Spiral Storage: Efficient Dynamic Hashing with

Constant Performance

JAMES K. MULLIN
University of Western Ontario, London, Canada

We describe and analyse a dynamic hashing method called Spiral Storage’. Dynamic hashing methods extend the power
of conventional hashing methods by avoiding the need to have good initial estimates of the storage demand. The file storage
space will grow or shrink with demand. ‘Spiral Storage’ is the only known dynamic hashing method which provides

constant average performance while the storage space changes in Pproportion to the storage demand. The performance of the
method with link chained overflow is investigated. Results of analysis and of simulations confirm the utility of the method.

1. INTRODUCTION

We describe a method for hash storage organisation that
copes well with changing demand for storage space.
Hash-based direct access methods have been used for
many years. They provide a mapping between record
identifiers and the storage addresses for records in a file.
Prior to 1980, one of the major disadvantages of such
hashing methods was the need to estimate the storage
demand accurately. An overestimate led to wasted space,
and an underestimate led to poor performance or — in
some cases — failure. If a poor estimate was given, it was
necessary to completely reorganise the file into a new
appropriately sized storage area. This could be a
time-consuming operation for large files. Nevertheless,
hashing is attractive. Records can be accessed in (on
average) constant time — independent of the number of
records in the file. The average is taken across all records
in the file. Performance is better than that of competing
multi-link tree structures, where the average time to
access a record is logarithmic in the number of records.
Multi-link tree structures do however provide the ability
to expand and contract file space gracefully according to
demand.

In about 1980, a variety of hash-based methods
appeared which remove the requirement for accurate
storage estimates. These methods offered the good
performance of hashing coupled with the ability
gracefully to expand or contract storage space in
proportion to storage demand. Litwin’s! ‘linear hashing’
takes its name from the linear relationship between
storage used and demand. Other methods are Larson’s?
linear hashing with partial expansions and Martin’s
‘Spiral Storage’.® An excellent survey of dynamic hashing
may be found in Scholl.4

In this paper we describe and analyze Spiral Storage.
Spiral Storage is a dynamic hashing method which
provides constant average performance while the storage
space expands and contracts in proportion to storage
demand. Its creator, Martin, originally presented the
concept using properties of the exponential spiral — hence
the name. Since Ref. 3 is not generally available, and also
in the author’s opinion the exposition is simpler without
using the exponential spiral, the spiral concept will be
abandoned in favour of a more basic approach, while
retaining the original name. The basic features of this
method will be described, followed by an analysis of an
implementation with linked overflow.

2. THE METHOD

A hash function which returns a value in the range (0...1)
is required. Performance is best when each value in
(0...1) is equally probable. A pseudo-random number
generator using the key as seed performed well in the
system tested.

Spiral Storage can best be appreciated in two stages: :

as a mapping of keys to logical addresses and then as a
mapping of logical to physical addresses.
key — hash(key) — logical address — physical add-

ress
The file is composed of buckets each capable of holding
a fixed number of records. Some overflow handling
method is required when a bucket overfills. Martin uses
double hashing. The implementation described here uses
simple linked overflow chains in a separate area.
Overflow handling will - for the moment — be ignored.

Spiral Storage provides a systematic way to expand or
contract the amount of storage in use — i.e., the size of the
logical address space. Consider the case of expanding
memory. The file space can be visualised as shrinking on
the left and growing on the right. Figure 1 shows three

L]

S

L]

S

N~

A~ —

L ;]

Figure 1. File growth with Spiral Storage. Notice that records
move to a larger space.

Before growing

Growth

More growth

stages in successive expansions of the virtual memory.
When expanding storage, records in a bucket on the left
are moved to a new larger space on the right. Thus both
file boundaries move. Since many computer systems
would have difficulty with a file where both boundaries
move, a simple method is employed to re-use space freed
on the left. This employs a logical to physical address
mapping which will be described later.

3. LOGICAL ADDRESS MAPPING

The logical address mapping function is: logical = 1b¢%..
Lx1 denotes the integer truncation of x and Tx? denotes

330 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq G09501/0£€/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

SPIRAL STORAGE

the smallest integer greater than or equal to x. b, called
the growth factor, is some chosen constant greater than
1 such as 1.4 or 2. The larger the constant, the more
rapidly space expands or contracts. The value of G is
given by:

G = Tc-hash(key)?+ hash(key)

G has a sawtooth shape, as a function of hash(key),
depending on the parameter ¢ which determines the initial
and final bucket locations. An increase in ¢ will cause an
expansion in net space. A decrease in ¢ causes a
contraction in space. The value of G ranges from ¢ to
c+ 1. Figure 2 shows the relationship between the hash

«o++ Withc=8.2
---— Withc=8.4

02 03 04 05 06 07 08 09 1
h

Figure 2. Logical address mapping Using the Sawtooth
Function G

function hash(key), G and b%i. When ¢ has the
(arbitrarily chosen) value 8.2, follow the solid and the
dotted curve. When c is increased to 8.4, follow the solid
and the dashed curve.

When ¢ = 8.2, the address space varies from 27 to 41.
When c increases to 8.4, the addresses range from 30 to
45. Another important property of the function G is also
evident in Figure 2. When ¢ changes from cl to ¢2, only
the lower addresses from L6 to 121 need to change.
Other addresses remain the same. It is this property that
permits incremental changes in remapping addresses
during file expansion. Without such a property, gradual
expansion or contraction would not be possible.

Note that the minimum value of G is ¢ and its
maximum value is ¢+1. Thus the minimum logical
address in use is LA¢1 and the maximum address is Lb+11.
The amount of file space used is therefore 1 + Lb°+11 — LbC1.
This can be approximated by 5°(b— 1) when the address
space is large.

Storage
address

be+

be

|
|
|
|
1
c

Range of G —
Figure 3. Logical address mapping

c+1

Another view of the address mapping can be seen in
Figure 3. If the hash function is uniform, each equal-sized
interval from ¢ to c+ 1 has the same expected number of
keys. In forming the mapping to addresses, note that the
addresses near Lb°1 receive more keys than those near
bty The expected number of keys mapping to an
address is proportional to the fraction of hash values
mapping to that address. This is inversely proportional
to the slope of the exponential curve at that address. For
an exponential, the slope of the curve is proportional to
the address. There are thus unequal bucket expectations.
The ratio of highest bucket expectation to lowest is the
growth factor b.

4. FILE EXPANSION

With all known hashing methods, performance deterior-
ates as the storage actually used approaches the storage
available. One commonly used measure of storage
utilisation is the packing factor. The packing factor,
defined as the number of records in the file divided by the
product of number of buckets and capacity of a bucket,
is monitored and whenever it exceeds (is below) some
chosen threshold, we increase (decrease) the space by one
bucket. Since performance is related to packing factor,
one can control performance. It may be wise to have a
threshold region of no change, so small fluctuations about
the threshold do not result in excessive remapping.

When we desire to expand the space, a new value of
¢ is chosen so as to completely eliminate the first bucket.
This value ¢’ is obtained from the inverse of the
exponential function

¢ = log, (first+1).

First is the logical address of the leftmost bucket. Records
in the old first bucket are now redistributed to a larger
space at higher addresses near 5°+!. The expected density
of records in the first bucket is the highest in the file, so
this is the most desirable bucket to remap. The current
value of ¢ must be recorded. The growth function b€ has
a simply computed inverse. In addition, the average
performance which is determined by the ratio of records

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 331

¥20Z I4dy 01 uo 1senb Aq G09501/0£€/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

J.K.MULLIN

to buckets is kept constant during file growth. This occurs
as long as new buckets are added in proportion to new
records. Competing methods such as those of Litwin! and
Larson? do not have this attractive property. Unfortun-
ately, since lower addresses are more densely populated
than higher addresses, performance does vary with the
record accessed. This is also true of Refs 1 and 2.

5. PHYSICAL ADDRESS MAPPING

In the logical address mapping described above, both the
left and right file boundaries move. This would cause
difficulty in many operating systems such as TOPS-10 or
Unix. We distinguish logical and physical addresses in
order to keep the view of logical address mapping
presented above and yet to map these logical addresses
to a contiguous physical space where only the right
boundary moves. Martin® shows such a method to re-use
released buckets on the left of the file. In the
implementation described here, whenever the packing
factor exceeds a threshold, the leftmost bucket is totally
removed by a suitable adjustment to ¢. The important
idea is to immediately re-use this bucket for a new logical
address and then to allocate new buckets as required.

~ Each time a logical bucket is accessed, one must
determine its actual physical address. This requires a
determination of how the given logical address was
instantiated. There are three possible cases:

it was one of the original allocation;

it was a re-use of a freed bucket on the left;

it was a newly allocated bucket.

It is convenient to ignore the first case. We consider the
file space to have been initially empty and all buckets to
have been assigned on expansions from the null file.

Given a logical bucket address, we wish to determine
whether it was put into a recycled or a newly allocated
bucket. If the bucket was put into newly allocated space,
its physical address is one plus the number of buckets
existent just before its creation. If the bucket was put into
recycled space, one determines its recycled ancestor and
then recurs to find the first allocation for the ancestor
bucket. This process involves finding the fractional
bucket addresses, called the ancestor range, which when
deallocated could map keys to the logical bucket under
consideration. Figure 4 shows this process graphically.
Consider bucket k. The range of keys mapping to bucket
k is from the lower boundary at log,k up to log,(k+ 1).
The range of keys which will be remapped into bucket k&
lies at boundaries one below from log,k—1 to
log,(k+ 1)—1. This is because the active keyspace range
is always one unit long from ¢ to ¢+ 1. One can map from
G back to the bucket ancestor addresses.

lowest ancestor. ..low = b198k~1 = k /b

highest ancestor. ..high = p198*+)-1 = (k+1)/b
The actual lower bucket is Llow. and the highest is Lhigha.
On the graph, the lowest truncated boundary is 1 and the
highest is 2. Since the lower ancestor boundary (at = 1.6)
is not precisely at a bucket boundary, bucket 6 must have
been instantiated from newly allocated space.

Note that if b > 1, the ancestor range mapping to a
bucket is always smaller than one unit bucket. This is true
since a deallocated logical bucket is always mapped to a
new larger space. When a bucket on the left is
deallocated, the entire key range in that bucket is mapped
elsewhere. The new value of ¢ is log,(leftmost + 1). When

Storage
address

Bucket
range

Ancestors { 2 1

14

Key range
block 6

G —

Figure 4. Physical address mapping determining ancestor blocks

a bucket is totally deallocated, that space can be (and is)
immediately re-used. We need to determine whether the
low ancestor address and high ancestor address are within
the same bucket. If this is so then bucket k£ was
instantiated when the bucket at Llow. was released. Since
buckets always expand to a larger space, high—low < 1.
Thus if thighs > Llowa, then bucket k& was instantiated
from the recycled bucket Llow.. Otherwise, bucket k was
instantiated from newly allocated space.

If bucket k (one with Llowa = Lhighi) was instantiated
with a newly allocated bucket, one needs to know the
number of active locations when it was instantiated. This
is given by k-Llow., since k was then the last and low was
the initial bucket at that time.

If the bucket was instantiated from a recycled bucket,
the problem reduces to finding how this recycled bucket
(at address low) was instantiated. The address is always
reduced and the recursion completes.

Despite the tricky logic involved, the mapping
algorithm is simple.

function physical(logical)

high: = (1 +logical)/ba

low: = Llogical/bu

if low < high
then physical: = physical(low) (*recycled*)
else physical: = logical —low + origin;

end physical;

‘Origin’ is the physical address of the initial bucket —
usually zero. The recursion, which can be easily replaced
with a whole loop, is limited to log,(buckets)+ 1 cycles.

6. ANALYSIS OF PERFORMANCE

The Spiral Storage allocation method was analysed and
simulated in order to study its behaviour. The overflow
handling method used in this study is link chaining of
overflow records to the prime bucket. Space is allocated
in buckets each with a capacity of d records. Each bucket
has a possibly empty overflow chain where unblocked
records are attached to the bucket in a linked list. Many
other conflict handling methods are possible. Martin?
uses a double hashing method. As his method needs
special additional provisions to handle unsuccessful

332 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq G09501/0£€/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

SPIRAL STORAGE

/)
a L 1 [+ N

d

Figure 5. Storage layout of a bucket. The blocking factor dis 4.

Table 1. Analytic and simulation results, spiral storage with
linked overflow chains

Parameters Calculated Simulated

b d pf Ss Avcl Su Ss Avcl Su

1.4 10 0.7 105 030 0.68 105 0.16 0.69
1.4 10 0.8 1.09 055 0.76 1.09 036 0.77
1.4 10 09 116 0.88 083 1.18 0.80 0.3
2.0 10 0.7 1.06 035 068 1.09 0.28 0.68
2.0 10 08 1.11 057 0.76 1.14 0.50 0.76
2.0 10 09 1.17 0.81 083 129 101 0.81
3.0 10 08 1.15 069 0.75 135 090 0.73
2.0 20 08 1.08 0.55 078 1.11 048 0.78

searches, the simpler chaining method implemented is
described here. Figure S shows the storage layout of a
typical bucket. Table 1 summarises some results from the
simulations. It is discussed later.

First, we analyse the method mathematically. We
assume that the hash function used returns a real result
in the range (0...1) and that each equal-sized interval in
this range has the same expected key density. We shall
calculate the expected number of access for a successful
search and for an unsuccessful search. A search of the
prime bucket and each overflow chain record read counts
as one access. These calculations will be done in terms of
a measure of space used. There are two measures
commonly employed: packing factor and storage
utilisation. Some definitions are now required.

Let pf = packing factor, su = storage utilization,
nrec = number of records in the data space, d = blocking
factor, avcl = average overflow chain length.

pf = nrec/(prime_buckets*d)
su = nrec/((prime_buckets*(d + avcl)))

The implementation expands space so as to maintain
a constant packing factor. We thus choose to employ pf
in the analysis. As the analysis calculates avcl, we can
compute the storage utilisation if this is desired.

The expected number of records in a bucket varies
across the data space. Looking at Figure 3, note that
G = "c-hash(k)"+hash(k) varies from ¢ to ¢+ 1, with
each equal-sized interval having an equal expected
number of keys. Also note that the expected number of
records in a bucket is inversely proportional to the slope
of the exponential curve b¢ at that bucket. Consider 4 to
be a point in the range from ¢ to ¢+ 1; h covers the active
addresses. The expectation x in a bucket is given in terms
of the maximum expectation in the leftmost bucket:
max x.

x =maxx/b"; hin 0...1; when h =0, x = maxx;
when h = 1, x = maxx/b.

Now, solving for pf in terms of b, d and max x,

pf = nrec/prime_buckets*d.
prime_buckets = 1bt11— b1+ 1 = b°(b—1).

The approximation ignores the 1 and truncation
effects. It will be valid with a large number of buckets.

The number of records, nrec, is the integral of the
expectation x across all buckets. nrec = [§¢"'xds; where
s is the address space. Since x = maxx b¢/s, when s is the
address b°, x = maxx. Thus, s=maxx b°/x. The
differential ds = —maxx b¢/x2 dx. Now, nrec
= [maxz/b maxx b°/x dx. Integrating across expectation,
nrec =maxx In (b) b, and hence pf=maxx In
b/(d(b—1)). This permits the calculation of maxx given
pf, d and b: maxx = pf d(b—1)/In b.

We now wish to calculate the average number of
accesses for searching. To do this, the probabilities of
various overflow chain lengths are needed. If x
occurrences of a random event are expected, the
probability of actually finding k occurrences is given by
Poisson’s law:

Plnr = k] = xke~ % /k!

Let the probability of overflow chain lengths be Plof = k].

Plof = k]l = Plnr =d+k]; k>0
= x%ke=2/(d+k)!; k>0.

The expectation x varies from bucket to bucket. To find
the average, we must integrate across all buckets in the
address space. This expectation was previously found to
be maxx/b*, when h ranges from 0 to 1.

Let P be the average of P over all buckets.

Plof =k] = f:ﬂ+ke‘x/(d+k)! dh; k>0.

Substituting for x and removing terms which do not vary
with A from the integral, we find:

maxxd+lce—maxz

Plof =k = @d+k)!

1
A/ (b~)a+k =" dh; k > 0.
0
This was evaluated numerically. Once the P are
calculated, one can use them to find the expected search
accesses which determine efficiency.

6.1 Failed Search: Fs

Here we calculate the expected number of accesses needed
to determine that a key is not in the file. For overflow
chains of length k, there are k+1 total accesses. The
prime bucket and each of the k overflow blocks must be
read. In the following formula each possible chain length
is weighted by its probability of occurrence.

Fs= 3 Plof =k (k+1).
k=0

In reasonable operating ranges, oo can be safely
approximated with 20. This was checked. P[of = 0] need
not be calculated as the sum of all probabilities must be
one. Since Fs equals 1 +avcl, we can also find the average
overflow chain length.

This result is very important in practice, since each
insertion must effectively do an unsuccessful search to
guard against duplicate entries in the file.

THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985 333

¥20Z I4dy 01 uo 1senb Aq G09501/0£€/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

JLK.MULLIN

6.2 Successful Search: Ss

Here we calculate the expected number of accesses to
locate an entry which is in the table. For each possible
length of overflow chain, one weights the probability of
that length of overflow chain with the expected number
of accesses to find the record sought. This record is
assumed to be equally probable in any position — both
the d positions in the prime bucket and the k positions
on the overflow chain.

Ss = Plof = 0]+ Plof = 1]
d/(d+1)+2/(d+ 1))+ Plof = 2] B
(d/(d+2)+2/(d+2)+3/(d+2))+ ...+ Plof = k]
d+243... +k+1)/(d+k).

Table 1 shows some results of the calculations and is
compared to values from the simulations. Reasonable
agreement is found.

7. DISCUSSION

The results show Spiral Storage to be an excellent
dynamic hashing method. Its major advantage over
competing methods (see Refs 1 and 2) is that performance
does not vary cyclically during file growth or shrinkage.

REFERENCES

1. W. Litwin, Linear hashing: a new tool for file and table
addressing. Proceedings of the 6th International Conference
on Very Large Databases, Montreal, 1980, pp. 212-223.

2. P. Larson, Linear hashing with partial expansions. Pro-
ceedings of the 6th International Conference on Very Large
Databases, Montreal, 1980, pp. 224-232.

One of the factors influencing performance is the
growth factor . A high growth factor increases search
time. However, our results show that the effect of 4 on
search time is not as great as might be anticipated. The
effect can be seen in Table 1. The advantage of a high
growth factor is less work during file expansion. With a
growth factor of b, every time the space grows by (b—1),
every bucket in the file must be moved. If b = 1.4, growth
by 40 per cent requires a complete readjustment of
addresses. This is a severe overhead. When no good initial
space estimate is available, a value for b of 2 or greater
would be preferable.

Acknowledgments

The author wishes to thank P. Larson of the University
of Waterloo for an interesting discussion of spiral
storage, Julian Davies of the University of Western
Ontario for a critical reading, and the Natural Science
and Engineering Research Council of Canada for
supporting this work with an operating grant.

3. G. N. Martin, Spiral Storage: Incrementally Augmentable
Hash Addressed Storage. University of Warwick Technical
Report 27, March 1979.

4. M. Scholl, New file organizations based on dynamic
hashing. ACM TODS, 6 (3), 194-211 (1981).

334 THE COMPUTER JOURNAL, VOL. 28, NO. 3, 1985

¥20Z I4dy 01 uo 1senb Aq G09501/0£€/€/82/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

