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RSA encryption programs are inaccessible for several reasons — first they impose requirements on multiple precision
arithmetic packages which are not met in general-purpose ones, especially the exponentiation operation in finite
arithmetic; secondly, they are partially written in assembly code for speed, and rightly so; finally, they are being
obscured by recently discovered short cuts. This paper describes one way of calculating RSA keys and includes some
Ada procedures to illustrate the essential arithmetic; it is intended as a starting point for the construction of packages,

especially those for 16-bit microcomputers.

1. RSA ALGORITHMS

The RSA algorithm! appears to be the best of the public-key
encryption methods, although the computing effort needed is
so high that special-purpose hardware will be essential for bulk
data encryption. The algorithm deals in terms of long numbers
and converts a message, M, into a cipher, C, using the equation

C= M°mod n 1)
and back again, using the equation
M = C?mod n ?)

where all numbers are typically 150 decimal digits long. It seems
likely that special hardware will limit the number size to 512 bits,
or 154 decimal digits, but even so it would still take three million
years of computer time to break the code when the computer
is fast enough to perform a million ‘factorisation steps’ per
second. In the equations given above the values of e and n are
publicly available, but dis secret. The modulus, 7, is the product
of two primes, p and ¢, which must also be secret since otherwise
d could be derived from the published value of e, as we shall
see.

The security of the method therefore depends on the difficulty
of factorising n, and further conditions must be placed on pand
q to thwart various factorising algorithms. These conditions are
that p and ¢ must differ in length by a few digits; that p— 1 and
¢—1 must each have a large prime factor, say p’ and q’; and
that p+1 and g+1 must each have a large prime factor.
Discussion of this last condition is deferred until the next
paragraph. Moreover, in order to defeat an iterative attack,
p’'—1 and ¢'—1 must also each have a large prime factor, say
p” and ¢”. Such ‘doubly safe’? primes, for example p, can be
found straightforwardly in three steps: first a sequence of
random odd large integers is tested for primality until p” is
found; then the sequence of numbers 2*j*p” + 1, forj = 1, 2, 3,
..., is tested until the prime, p’, is found; finally the sequence
of numbers 2*k*p’+1, for k=1, 2, 3, ..., is tested until p is
found. The average number of tests needed at each step is equal
to 0.5*In (p) which is much the same as the number of decimal
digits in p. The computing effort for all this is about equivalent
to 20 encryptions, but is rather variable since the standard
deviation of the number of composite numbers rejected during
a search is also 0.5*In (p). In passing it should be noted that this
variability is a nuisance when constructing keys of a particular
size. Some control over the size can be exerted by starting the
final search from a k value larger than one.

It is scarcely feasible to seek a prime, p, such that both p—1
and p+1 have a prime factor of the order of p because of the
rarity of suitable cases (1 in 10000). Williams and Schmid?
describe a key calculation process where p—1 and p+1 have
a prime factor of the order of sqrt(p), thus gaining protection
against one factorising algorithm at the expense of another. An
equivalent process would be to find two primes, u and v, of the
order of sqrt(p) and such that u— 1 and v— 1 each have a large
prime factor, and then to seek primes in the sequence 2*/*u*v+c
forj=1,2,3, ..., where cis a suitable starting value. A value

for ¢ can be found from Algorithm X*, which terminates with
¢=1-2*%u*ul or ¢=1-2**u2 according as ul or u2 is
negative. In any case there is a 709 chance that a large number
has a prime factor greater than its own square root.

The rest of the key consists of the pair of numbers d and e
which are multiplicative inverses of each other in arithmetic
modulo (p—1)*(g—1), and can be found with much less
computing effort. First dis chosen as an odd number of the same
order of magnitude as n and such that both

r=lem(p—1,q—1)
=@—D*g—-1)/ged(p—1,¢g—1) and
ged(d(p—D*g—-1) =1 G

The value of e can be found using Algorithm X where u3 = r,
v3 = dat the start, and e = v2 or v2 — r when v3 is found to equal
1 at the end, but since this needs an extra program to be written
it is simpler to evaluate it from®

e=dPhi-1mod r @

where phi is Euler’s totient function. If r has factors x2y®. . . then
phi (r) = (x®—x®1)*(y® —yb-1) _ ; the factorisation of r is
known from the k values found during the calculation of p and
of g, hence e can be calculated with one exponentiation.
However Algorithm X must be used if primes p and ¢ have been
made via u and v to satisfy both the p—1 and p+ 1 conditions,
since it is infeasible to factorise p—1 or g—1.

Recent work indicates that there are faster ways of
performing the algorithms than those given here, some
involving special hardware. Norris and Simmons® describe how
to compute xy mod #z in time proportional to In (n) rather than
In(n) squared by using a precomputed value of y/n, and
Quisquater and Couvreur’ manage to avoid explicit divisions
using a combination of techniques including a lookup table.
They also mention a way of shortening decryption by
performing two half-length exponentiations (taking one-eighth
of the time each), exploiting the knowledge of p and 4.

d<r where

2. IMPLEMENTATION

Multiple precision arithmetic packages® 2 have usually been
constructed for scientific purposes, for example to compute
accurate coefficients of a power series for inclusion in a library
procedure for exp or In, or to create benchmark numbers!3 to
test a computer’s floating point accuracy. By contrast, RSA
algorithms only need integer working, using numbers bounded
by a modulus of typically 100 or 200 decimal digits, and can
therefore use a simpler internal representation for numbers.
Although calculation time is a problem, since nearly 10°
high-level language statements might be executed per key
produced, data storage space requirements are modest, in
contrast to other integer problems such as seeking large
Mersenne primes.

The exponentiation function in finite arithmetic is peculiar.
One is so accustomed to thinking about left-to-right evaluation
that it is natural, when faced with the expression 42 modulo C,
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to imagine that the modulo C operation gets applied to the result
of AB. However, even problems like 44444444 modulo 9 often fail
on systems which do this and only provide exponentiation for
a small range of numbers, for example APL. Finite
exponentiation is an inseparable operation involving its three
inputs.

Multiple precision arithmetic

The essential point about multiple precision working is to notice
that successive computer words can be regarded as holding the
digits of a number in a representation using a large base, b. The
choice of b is important, and the best for RSA encryption
appears to be half the capacity of a computer word, that is to
say one bit less than the word length, for reasons given below.

While it is true that input and output are easier if b is a power
of ten, say b = 100, the processing speed achievable varies as
the square of the number of bits used to represent b, therefore
b should be made as large as possible. If no facility exists to
generate double precision quantities, and a decimal base is
chosen, it is necessary for a computer word to be able to hold
the value of 5% or even 3*(b?) in some packages, which
drastically reduces the effective processing speed.

On the other hand, if b occupies the whole word, the
hardware multiply instruction on a twos-complement machine
fails to provide a product containing all the required bits, but
will do so if b is reduced by one bit. Thus a natural
representation is one where all words are stored as positive
integers and where temporary negative values have a leading
word which is negative. This still leaves the problems of
computing the double-length exact product of two positive
integers and of finding the remainder from a double-length
dividend and a single-length divisor. High-level languages have
paid little attention to this requirement, and the Ada solution
offered here is intended as a guide for preparing an
assembly-coded external procedure in a practical program.

There is another reason for choosing a binary representation,
and this is that exponentiation is particularly simple: the
exponent is scanned from the left until its leading bit is found;
thereafter a combined squaring and multiplication operation is
done for each ‘1°, and a squaring for each ‘0’. For example x
can be raised to the 19th power in the following steps starting
from an initial value of 1:

operation  resulting power
sq mult 1
sq 2
sq 4
sq mult 9
sq mult 19

After each squaring or multiplication the working value is
brought within range of the modulus by an explicit modulus
operation, although it is sufficient, during an exponentiation, to
bring it within range of a normalized modulus until the final
step, which saves unnecessary normalisations. An alternative
algorithm* allows the exponent to be scanned from the right.
The corresponding algorithms for an exponent which is not in
binary* need more code and workspace, and run slower.
Although the quotient of a long division is not needed, the
modulus of a double-length number with respect to a single-
length one is required, and this involves forming the quotient
as a by-product. There have been several proposals for division
where only the leading word or two of the dividend and divisor
are visible. In all these methods the idea is to obtain a ‘trial
divisor digit’, in our case a whole computer word, and then to
subtract this multiple of the quotient from the dividend. The
result of dividing the first two dividend words by the leading
word of the normalised divisor is a trial divisor digit which is
either exact, or one too large, or two too large with probabilities
0f 0.6754, 0.3178 and 0.0078 respectively for a sufficiently large
base,'* 1% as is true for a computer word. The simplest algorithm
would therefore add back the divisor, if necessary, once or
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occasionally twice after the trial subtraction. Howell'® rounds
up the leading divisor digit before use (avoiding the division
entirely in the overflow case) and adjusts the answer until it is
in range; Mifsud'? uses the first two divisor digits and
‘pre-adjusts’ the operands before the division proper; Knuth*
refines the trial digit by a test involving the third dividend digit
and succeeds not only in making the trial digit exact in almost
all cases, but also in excluding the ‘two too large’ case. This
method is given in the appendix.

If input and output are done in hexadecimal there are no
conversion problems, but a number-terminating convention is
needed anyway; with grouped digits for readability, the final
group can be followed by a letter. For decimal external
representation, input presents no special problem but output is
harder. One approach is to copy a number to the top half of
a double-length number which is then regarded as a mixed
integer and fraction, with the fraction in the lower half and a
guard word beyond the fraction half. The mixed number is
rounded and then divided repeatedly by a suitable power of ten
until the integer part is seen to be zero. Finally the digits of the
converted number are recovered by repeated multiplication.
The power of ten is chosen to give the maximum number of
decimal digits for the word size, and care must be taken to force
leading zeros where they are appropriate — with or without the
help of the high-level language. Alternatively, the groups of
digits are calculated from the least significant end by forming
the remainders when the given number is divided by the power
of ten.

Primality testing

The preparation of an RSA key involves the construction of
large random primes which can be found by a probabilistic test,
as described below. Most of the running time for such a test is
spent doing a modular exponentiation and varies as the cube
of the length of the numbers. Hence, as a rule of thumb, the
time to find a prime varies as the fourth power of its length, since
the likelihood of an odd number being prime varies nearly
inversely as its length. However, recent short cuts appear to
reduce this to a third-power law.

Rivest, Shamir and Adleman suggest the Solovay and
Strassen'® (SS) test. The chance of a composite number passing
the test is less than 0.5 (0.37 in practice) so that for a prime to
be found with a confidence level of at least 0.999999 the SS test
must be applied less than 20 times.

A simpler test is described by Knuth* under the name
Algorithm P and is given in the appendix. The chance of a
composite number passing it is, at worst, 0.25, but as low as one
in ten million in practice, and hence less than 10 successful tests
would show a number to be prime with the same confidence level
of 0.999999; in fact 5 tests are adequate. Thanks to the good
reject rate for Algorithm P, it is almost always executed only
once for a composite number whereas about 1.5 SS tests are
needed.

The search phase can be improved by first dividing by a few
small primes, in order to weed out some composite numbers,
since this takes scarcely any time. Assuming that trial division
takes no time at all, it is not difficult to show how many primes
must be tried in order to speed up the search phase by a given
factor:

Number of trial Improvement
prime divisors factor

(reasonable choice)
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3. PROGRAM

The program was written in Ada, because it is readable and
provides dynamic actual arrays, and it runs on an Intel
iAPX432. It was developed from an Algol 60 program using the
normal I/O on an Elliott 903 and assembly-coded procedures
for the product and modulus operations. Numbers are
represented as arrays of Ada-type short _integer, 16 bits, and the
double precision operations of addition, subtraction, multiplic-
ation and division are performed using working values of type
long integer, 32 bits; it is important that a long integer can
accommodate the product of two short_integers, therefore, for
example, a 24 bit long integer will not do. Although the
hardware can do all the necessary arithmetic on words twice as
long as are used here, the Ada compiler does not yet allow access
to these facilities. No attempt has been made to exploit the
parallelism possible in Ada, but multiple processors could be
used here, perhaps one per multiplier word and one per result
word.

The essential procedures are listed in the appendix, but those
for input/output and operator prompts are not shown. The
Wichmann-Hill'® random number generator was used. The user
is expected to provide enough array space to accommodate p’,
given p”, or p given p’, and there is no check on this. In a
practical program it is worthwhile to keep the user informed of
progress, for example by printing a message for every ten
primality tests, as this overcomes to some extent the sense of
impatience with the inherent variability of run time.

As mentioned above, the encryption and key calculation
times vary, as a rule of thumb, with the third and fourth power
of the number of bits in the numbers. If T is the add time for
a computer with a word length of 16 bits, and which includes
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- - RANDOM is described in reference 19. X,Y,Z initially set by user.
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function RANDOM return float;
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4. CONCLUSIONS
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than conventional computers. The best internal representation
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represent a negative result. Encryption time varies as the cube,
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The program excerpt given in the appendix is largely based
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intended as a framework for programs to be written in assembly
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- - facilities seen by a programmer working in assembly code,
- - except that BORROW is always positive.
procedure CODE__ADD(CARRY,RESULT: in out short__integer;
X: short__integer);

procedure CODE__SUBTRACT(BORROW,RESULT: in out short__integer;

X: short__integer);
procedure CODE_MULTIPLY(HI,LO: out short__integer;
MAND,MIER: short__integer);
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procedure CODE__DIVIDE(QUOT, REMAINDER: out short__integer;
HI,LO,DIVISOR: short__integer);
- - These procedures operate on numbers of type vector.
procedure CLEAR(A: out vector);
procedure DOUBLE(A: in out vector);
function EQUAL__ZERO(X: vector) return boolean;
procedure HALVE(A: in out vector);
procedure GENERATE(X: in out vector; N: vector); — — see ref. 19.
procedure NORMALISE(A: in out vector; K: out short_integer);
- - These multiply or divide a vector by a short__integer.
procedure MPY(A: in out vector; SCAL: short__integer);
procedure DIV(A: in out vector; SCAL: short__integer);
-- These provide the basic vector operations. ADD, SLEW__ADD and
-- SUBTRACT can deal with negative numbers.
procedure ADD(A: in out vector; B: vector);
procedure SLEW__ADD(A: in out vector;
B: vector; S: short__integer);
procedure SUBTRACT(A: in out vector; B: vector);

procedure MULTIPLY(A: in out vector; — — see ref. 4 (M)
B,C: vector);
procedure MODULUS(X,A,B: in out vector); — — see ref. 4 (D)

- - These are directly used by the RSA algorithms.
procedure GCD(X: in out vector; U,V: vector);
procedure POWER(X: in out vector;
M,E: vector; N: in out vector);
function PRIME(N: vector) return boolean; — — see ref. 4 (P)
procedure BUILD__PRIME(W: short__integer; P: in out vector);
procedure BUILD__SUCCESSOR(W: short__integer; P: vector;
PP: in out vector; FP: out short__integer);
procedure BUILD__KEY(W: short__integer; P,Q: in out vector;
FP,FQ: short__integer;
DD,EE: out vector; N: in out vector);
end RSA__BCS;
— — Package body follows.
with text__io, unchecked__conversion; use text__io;
package body RSA__BCS is
type long__integer is new integer;
BITS_IN__USE: constant short__integer: = 15;
HALF: constant short__integer: = 2**(BITS_IN_USE - 1);
MAX__INT: constant short__integer: = 2*(HALF - 1) + 1;
TRIALS: short__integer;
WORD: constant long__integer: = long__integer(HALF + HALF);
function MASK(A,B: short__integer) return short__integer is
- — returns the logical AND of two short__integers
type bool__array is array ( 1..1 + BITS_IN__USE) of boolean;
AA,BB,C: bool__array;
function INWARD is new unchecked__conversion
(short__integer, bool__array);
function OUTWARD is new unchecked__conversion
(bool__array, short__integer);
begin
AA:=INWARD(A); BB: =INWARD(B); C: = AA and BB; return OUTWARD(C);
end;
function RANDOM return float is
— — See reference 19. X,Y,Z are assigned to before first use.
W: float;
begin
X:=171 * (X mod 177) - 2 * (X/177);
Y:=172 * (Y mod 176) — 35 * (Y/176);
Z:=170 * (Z mod 178) — 63 * (Z/178);
if X<0 then X:=X+30269; end if; if Y<O then Y:=Y +30307; end if;
if Z<0 then Z:=Z+30323; end if;
W: = float(X)/30269.0 + float(Y)/30307.0 + float(Z)/30323.0;
return W + 0.5 — float(short__integer(W));
end;
procedure CODE__ADD(CARRY,RESULT: in out short__integer;
X: short__integer) is
— — generates sum with carry;
TEMP: long__integer;
begin
TEMP: =long__integer(RESULT) + long__integer(X);
if TEMP > = WORD then
TEMP:=TEMP - WORD; CARRY:=CARRY + I;
end if;
RESULT: = short__integer(TEMP);
end;
procedure CODE__SUBTRACT(BORROW,RESULT: in out short__integer;
X: short__integer) is
— — generates difference with borrow;
TEMP: long__integer;
begin
TEMP: =long__integer(RESULT) — long__integer(X);
if TEMP < 0 then
TEMP:=TEMP + WORD; BORROW: = BORROW + 1I;
end if;
RESULT: = short__integer(TEMP);
end;
procedure CODE__MULTIPLY(HI, LO: out short__integer;
MAND, MIER: short__integer) is
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- — generates accurate product;
TEMP: long__integer;
begin
TEMP: =long__integer(MAND) * long__integer(MIER);
HI: =short__integer(TEMP/WORD);
LO: =short__integer(TEMP rem WORD);
end;
procedure CODE__DIVIDE(QUOT, REMAINDER: out short__integer;
HI, LO, DIVISOR: short__integer) is
— — generates quotient and remainder;
TEMP: long__integer;
begin
TEMP: =long__integer(H)*WORD + long__integer(LO);
QUOT: =short__integer(TEMP/long__integer(DIVISOR));
REMAINDER: = short__integer(TEMP rem long__integer(DIVISOR));
end;
procedure CLEAR(A: out vector) is
— — sets A to zero;
begin
for J in A'range loop A(J): =0, end loop;
end;
procedure DOUBLE(A: in out vector) is
— — doubles A;
OCARRY,ICARRY: short__integer: =0;
begin
for J in reverse A'range loop
CODE_ADD(OCARRY,A(J),A(J)); A(J):=A(J) + ICARRY;
ICARRY: =0OCARRY; OCARRY:=0;
end loop;
end;
function EQUAL__ZERO(X: vector) return boolean is
— — true if X=0;
begin
for J in X'range loop if X(J) /= 0 then return false; end if;
end loop;
return true;
end;
procedure GENERATE(X: in out vector; N: vector) is
— — generates a random non — zero X less than N;
TEMP: float: = float(MAX__INT);
begin
for J in X'range loop
X(J): =short__integer(TEMP*RANDOM);
end loop;
for J in N'range loop
if N(J)=0 then X(J): =0;
else
while X(J)> =N(J) or (J =N'last and X(J)=0) loop
TEMP: = float(N(J)); X(J): =short__integer(TEMP*RANDOM
end loop;
exit;
end if;
end loop;
end;
procedure HALVE(A: in out vector) is
— — halves A;
IBIT, OBIT, TEMP: short__integer: =0;
begin
for J in A'range loop
TEMP: = AJ)/2;
if A(J)=2*TEMP then OBIT: =0; else OBIT: = HALF; end if;
A(J): =TEMP +IBIT; IBIT: =OBIT; OBIT: =0;
end loop;
end;
procedure NORMALISE(A: in out vector; K: out short__integer) is
— — normalises A so that leading word > = base/2;
KK: short__integer: =0;
begin
while A(1)<HALF loop
KK:=KK +1; DOUBLE(A);
end loop;
K:=KK;
end;
procedure MPY(A: in out vector; SCAL: short__integer) is
— = vector times word;
CARRY: short__integer: =0; HI, LO: short__integer;
begin
for J in reverse A 'range loop
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CODE_MULTIPLY(HI,LO,A(J),SCAL); CODE__ADD(HI,LO,CARRY);

A(J):=LO; CARRY: =HI;
end loop;
end;
procedure DIV(A: in out vector; SCAL: short__integer) is
— — vector divided by word;
REMAINDER: short__integer: =0; HI, LO: short__integer;
begin
for J in A'range loop
CODE__DIVIDE(HI, LO, REMAINDER, A(J), SCAL);
A(J): =HI; REMAINDER: =LO;
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end loop;
end;
procedure ADD(A: in out vector; B: vector) is
- — vector addition;
ICARRY, OCARRY: short__integer: =0;
begin
for J in reverse 2..B'last loop
CODE__ADD(OCARRY,A(J),B(J)); CODE_ADD(OCARRY,A(J),ICARRY);
ICARRY: =0OCARRY; OCARRY: =0;
end loop;
A(l):=A(1) + B(l) + ICARRY;
end;
procedure SLEW__ADD(A: in out vector; B: vector;
S: short__integer) is
— — vector addition with offset;
ICARRY, OCARRY: short__integer: =0;
begin
for J in reverse 2..B'last loop
CODE__ADD(OCARRY,A(J +S),B(J)); CODE_ADD(OCARRY,A(J +S),ICAKKY);
ICARRY: =OCARRY; OCARRY: =0;
end loop;
A(S+1):=A(S+1) + B(l) + ICARRY;
end;
procedure SUBTRACT(A: in out vector; B: vector) is
— — vector subtraction;
BORI1, BOR2: short__integer: =0;
begin
for J in reverse 2..B'last loop
CODE__SUBTRACT(BOR2,A(J),B(J)); CODE_SUBTRACT(BOR2,A(J),BOR1);
BORI1: =BOR2; BOR2: =0;
end loop;
A(1):=A(1) — B(l1) — BORI;
end;
procedure MULTIPLY(A: in out vector; B,C: vector) is
— — vector multiplication;
HI, LO, CARRY: short__integer;
begin
for J in A'range loop A(J): =0; end loop;
for J in reverse B'range loop
CARRY:=0;
for I in reverse C'range loop
CODE_MULTIPLY(HI,LO,B(I),C(J)); CODE_ADD(HLA(I + J),LO);
CODE__ADD(HI, A(I +J), CARRY); CARRY:=HI;
end loop;
A(J):=CARRY;
end loop;
end;
procedure MODULUS(X,A,B: in out vector) is
— — X:= A modulo B, where A is twice as long as B;
BORI1, BOR2, FACT, HI, K, LO: short__integer;
U, V: vector(1..3);
begin
NORMALISE(B,K);
if B(1) <= A(l) then SUBTRACT(A,B); end if;
if A(1) < 0 then ADD(A,B); end if;
for L in B'range loop
if B(1) = A(L) then FACT: =MAX__INT;
else CODE__DIVIDE(FACT,LO,A(L),A(L + 1),B(1));
end if;
U(1): =A(L); UR):=A(L +1); V(1):=0; V(2): =B(1);
if B'last > 1 then U(3): = A(L +2); V(3):=B(2);
else U(3): =0; V(3):=0; end if;
MPY(V,FACT); SUBTRACT(U,V);
if U(1) < 0 then FACT: =FACT - 1; end if;
BORI1:=0; BOR2:=0;
for J in reverse B'range loop
CODE_MULTIPLY(HI,LO,B(J),FACT);
CODE__SUBTRACT(BOR1,A(L + J),LO); CODE_ADD(BOR2,HI,BOR1);
CODE__SUBTRACT(BOR2,A(L +J - 1),HI); BORI1: = BOR2; BOR2: =0;
end loop;
if BOR1 = 1 then
A(L):=0; A(L+1):=
short__integer(long__integer(A(L + 1)) - WORD);
SLEW__ADD(A,B,L);
end if;
end loop;
for J in B'range loop X(J): = A(J + B'last); end loop;
for J in 1..K loop
HALVE(B); SUBTRACT(X,B);
if X(1) < 0 then ADD(X,B); end if;
end loop;
end;
procedure GCD(X: in out vector; U,V: vector) is
- - X:= GCD(U,V);
UU, VV: vector(U 'range); K: short__integer;
begin
Uu:=U; VV:=V;
while not EQUAL__ZERO(VYV) loop
K:=0; X:=UU;

< <FOUND> >

if X(1) > MAX__INT then
NORMALISE(VV,K); SUBTRACT(X,VV);
if X(1) < 0 then ADD(X,VV); end if;

else

< <LEFT_SHIFT> >

SUBTRACT(X,VV);
if X(1) < 0 then ADD(X,VV);
else DOUBLE(VV); K: =K + 1; goto LEFT_SHIFT;
end if;
end if;
for J in 1..K loop
HALVE(VV); SUBTRACT(X,VV);
if X(1) < 0 then ADD(X,VV); end if;
end loop;
UU:=VV; VV:=X;
end loop;
X:=UU; return;
end;
procedure POWER(X: in out vector; M,E: vector;
N: in out vector) is
— — X:= M**E modulo N;
K: short__integer;
C: vector(M 'range); D: vector(l..2*Mlast);
FINISH: boolean: = false; ONE__BIT: boolean;
begin
CLEAR(X); NORMALISE(N,K);
for J in E'range loop
if E(J) /= 0 then
X(J):=HALF;
while MASK(X(J),E(J)) = 0 loop
X(J):=X(J)/2;
end loop;
goto FOUND;
end if;
end loop;
X(X'last): = 1; return;

CLEAR(C); C(C'last): =1; ONE_BIT: =true;
while not FINISH loop
if ONE__BIT then
MULTIPLY(D,C,M); MODULUS(C,D,N);
end if;
if X(X'last)=1 then
for J in 1..K loop
HALVE(N); SUBTRACT(C,N);
if C(1) < 0 then ADD(C,N); end if;
end loop;
X:=C; FINISH: =true;
else
MULTIPLY(D,C,C); MODULUS(C,D,N); HALVE(X);ONE_BIT:
for J in X'range loop
ONE__BIT: =ONE__BIT or MASK(X(J),E(J)) /= 0;
end loop;
end if;
end loop;
end;
function PRIME(N: vector) return boolean is
— — Algorithm P preceded by a few trial divisions;
J,K: short__integer;
TRIAL: array(l..20) of short__integer: =
( 3 5 17,11,13,17,19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73);
Q, X, ONE, Y, NN, NM1: vector(N 'range);
Z: vector(1..N'last + 1); D: vector(l..2*N'last);
begin
NN:=N;
for I in TRIAL 'range loop
if N'last=1 and N(1)=TRIAL(I) then return true; end if;
for L in N'range loop Z(L): =N(L); end loop;
Z(Z'last): =0; DIV(Z,TRIAL(I));
if Z(Z'last) =0 then return false; end if;
end loop;
GENERATE(X,N); CLEAR(ONE); ONE(ONE 'last): = 1;
NM1: =N; SUBTRACT(NMI1,0NE); Q: =NMI; K:=0;
while MASK(Q(Q'last),1)=0 loop
K:=K+1; HALVE(Q);
end loop;
POWER(Y, X, Q, NN); J:=0;
while J < K loop
if J=0 then
if Y =ONE then return true; end if;
end if;
if Y =NMI1 then return true; end if;
if J > 0 and Y =ONE then return false; end if;
Ji=J+1;
if J < K then
MULTIPLY(D,Y,Y); MODULUS(Y,D,NN);
end if;
end loop;
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return false;

end; F:=2;
procedure BUILD__PRIME(W: short__integer; P: in out vector) is while F*F < MM or M > 1 loop
- — finds random prime; while M mod F = 0 loop
NT: short__integer; SUCCESS: boolean: = false; M:=M/F; TM:=TM * F;
TEMP: float: = float(MAX__INT); end loop;
begin if TM /= TMOLD then TM:=TM - (TM/F); TMOLD: = TM; end it
while not SUCCESS loop F:=F+1;
for J in P'range loop end loop;
P(J): = short__integer(TEMP*RANDOM); if TM =1 then return (MM - 1); else return (TM); end if;
end loop; end;
P(P'last): = MASK(P(P'last), MAX_INT-1) + 1; NT:=1; begin
while NT < =TRIALS loop CLEAR(SHORT__ONE); SHORT__ONE(SHORT__ONE 'last): = 1;
SUCCESS: = PRIME(P); CLEAR(LONG__ONE); LONG__ONE(LONG__ONE'last): = 1;
if SUCCESS then NT:=NT + |; else exit; end if; MULTIPLY(N,P,Q); SUBTRACT(P,SHORT__ONE);
end loop; SUBTRACT(Q,SHORT__ONE); MULTIPLY(PHI,P,Q); GCD(PQ,P,Q);
end loop; for J in 1..PQ’last - 1 loop
end; if PQUJ) /= 0 then
procedure BUILD_SUCCESSOR(W: short__integer; P: vector; PUT("BAD SEED CHOICE"); NEW__LINE; return;
PP: in out vector; FP: out short__integer) is end if;
— — finds successor prime; end loop;
NG: short__integer: =0; NT: short__integer; R:=PHI;
SUCCESS: boolean: = false; ONE: vector(1..W); if PQ(PQ’last) /= 1 then DIV(R,PQ(PQ'last)); end if;
begin — — Equation 3. Given R now seek a D such that GCD(D,(P-1)*(Q-1))=1
CLEAR(ONE); ONE(ONE 'last): = 1; while not SUCCESS loop
while not SUCCESS loop GENERATE(D,R); D(D'last): = MASK(D(D'last), MAX__INT - 1) +1
NG:=NG + 1; PP: =P; MPY(PP,2*NG); ADD(PP,ONE); NT:=1; GCD(E,D,PHI); SUCCESS: = E = LONG__ONE;
while NT < =TRIALS loop end loop;
SUCCESS: = PRIME(PP); DIV(P,FP); DIV(Q,FQ);
if SUCCESS then NT:=NT + 1; else exit; end if; — — Totient function value now is (P’ - 1)*(Q’ — 1)*T(FP*FQ/GCD(P - 1,Q - 1))
end loop; SUBTRACT(P,SHORT_ONE); SUBTRACT(Q,SHORT__ONE);
end loop; MULTIPLY(PHI,P,Q); TEMPI: =long__integer(FP);
FP: = 2*NG; TEMP2: =long__integer(FQ); TEMP1: = TEMP1*TEMP2;
end; TEMP2: =long__integer(PQ(W)); TEMP1: = T(TEMP1/TEMP2);
procedure BUILD__KEY(W: short__integer; P,Q: in out vector; — — Must factorise TEMPI1 and offer each factor in turn to MPY
FP,FQ: short__integer; TEMP2:=2;
DD,EE: out vector; N: in out vector) is while TEMP1 > 1 loop
- — Generates D,E and N while TEMP1 mod TEMP2 = 0 loop
PQ, SHORT__ONE: vector(l..W); TEMP1: = TEMP1/TEMP2; MPY(PHI,short__integer(TEMP2));
PHI, R, D, E, LONG__ONE: vector(1..2*W); end loop;
TEMP1,TEMP2: long__integer; SUCCESS: boolean: = false; TEMP2: =TEMP2 + 1;
function T(MM: long__integer) return 'ong__integer is end loop;
— — Euler's Totient function SUBTRACT(PHI,LONG_ONE); POWER(E,D,PHI,R);
TM, TMOLD: long__integer: = 1; M: long__integer: = MM; DD:=D; EE: =E;
F: long__integer; end;
begin end RSA__BCS;
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