A Simple Method of Data Correction

KAZIMIERZ SUBIETA

Institute of Computer Science, Polish Academy of Sciences, P.O. Box 22, 00-901 Warszawa PKiN, Poland

The paper presents a simple algorithm for correcting lexical errors in data. The method employs the concept of a finite
automaton. It effectively works in the experimental DBMS LINDA.

1. INTRODUCTION

The automatic correction of lexical errors has been
intensively developed in the field of programming
languages as an aid for the compiling process, see e.g.
Refs. 2 and 4. It also proves to be useful for data input
in Data Base Management Systems (DBMS), reducing
the agony with data debugging. We present a simple
algorithm for the automatic correction of lexical errors
in input data, implemented and effectively working in the
experimental DBMS LINDA.!

The situation when we can employ the automatic
correction of lexical errors is as follows. At the input there
is a new lexical element /. From the information
contained, e.g. in a schema, it is known that this element
should belong to a fixed set S = {/,,/,,...,/,} of lexical
elements. If /€ S, then element / is accepted. If /¢ S, then
the system should indicate an error. Our method relies on
defining the notion of ‘fuzzy’ belonging to a set: if there

Step Words Situation
1 EALK A
AX
LL
WEL K
2 A
L XAX
3 WAliK
A
w XAA
WAL
4 A
WAEILL, XXV

5 WALK v
WAL XV
Figure 1. Situations arising during the comparison of a pattern
word WALK with a tested word WALL.

States States
No. Situations 1 2 3 4 5 6 No. Situations 1 2 3 4 5 6
1 A 1 14 A 1 2 3 5
AA XAA
2 A 1 15 A 1 2 5
AX XAX
3 A 1 16 A 1 2 5
AV XAV
4 A 2346 17 A 2346 3
XA XXA
5 A 24 18 A 24
XX XXX
6 A 24 19 A 24
XV XXV
7 A 1 2 3 4 5 5 20 A 4
AAA XV
8 A 1 2 4 5 5 21 A
AAX v
9 A 1 2 4 5 5 22 \Y%
AAV XXX
10 A 2346 3 4 5 23 \Y% 3 3
AXA XXV
11 A 24 4 5 24 \% 1 2 5
AXX XV
12 A 24 4 5 25 \Y% 4 4
AXV v
13 A 4 4 5
AV

Remark. The situations 21-25 stop the action of the automaton.
Figure 2. The table of transitions of the non-deterministic automaton.

372 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 01 uo 1senb Aq 0816.¢/2.€/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

A SIMPLE METHOD OF DATA CORRECTION

Beginning situations STATE

A A A 1
AX AA AV
A 2
XA
A A 3
XX XV
STATE
Situations SIGNAL 1 2 3 4 5 6 7 8 9 10 11 12
A A 1 1 0 3 9 8 11 12 8 9 0 11 12
AAX AAV
A 2 1 0 3 4 5 6 7 8 9 10 11 12
AAA
A A 3 3 8 11 0 11 11 0 11 0 0 11 0
AXX AXV
A 4 2 5 11 10 6 6 10 11 0 10 11 0
AXA
A 5 11 8 11 0 11 11 0 11 0 0 11 0
AV
A A 6 1 9 9 9 12 0 12 12 9 0 0 12
XAX XAV
A 7 1 4 9 4 7 10 7 12 9 10 0 12
XAA
A A 8 3 0 0 0 0 0 0 0 0 0 0 0
XXX XXV
A 9 2 10 0 10 10 10 10 0 0 10 0 0
XXA
A 10 11 0 0 0 0 0 0 0 0 0 0 0
XV
A v 11 0 0 0 0 0 0 0 0 0 0 0 0
v XXX
v 12 13 13 0 13 13 13 13 0 0 13 0 0
XXV
\% 13 13 13 13 13 13 0 13 13 13 0 0 13
XV
v 14 0 13 13 0 13 13 0 13 0 0 13 0
v

Figure 3. ©he table of transitions of the deterministic automaton.

exists an element /;€ S such that / and /; are similar in a
proper sense, then the wrong element / may be replaced
by /;. Hence the core of our method is a procedure
comparing two character strings and giving the informa-
tion about their similarity.

The data may be organised in such a manner that the
automatic correction is much easier. In DBMS such a
solutionisusually notjustified since special error-recovery-
oriented organisation is a burden for other data-base
functions (e.g. updating). In the LINDA system the data
organisation is not influenced by the error recovery
method.

1. THE METHOD

We assume that the following mistakes in the new element
should be recognised: one character is wrong, one
character is superfluous, one character is missing, or two
neighbouring characters are permuted. We need a
procedure which has two strings as parameters and
returns 0, if these strings are essentially different; and a

value not equal to 0, if these strings are similar or
identical. The procedure is based on employing a
non-deterministic, finite automaton with six states.

Starting at the beginning of both words we compare the
ith character of the pattern word with (i— 1)th, ith and
(i+ 1)th characters of the checked word. As the result of
the comparison we obtain a code of a situation. This code
contains three or four characters (see Fig. 1). The upper
letter A means that the ith symbol of the pattern is a letter
and the upper symbol V denotes the end of the pattern.
The lower letters code the result of the comparison of the
ith letter of the pattern with the (i+ 1)th, ith and (i+ 1)th
letters of the tested word, respectively, where A4, the same,
X, different. v, as before, denotes the end of the tested
word.

Codes of situations are signals for the automaton. Its
states have the following interpretation: 1, without an
error; 2, one letter is wrong; 3, one letter is superfluous;
4, one letter is missing; 5, two neighbouring letters are
permuted; 6, it is possible that the two letters are
permuted. At the beginning the automaton is in state 1.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 373

¥20Z I4dy 01 uo 1senb Aq 0816.¢/2.€/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

KAZIMIERZ SUBIETA

The situations are given at its input causing changes of its
states according to Fig. 2. Since it is a non-deterministic
automaton, at a given moment it may be in more than
one state or in none. The last case indicates that the words
are dissimilar. If after the whole sequence of situations the
automaton is in any state at all, this indicates that the
words are similar or identical.

The implementation of the automaton presented in
Fig. 2 is quite straightforward;® however, it is more
effective if this automaton is deterministic. Such an
automaton may possess 64 states, but only 12 of them are
essential, since others are not accessible from the
beginning state, or indicate the end of action. The table
of the deterministic automaton derived from the above
is presented in Fig. 3. State 0 indicates that words are
dissimilar and state 13 indicates that words are similar.
Both states stop the action.

2. THE PASCAL FUNCTION

The function is based at the automaton presented in Fig.
3. It is written in PASCAL for publication and carefully
tested on the computer ODRA 1305 (compatible with
ICL 1900). For efficiency this function should be written
in the assembly language. The parameters of the function
are D (dictionary word) and N (new word). It returns true
if these words are similar, and false otherwise. The
function requires one space after each word (the space
ends a word). Empty words are not allowed. Before the
text of the function, PASCAL declarations of used data
structures are given. For the table of the automaton
TRANS the non-standard option value is used.

type

TYPEWORD = array [1..N1] of char;

TYPEAUT = array [1..14,1..12] of [0. .13];

var TRANS : TYPEAUT;

REFERENCES

1. B. Kope¢, M. Kuta, W. Rzeczkowski and K. Subieta, Data
base management system LINDA, Institute of Computer
Science PAS Report 375, Warsaw (1979) [in Polish).

2. H. L. Morgan, Spelling correction in systems programs,
Communications of the ACM 13, 90-94 (1970).

374 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

value TRANS = (
1,0,3,9, ..., 12,
1,0,3,4, ..., 12,

0,13, 13,0, ... , 0);
{According to table from Fig. 3.}

function SIMILAR (D,N : TYPEWORD): boolean;
var I, SIGNAL, STATE : integer;
begin
{Beginning state}
if D[1] = N[1] then STATE := 1
else if D[1) = N[2] then STATE := 2else STATE : = 3;
I:=2;
repeat
{Coding of the signal}
if D[I] = ‘V’ then SIGNAL := 3 else SIGNAL : = 0;
if N[I—1] # ‘V’ then
begin
if D[I] # N[I—1] then SIGNAL := SIGNAL+5;
if N[I] # ‘V’ then
begin
if D[I] = NJI] then SIGNAL := SIGNAL +1
else SIGNAL := SIGNAL +3;
if D[I] = N[I+ 1] then SIGNAL := SIGNAL +1
end
else SIGNAL := SIGNAL+5
end
else SIGNAL := SIGNAL+11;
{Transition according to the signal}
STATE := TRANS [SIGNAL, STATE];
{Next character of D}
I:=1+1
until (STATE = 0) or (STATE = 13);
SIMILAR := STATE = 13
end ; {SIMILAR}

3. K. Subieta, Correction of single errors in words based on
patterns dictionary, Informatyka, 11 (2) (1976) {in Polish].

4. R. Wagner, Order-n correction for regular languages,
Communications of the ACM 17, 265-268 (1974).

¥20Z I4dy 01 uo 1senb Aq 0816.¢/2.€/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

