Database users update a database by either asserting a
statement or by de-asserting a statement which had been
previously asserted (ie, cancelling a previous assertion).
The logical assertion symbol ‘-’ indicates an assertion,
and the symbol ‘-’ indicates a de-assertion as in:

(27) = John.is a student
(28) — John is a student.

Note that a de-assertion is different from a negative
assertion. Deassertions decrease the amount of informa-
tion obtainable from a database, while negative
assertions increase it. After the judgment represented by
(28) is made, it is not known whether John is a student
or not. After entering the following negative assertion,

(29) F John is not a student

it is known that John is not a student. Assertion (29) is
inconsistent with (27), but is consistent with (28).

In ADS, all assertions are either intensional or
extensional definitions of names with the form:

 <name> == <descriptor>
or F<name> := <descriptor>.

Here ¢ <name>’ represents an arbitrary name and
‘<descriptor>"’ represents an arbitrary descriptor.
Therefore, in order to enter assertion (27), a user would
decompose it into two parts; first, name the proposition
then define the extension of the name to be true:

(30) = FACT = = John is a student
(31) = FACT := Truth.

3.7 Constraints and Transactions

When a boolean name is extensionally defined (e.g., (31))
the database system first checks the semantic consistency
with the intensional definition (e.g., (30)), i.e., it checks
whether the statement ‘John is a student’ will be
evaluated to be true under the current database state.
Once the extensional definition is accepted it becomes a
fact to the database system and participates in future
semantic consistency checks. Any assertions made to the
database system must be consistent with the set of facts
known to the database system. Thus, the set of
extensionally defined names for logical values in ADS are
called constraints. Note that a constraint can be activated
or deactivated by asserting or de-asserting its extensional
definition. Also note that a constraint can express a
general fact such as:

Course-Limit == No student takes more than 6
courses
Course-Limit := Truth.

A constraint may be local, involving a single name, or
global, involving more than one name. When a name in
a global constraint acquires a new definition, the
database may become inconsistent. It follows that a
single assertion or de-assertion (updating a name
definition) may not preserve semantic consistency.

A transaction is a sequence of assertions and/or
de-assertions that preserves semantic consistency, and is
identified by ‘<’ and ‘>’ surrounding the sequence.
The database system temporarily suspends consistency
checking until the end of the transaction. If the
transaction results in an inconsistent state, the database
state prior to processing the transaction is retained.

4. THE ADS DATABASE SYSTEM

The ADS data language can be considered as an input
specification language for the ADS database system. A
single sequence of commands is input, to the ADS
database system, and a single sequence of responses is
output from the system. Commands may be either update
or query commands.

The ADS database system utilizes an interpretation
function (of the data language) with the command and
the current database state as input and the response and
the next database state as output. The command is
evaluated within the context defined by the current
database state. If the command is an update command,
then it may define a new context by changing the
database state. If the command is a query command, the
appropriate information is extracted from the current
database state and becomes the response; the state is left
unchanged. If the command is an update command, the
potential next state is created and checked for

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 303

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

T.D. KIMURA, W.D. GILLETT AND J. R. COX

consistency. If it is a consistent state, it becomes the next
state and the command is accepted; otherwise, the state
is left unchanged and the command is rejected.

The ADS database state consists of a set of symbols
of the following form, each of which is called a database
object,

(name, intensional descriptor, extensional descriptor),

where each name in the database is unique. The
intensional descriptor defines the sense of the name, and
the extensional descriptor defines the denotation of the
extensionally used name.

Note that the logical structure of the database state is
similar to that of the symbol table in a programming
language interpreter whose entries have, in general, the
form,

(identifier, type, value),

where the type specifies what value can be assigned to the
identifier and the value specifies what is currently
assigned to the identifier. Also note that a database object
in ADS corresponds to the first three components of an
elementary datum as defined by Langefors!?:

(object name, object properties, property value, time).
A database state is consistent if for each database
object in the database state the extensional descriptor is
consistent with the intensional descriptor based on the

fundamental law of semantic consistency; otherwise, it
is inconsistent. Entering the command

- name = = descriptor
creates the new database object
(name, descriptor, undefined)

provided that there is no database object in the database
which has the same name. Entering the command

+ name := descriptor

modifies a database object from the form
(name, descriptorl, descriptor2)

to the form
(name, descriptorl, descriptor).

The command will be rejected if there is no database
object in the database which has the same name, or if
the command will lead to an inconsistent database state.

Similarly, entering a command de-asserting the
intensional definition of a name will delete the entire
database object. A command de-asserting the extensional
definition of a name changes the third component of the
named database object to ‘undefined’.

5. SCHOOL DATABASE

In this section, using a school database as an example, we
illustrate the ability of ADS to integrate an intensional
database with an extensional one in a flexible manner and
the fundamental law of semantic consistency in ADS. We
also illustrate how the abstraction capabilities of the
ADS language can be used for representing user
judgments and queries. In order to cover a variety of ADS
language constructs, we view the world in terms of entity
types and attribute functions as in reference 23, rather
than a set of relations.

Numbered user judgments and queries appear, one by
one, first in the ADS language, and then in English. We
will consistently omit the quotation marks on both sides
of ‘=’and ‘:=:" for brevity.

Assume that all proper names, such as ‘Cox’, ‘CS135’,
and so on, are already defined intensionally, each name
denoting some symbol which is an internal representation
(surrogate in reference 14) of a person or a course in
reality. For example, Cox == "Cox”, CS135
”CS135”, etc. Similarly, ‘T’ denotes the symbol ‘Truth’,
and ‘F’ denotes ‘Falsehood’.

5.1 Entity Types

Let us suppose that, as a user, we identify the need for
introducing an entity type called Person, and that
nothing is known about the entity type with respect to
its membership and associated attributes. At this point
we enter the judgment into the database expressed as:

(32) = Person == (ix)T
Any object can be a person.

Accept

The first-order abstraction Person represents the set of all
possible persons. The database acknowledges the
assertion by the response ‘ Accept’ given at the right.

In ADS the question mark followed by a descriptor
represents a query, requesting the object denoted by the
descriptor.

(33) ? Cox.Person Yes
Can Cox be a person?

The response is again given at the right expressed in a
meta-language (in this paper we are using English). Since

Cox.Person = Cox.(AX)T =T :=:T,

the response from the database is a display of the logical
value, Truth, in the meta-language. We choose to display
Truth by ‘Yes ’ and Falsehood by ‘No’ to make the
interaction more natural in English.

At this point, ‘Person’ is not extensionally defined, ie,
¢ % Person’ is nonsignificant, which corresponds to the
fact that no person is actually known yet. Therefore,

(34) 7 Cox « # Person
Is Cox a person?

Reject

Now, suppose that the person Cox becomes a known
person, and that the fact is to be entered into the

304 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

DESIGN OF A DATA MODEL BASED ON SYMBOL ABSTRACTION

database. The following extensional definition will
suffice:

(35) Person := (Ax)(x=Cox — T) Accept
Cox is a person.
(36) ? Cox « # Person Yes

Is Cox a person?

Definition (35) associates the extension of the name

‘Person’ with the denotation of the descriptor

‘(x)(x=Cox — T)’. The response to (36) is ‘ Yes’ because
Cox « # Person

: Cox + (Ax)(x=Cox = T)

:(Cox=Cox —» T)

: T.

Extensional definition (35) is accepted by the database
because it is consistent with the intensional definition (32)
in the following sense:

For an arbitrary symbol a,
a+ #Person :=: T implies a.Person :=:T.

In other words, if the object denoted by a, is a person,
then the object must be one of those that can be a person
(note the distinction between is and can be). This is the
definition of the fundamental law of semantic
consistency applied to the abstraction name ‘Person’.

5.2 Update of Entity Types

If another person, Gillett, becomes known, the extension
of the name ‘Person’ must be updated:

(37) = Person :=

(Ax)(x=Gillett - T; x + # Person) Accept
Gillett is also a person
(38) ? Cox « #Person Yes

Is Cox a person?

Note that in (37) the new extension of ‘Person’ is defined
in terms of the old extension of the name. Since prior to
(37),

Person :=: (Ax)(x=Cox — T),
the response of (38) is justified by:

Cox « # Person
:=:Cox+(Ax)(x =Gillett - T;x«(Ax)(x =Cox —
T)
:(Cox=Gillett > T; Cox«(Ax)(x =Cox — T))
: Cox s (Ax)(x=Cox = T)
: T.

The entity type Course, Student, and Faculty can be
defined in a similar way as for Person, as follows:

(39) + Course == (IxX)T

20

(40) - Course := (Ax)(x=CS135 v x=C8236
vx=CS301 vx=CS360 — T)

(41) - Student = = (Ax: Person)T

(42) Student :=
(Ax: Person)(x=John v x=Dave v x=Kathy)

(43) = Faculty = = (4x: Person)T

(44) = Faculty :=
(Ax: Person)(x=Cox vV x=Gillettx =Kimura)

5.3 Consistency Checking

We show here that a local update may involve a global
consistency check. Definitions (32) and (39) allow the two
entity types Person and Course to overlap completely.
If we know that courses are different from persons, then
that knowledge can be represented in the following
definition of Course in place of (39):

(45) - Course = = (Ax)(x + #Person - F; T) Accept

Any object that is not a (known) person can be a
course.

Even though definition (45) explicitly restricts only
‘Course’, it also implicitly restricts ‘Person’ as well.
Consider the following update assertion attempted after
(32), (45) and (40) have been entered:

(46) CS135 « #Person :=T
CS135 is also a person.

Reject

The response is ‘Reject’ because the resulting database
state would violate the fundamental law of semantic
consistency with respect to the name ‘Course’, rather
than the name ‘Person’:

CS135 .+ #Course :=: T
but
CS135 . Course :=: F.

If it is desirable to make a similar explicit restriction
on Person for symmetry, the intension of ‘Person’ can
be modified by the following transaction (ref. 3.7):

@<
— Person == (1x)T
 Person == (x)(x « #Course - F; T)
> Accept.

5.4 Constraints

Another way of representing the mutual exclusion of
Person and # Course is to enter the following pair of
assertions, which constitute a constraint (ref. 3.7) on the
extensions of ‘Person’ and ‘Course’:

(48) — Course-Constr = =

(VX)(x + # Person —» ~(x «#course); T) Accept

For any object, if it is a person, then it is not a course.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 305

cpy 28

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

T.D. KIMURA, W.D. GILLETT AND J. R. COX

(49) = Course-Constr := T

Accept
Let Course-Constr be true.

Assertion (49) is accepted by the database because after
it is entered the database state is consistent with (48) in
the following sense:

Course-Constr :=: T implies
Course-Constr :=: T.

This is the definition of the fundamental law of semantic
consistency applied to the name ‘ Course-Constr’. Once
(49) is accepted, any update on the extension of either
Person or Course must preserve the denotation of
‘Course-Constr’ to be Truth; otherwise the law would
not hold. Thus, in general, an extensional definition of
a name for a logical value imposes a constraint on the
database state.

5.5 Attribute Functions

When we make a judgment that a student may have any
faculty member but himself as his advisor, an attribute
function, advisor, can be defined as follows:

(50) - advisor = =
(Ax: Student)@y: # Faculty)(~x=y) Accept
Any faculty member can be the advisor of any student
but himself.

Note that from (41) and (43) any person can be both a
student and a faculty member concurrently.

In order to ask who can be Dave’s advisor, the
following query will suffice:

(51) ? Dave.advisor
Who can be Dave’s advisor?

Cox (Gillett, Kimura)

The above query is synonymous to
? (1y: # Faculty)(~ y=Dave)

requesting one of the faculty members who is not Dave.

Later, when a particular advisor-advisee assignment is
made, the extension of ‘advisor’ can be entered as
follows:

(52) advisor :=
(Ax)(x=John — Gillett; x=Dave — Kimura) Accept
John’s advisor is Gillett and Dave’s advisor is Kimura.

The above extensional definition is consistent with
(50) in the following sense:

For arbitrary symbols a and b,
a « # Advisor :=: b implies
a . advisor :=:b.

This is the fundamental law of semantic consistency
applied to the attribute function name ‘advisor’.

5.6 Binary Relations
The binary relation, teach, between faculty members and
courses can be defined as:
(53) - teach ==
(Ax: # Faculty)(ly: # Course)T
Any faculty member can teach any course.

Accept

When a particular teaching assignment is made, the
following extensional definition can be entered:

(54) = teach := (Ax)(ly)(x=Cox — y=CS360;
x=Gillett - (y=CS135v y=CS236);
x=Kimura —» y=CS301) Accept

Cox teaches CS360, Gillett teaches CS135 and
CS236, and so on.

The above extensional definitions are consistent with (53)
because the following condition is satisfied:

For arbitrary symbols a and b,
a « (b« #teach) :=: T implies
a.(b.teach) :=:T.

This is the fundamental law of semantic consistency
applied to the second-order abstraction name ‘teach’.

6. ADVANCED CAPABILITIES

In order to prove the relational completeness of the ADS 3

00/woo°dnoolwepeor//:sdiy Woly papeojumoq

data language, it is sufficient to show that the followmg =

operatlons can be represented in the language: (i) set &
union, (ii) set difference, (iii) cartesian product, (iv)
projection, and (v) selection?¢. Since these operatlons are
representable in the ADS language, ADS is relationally &
complete. One of the limitations of the relational data
model is its inability to represent the transitive closure of &
a binary relation. In ADS we can construct not only the
transitive closure of a specific binary relation but also the
general operator (Closure), that takes a descriptor (or a
name) of a binary relation as an argument and yields a
descriptor for the transitive closure of the binary relation.

We illustrate the construction of Closure by constructing
the transitive closure of the Prerequisite relation between
two courses. For brevity, we use only intensional
information.

(55) - level = = (Ax:Course)(1y:Number)(0 <y <7)
Any number between 0 and 7 can be the level of a
course.

(56) = Prerequisite = =
(A<x:Course, y:Course >)(x.level < y.level)
Course x is a prerequisite of Course y where the level
of x is lower than the level of y.

Let Required be the transitive closure of Prerequisite.
Then

(57) - Required = = (1<x:Course, y:Course>)
(<x,y> .Prerequisite - T; (3z:Course)
(<x,z> .Prerequisite A <z,y >
Required — T; F)).

306 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

=

l\)

¥20Z Iudy Q1 uo 1sen6 Aq z.25501/8

DESIGN OF A DATA MODEL BASED ON SYMBOL ABSTRACTION

Course x is required for course y if x is a prerequisite
of y, or x is a prerequisite of some course z, such that z
is required for y.

The closure operator can be defined by generalizing the
above construction as:

(58) Closure ==
(Ar:Relation)(A<x,y>)(<x,y >.[r]> T;

3z)(<x,z>.[r] A <z,y>.(r.Closure) —» T; F))

where ‘Relation’ is a name of the syntactic category for
descriptors of binary relations on a set. Note that the last
occurrence of ‘r’ in the abstraction body is not bracketed
unlike all other occurrences because Closure takes a
symbol as an argument. There are no type specifications
for the variables ‘x’, ‘y’, and ‘z’ because they depend
on the argument ‘r’. To see how the operator can be used,

consider

(59) - Required = = "Prerequisite” . Closure.
Then,

Required

"Prerequisite”.Closure

(A <x,y>)(<x,y> .Prerequisite —» T;
(3z)(<x,z>. Prerequisite A
< z,y>.("Prerequisite”.Closure)
- T; F))

= (A <x,y>)(<x,y>.Prerequisite —» T;

(Jz)(<x,z> .Prerequisite A < z,y>

.Required - T; F))

Thus, definition (59) satisfies the condition for being the
transitive closure of Prerequisite.
Note that the argument for Closure need not be a name.

REFERENCES

1. J.R. Abrial, Data Semantics. In Data Base Management.
J. W. Kimble (Ed.), Amsterdam, North-Holland, 1-60,
(1974).

2. R. Carnap, Meaning and Necessity, 2d ed., Chicago,
Illinois: University of Chicago Press, (1956).

3. J.M. Carroll, Toward an Integrated Study of Creative
Naming. Research Report RC9016(39483), IBM Watson
Research Center, Yorktown Heights, (1981).

4. P.P. Chen, The Entity-Relationship Model: Towards a
Unified View of Data. ACM Transactions on Database
Systems 1,1, (Mar. 1976), 9 — 36.

5. A. Church, The Calculi of Lambda Conversions. Princeton,
New Jersey: Princeton University Press, (1941).

6. A. Church, Introduction to Mathematical Logic. Princeton,
New Jersey: Princeton University Press, (1956).

7. E.F. Codd, Extending the Database Relational Model to

Any first-order generalization descriptor of the following
form can be the argument:

(A<x:A, y:A>)P(x,y)

where A is a type name and P(x,y) is an arbitrary
predicate. Other highly abstract concepts can be
represented in ADS. For example, the fixed point
operator of lambda calculus is easily represented and
used?®.

7. CONCLUSIONS

We have successfully tested the feasibility of ADS with
a prototype production implementation written in the
language C. The C implementation simulates some of
these capabilities and restricts some forms of the ADS
syntax so that a reasonable performance level can be
maintained. For example, in some contexts a restriction
is applied that variables can only range over extensional
database values.

An implementation of the full ADS model requires the
realization of deduction capabilities for logical consistency
checking between intensional data. Such capabilities
require significant computational resources. By the same
token, pattern matching (searching) and pattern associa-
tion (binding) operations that are applied to a large
extensional database also demand heavy usage of
computational resources and extensive memory resources.

Acknowledgements

The authors wish to thank Dr. John M. Smith of CCA
for his constructive comments and criticism on earlier
versions of the manuscript. Our discussions with Dr. Jack
Minker of Maryland about logical databases and
deduction capabilities have helped us to make refinements
to the ADS data model. Thanks are also due to Ken
Wong, Andy Laine, Stuart Goldkind, Pat Moore, Bill
Ball and other members of the Information Systems
Group who have been good listeners and have provided
various forms of support. Finally, the authors appreciate
the valuable comments provided by one reviewer which
improved the readability of the paper.

Capture More Meaning. ACM Transactions on Database
Systems. 4:4 397434, (Dec. 1979).

8. JR. Cox, Jr., A Medical Information System Design
Methodology. Annual Report to National Center for
Health Services Research, Department of Computer
Science, Washington University, St. Louis, Missouri, (June
1980).

9. J.R. Cox, Jr., A Medical Information System Design
Methodology. Annual Report to National Center for
Health Services Research, Department of Computer
Science, Washington University, St. Louis, Missouri, (June
1982).

10. H.B. Enderton, A Mathematical Introduction to Logic. New
York, Academic Press, (1972).

11. G. Frege, Uber Sinn und Bedeutung, Zeitschrift fur
Philosophie und Philosophische Kritik 100, 25-50. Translated
by M. Black as On Sense and Reference. In P. Geach and

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1¢85 307

20-2

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

12.

13.

14.

15.

T.D.KIMURA, W.D. GILLETT AND J. R. COX

M. Black, Translations from the Philosophical Writings of
Gottlob Frege Oxford, (1952).

H. Gallaire, J. Minker and J.M. Nicolas, An Overview and
introduction to Logic and Data Bases. In Logic and Data
Base, Eds. H. Gallaire and J. Minker, New York, Plenum
Press, 3-30, (1978).

C.A.R. Hoare, Notes on Data Structuring. In Structured
Programming. New York : Academic Press, 83-174, (1972).
W. Kent, Data and Reality. Amsterdam, North-Holland,
(1978).

T.D. Kimura, Semantic Abstraction and the Concept of
Type. Technical Report WUCS-82-10, Department of
Computer Science, Washington University, St. Louis,
Missouri, (1982).

. T.D. Kimura, W.D. Gillett and J.R. Cox, Jr. Abstract

Database System (ADS): A Data Model Based on
Abstraction of Symbols. Technical Report WUCS-82-12,
Department of Computer Science, Washington University,
St. Louis, Missouri, (July, 1982).

. B. Langefors, Information Systems Theory. Information

Systems. 2, 207—19, (1977).

. J. Minker, An Experimental Relational Data Base System

Based on logic. In Logic and Data Base. Eds. H. Gallaire
and J. Minker, New York, Plenum Press, 107-47, (1978).

19.

20.

21.

22.

23.

24.

25.

26.

308 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

J., Mylopoulos, P.A. Bernstein and H.K.T. Wong. A
Language Facility for Designing Database-Intensive Appli-
cations. ACM Transactions on Database Systems. 5:2,
185-207, (June 1980).

D.R. Perlis, Language, Computation, and Reality. Ph.D.
Thesis, Department of Computer Science, University of
Rochester, (1981).

B. Russell, Mathematical Logic as Based on the Theory of
Types. Americal Journal of Mathematics. 30, 222-62,
(1908).

B. Russell, The Philosophy of Logical Atomism. In Logic
and Knowledge, Ed. R.C. Marsh, New York: Putnum’s
Sons, 177-281, (1956).

D.W. Shipman, The Functional Data Model and the Data
Language DAPLEX. ACM Transactions on Database
Systems. 6:1, 140-73, (March 1981).

J.M. Smith, and D.C.P. Smith. Database Abstractions:
Aggregation and Generalization. ACM Transactions on
Database Systems. 2:2, 105—33, (June 1977).

D.C. Tsichritzis and F.H. Lochovsky, Data Models.
Englewood Cliffs, New Jersey: Prentice-Hall, (1982).

J.D. Ullman, Principles of Database Systems. Computer
Science Press, (1980).

¥20Z I4dy 01 uo 1senb Aq 225501/862/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

