Design and Implementation of a Relational DBMS

for Microcomputers

F. CESARINI* aAnD G. SODA
Dipartimento di Sistemi e Informatica v. S. Marta 3, Florence, Italy

The aim of this paper is to present the design and implementation of Mimirel, a relational Data Base Management
System for microcomputers especially directed to non-specialist end users. The system overcomes architectural limits of
microcomputers by means of a physical data organisation which allows space saving and fast inquiring. Furthermore, the
user interface has been developed so as to take the needs of a typical microcomputer end user into account. The critical
operations are system driven in a conversational way and suitable facilities are provided for the inquiring. The Mimirel
system has been fully implemented in Pascal, under the CP/M operating system, and so it is highly portable.

1. INTRODUCTION

During the last few years, the personal computer has met
with wider and wider applications in different environ-
ments; in particular, it has been used extensively for
storing a large quantity of data. The personal computers
have standard configurations (such as 8-16-bit CPU,
64-128 kb and more for main memory, floppy disks or
hard disks) and are equipped with various software tools.
They range from file systems to real Data Base
Management Systems (DBMS). The systems of the
former are obviously more numerous than those of the
latter because real DBMSs have been defined only
recently.

The file system is a useful tool and it is known that it
represents an organisation lower than the DBMS, if we
consider user utilisation. The DBMSs are usually applied
to very large systems because of their characteristics,
while only recently DBMS implementation on micro-
computers has been faced.

A brief survey of existing DBMS for small machines!
examines their only partial fulfilment of portability,
interactivity and simplicity requirements. In our opinion
other commercially available systems, such as MDBS?
and DBASE II,®> do not present high flexibility and
simplicity for non-expert end users even if they possess
many or all the features of a DBMS. Two major points
should be considered. The design of the DBMS
architecture must be such as to exploit all possibilities
offered by the machine. This is an important goal, since
in a microcomputer environment resources are limited
with respect to larger systems. On the other hand, it is our
opinion that a DBMS used on microcomputers must
present a simple and flexible user interface, since in this
case theuseris typically a non-specialist one. Furthermore,
the user combines the two major functions traditionally
present in a large system, the Data Administrator/Data
Base Administrator (DA /DBA) and the end user himself.

In this paper we are presenting a portable DBMS,
called Mimirel (MIni and MIcro RELational system),
especially designed for microcomputers and directly
manageable by a non-expert end user. Therefore
particular care has been devoted to the database
definition and to inquiring, which are the most important
functions in a microcomputer environment, and very
simple interfaces are provided for them.

* Address for correspondence: F. Cesarini, Dipartimento di Sistemi
e Informatica, v. S. Marta 3, 50139 Florence, Italy.

The Mimirel is based on the relational model of
data,* > which is more appropriate for non-specialists
than other models are (such as hierarchical or network
ones). This is because the tabular representation of data
is conceptually simple and natural. Furthermore it is
possible to specify logical functions, even if highly
complex, only by referring to this tabular view of the data,
without knowing their physical organisation.

The unique aspects of Mimirel are the following.

(a) Data structures, called Data Pools,® which optimise
the use of storage devices and allow a good performance
in query processing.

(b) The interactivity of the schema definition.

(c) The driven input of the data.

(d) A conversational Sequel - like query language.’

Mimirel is completely implemented in Pascal and runs
under the CP/M operating system, and so it is highly
portable.

In this paper we shall describe the data structures used
for storing relations. Their definition is of particular
importance because they can implement a fast selective
inquiry. We shall then describe the user interface,
referring to the main moments of a database application:
scheme definition, data insertion and updating, and
inquiring. The description points out the design and
implementation choices made in order to meet the needs
of non-expert users, and our whole data management is
supported by driven and conversational tools. At the
same time, users with some experience are given the
chance to control and personalise the Mimirel system.
The last section deals with both the limits imposed by the
machine environment and the solutions adopted in order
to obtain flexibility and portability.

2. PHYSICAL DATA ORGANISATION
2.1 Internal schema

The internal schema of the data is based on the domains
on which the relations are defined. Each domain is
associated with a specific physical structure, called Data
Pool. A Data Pool collects all the distinct values of the
corresponding domain appearing in tuples of the data
base, whichever relation they may belong to.

Let us consider, for example, the following relations:
PERSON (NAME, PER_ADDR, JOB, SALARY)
HOUSE (HOUS_ADDR, DISTRICT, OWNER,
RENT, SIZE)

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 391

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

F. CESARINI AND G. SODA

[NAMEI PER_ADDR | JOB [SALARY |

Data Data Data Data Data Data
pool pool pool pool pool pool
1 2 3 4 5 6

L]
House |HOUS_ADDR| DISTRICT | OWNER | RENT | SIZE |

Figure 1. Data Pool schema.

The PERSON relation gives the name, address, job and
salary of a certain set of people. The HOUSE relation
describes a certain set of houses by means of their address
and district, the owner’s name, its monthly rent and its
size.

The attributes NAME and OWNER are defined on the
same domain; the corresponding Data Pool contains all
the names appearing in the two relations, and each name
is stored only once. The same goes for all the other
attributes. The relationships between relations, attributes
and Data Pools are represented by Fig. 1.

2.2 Physical data structure

Since Data Pool structures involve the disaggregation of
the relations, some control information must be
maintained in order to reconstruct the relational view of
the data, i.e. to re-aggregate the tuples belonging to each
relation.

The values allocated to Data Pools and control
information are represented in four (DICTIONARY,
INDEX, DATA, RELAT) or two (DATA, RELAT)
files, according to whether the domain is inverted or not.
Their relationships are illustrated in Fig. 2.

DATA is the file containing the values of the attributes
related to the Data Pool, whichever tuple of whichever
relation they may belong to. One DATA file for each
domain is defined.

RELAT is the control information file to be used to

reconstruct the tuples of a certain relation. Each record
ina RELAT file corresponds to a tuple of the relation and
is a set of pointers. Each of them points to a value to be
used to reconstruct the tuple. The Tuple Identifier (TID)
of a tuple is a reference to the corresponding record in
the appropriate RELAT file. One RELAT file for each
relation is defined.

In case a domain is inverted, the DICTIONARY and
INDEX files are defined further on.

The DICTIONARY file contains the access keys
structured as a B™-tree. Each access key is constituted by
a value (replicated in the DATA file) followed by a set
of pointers, one for each relation sharing that domain.
Each pointer references a list of TIDs in the INDEX file.

The INDEX filé contains lists of TIDs. Each list is
constituted by the TIDs of the tuples of the same relation
containing the same value in the same column. One
DICTIONARY file and one INDEX file are defined for
each inverted domain.

3. SCHEMA DEFINITION

The scheme entering follows the logical structure of the
data base which can be represented in pictorial form like
Fig. 3.

The information is given in a bottom-up way starting
from every domain, and completing it with the attri-
butes which constitute the domains and the relations’
structure.

Particular care has been given to user interfacing in
order to give the user a flexible tool for his applications.
The user performs the database schema definition in a
conversational way. It consists of two phases: (1) schema
declaration, (2) schema initialisation. These are sum-
marised in Fig. 4.

In phase 1, the user supplies suitable information about
his own database organisation and data dimensioning;
the system then builds the directories containing
information about relations, domains and attributes.

Each piece of information which has to be entered in
phase 1 is explicitly asked for. This implies a kind of

DICTIONARY INDEX RELAT DATA
Person
]]
< & >
Jon'es T J\I(I ''''' Tores
Smith —_— —
£ -+ ~ ~- 4 >
- 7] -
T sl
\ House
| [/ 1

Figure 2. File relationships in case of inverted domain.

392 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

A RELATIONAL DBMS FOR MICROCOMPUTERS

Figure 3. Pictorial form of schema.

User’s
knowledge
about

application

Pictorial form
of schema

General
information

1

1

|

I

H I
1 |Domain
1

1

1

1

]

'

]

Phase 1:
schema declaration
and edit

information

If changes

1
occur Relation

information
L

Directory
exhibition

' Phase 2

._', Data base
! |initialization _|!

Figure 4. Database schema definition.

rigidity in the database entry flow, but on the other hand
this mode of operating offers greater simplicity of use. In
particular, the user can detect all mistakes inherent to the
consistency of the input with the data previously entered
in the schema. For example, at the time of relations
definition, all the attributes belonging to that relation
must have already been defined.

The system asks for three types of information.

(a) General information about the system dimension-
ing. This information concerns the space allocation of
the four basic files: RELAT, DATA, DICTIONARY,
INDEX. The system asks for maximum space occupation
for each of them, and the user can answer with suitable
values computed by means of considerations on the space
occupied by every record of the files with respect to the
user’s application. This piece of information is optional
because the system can also consider default values. If it
does not, the user can exploit this feature in order to
optimise space allocation to perform typical DBA /DA
tasks.

(b) This information is concerned with Data Pool
definition. The system asks for the number of domains
and, for every domain, it asks for its name and type
(inverted or not), the names of the attributes defined on
the domain, the maximum number of distinct values of
the domain, the type (numeric or alphameric) and length
of its values.

(¢) Thisinformationisconcerned with properrelational
schema. By its means the user makes a logical re-
aggregation of the domains. The system asks for the
number and name of each relation, the names of its
attributes, the primary key and the cardinality.

The above values are used by the system to obtain space
allocation. If in phase (1)(a) the user gives proper
information instead of using default values, the system
displays the filling percentage of the disk space estimated

in phase 1(a) with respect to the values entered in phase
1(b) and 1(c). In such a way the user who wants to control
the physical data storing by himself has a tool for
detecting space occupation of the various files at his
disposal.

The system also displays the directories in order to
check the entered data schema organisation. If necessary,
the user can change some or all parameters.

In the second phase of the schema definition, the system
performs the pre-allocation of the storage available for
the physical files. The increase of the database will agree
with the dimensioning of these files.

4. DATA MANIPULATION

Once the initialisation is completed, the user can enter his
data. For every relation, the system prompts the relation
name and asks for input modality.

The entering can be made in two modes: a
conversational mode and a batch mode.

The input in conversational mode is completely driven
by the system. In such a mode, the system prompts the
layout of each tuple’s attribute, and displays the
attributes’ name, type and length. The inputs are checked,
possible error messages are output and the tuple is
accepted only when all the entered values agree with the
schema definition.

The batch mode is concerned with the input of existent
files. Since the system accepts the tuples of every relation
one at a time, it is possible to see an input file as a ‘flat’
storing of a relation. In this case, the system associates
the input file name to the relation name and reads each
record, considering it as a tuple. Records not agreeing
with the schema are rejected.

Since the Mimirel system is strongly oriented to the
inquiring, both deletion and updating are implemented in
a simple way. The tuple deletion is performed by
specifying its primary key and the updating consists in
deleting and inserting a whole tuple.

5. QUERY LANGUAGE

The query language is Sequel-like and allows the end user
to put his requests into a form closely resembling a
natural formulation.

The implementation on a personal computer of a
complete, or nearly complete, Sequel query language is
an almost unrealistic goal because of the strict hardware
restrictions. On the other hand, the user operating in a
personal computer environment usually does not require
such implementation.

Because of this, a subset of Sequel has been chosen
which can be implemented in a limited hardware
environment and offer the user a flexible and powerful
enough tool for inquiry. The main characteristics of the
chosen subset are a one-level-nested mapping and the
possibility of using arithmetical expressions and aggrega-
tion functions. The definition of the language is reported
in Appendix B.

5.1 Simple queries

This type of query corresponds to the basic mapping
operation of the Sequel language. The use of simple
arithmetical expressions and aggregation functions

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 393

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

F. CESARINI AND G. SODA

(% AVG, % MAX, % MIN, 9% SUM, % COUNT) is
allowed in the Select clause. For example, the following
query asks for the addresses of houses bigger than 120
which are situated in the fourth district, and asks for their
minimum and maximum annual rent price.

SELECT HOUS_ADDR, 12 x 9% MIN(RENT),

12x % MAX(RENT)

FROM HOUSE

WHERE SIZE > 120 . AND. DISTRICT =4

The absence of arguments in the SELECT or WHERE
clause implies all attributes or all tuples respectively.

5.2. Compound queries

This kind of query selects tuples of one relation according
to values belonging to another relation. The form of the
query is nested mapping. In particular, the inner mapping
returns a value, or a set of values, which is used in
evaluating the WHERE clause of the outer mapping.
To give an example, let us suppose we want to know
the jobs (and their number) of people whose salary is
higher than the average rent price of the houses situated
in the fourth district.
SELECT JOB, % COUNT
FROM PERSON
WHERE SALARY >
SELECT 9% AVG(RENT)
FROM HOUSE
WHERE DISTRICT =4

5.3. Join queries

This kind of query basically corresponds to the equijoin
relational operator. A condition to be verified by the
tuples belonging to the second relation can also be
specified. The form of the query is nested mapping where
the inner mapping may specify the additional condition
in the WHERE clause.

For example, the following query asks for the name and
address of the owners of houses with a rent price lower
or equal to 300,000 and which are larger than or equal
to 100; the addresses of the houses are also requested.

SELECT NAME, PER_ ADDR/HOUSE_ADDR

FROM PERSON, HOUSE

WHERE NAME =

SELECT OWNER
FROM HOUSE
WHERE RENT < 300,000 . AND.SIZE > 100

5.4 Query language implementation

The types of query chosen for the interface language can
be answered by exploiting the advantages offered by the
dictionary files, without any particular optimisation
of resolution paths. For this reason, an interactive
implementation by means of an interpreter has been
preferred to a compilation.

The conversational approach offers the user an
interface with two main characteristics: (1) driven syn-
tax, (2) immediate error signals and correction facility
without re-entering the whole query.

As far as the first point is concerned, the system itself
outputs the query keywords and takes care of the linking
of the mappings. For example, if it realises that a query
is a join query (from the expression entered in the

394 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

SELECT clause), the FROM clause of the inner mapping
is completely output by the system because it must repeat
the second relation name appearing in the outer mapping.
In this way the user only enters indispensable data on a
sort of form displayed by the system dynamically, on the
basis of the data previously entered. The query input is
then made easier and the possibility of error reduced.

As far as the output printing is concerned, the system
asks the user which device has to be used: video console,
printer or disk file. Suitable formats are provided for each
of them. The files can be processed by applicative
programs coded in whatever language is desired. Hence
this option allows the user to personalise the system in
order to obtain output tailored to his applications or to
perform further elaborations on information extracted
from database.

6. PERFORMANCE CONSIDERATION

The Data Pool organisation implies data dis-aggregation
in the sense that the relations are not stored in any flat
form. The tuples rebuilding is then a tedious task for the
Mimirel system and constitutes an intrinsic limit to its
use. For example, the display of a whole relation is one
of the most expensive operations possible.

On the other hand, the Data Pool schema offers
remarkable advantages, such as the following.

(a) A good use of space memory, because each value
of an attribute (or more attributes which belong to the
same domain) is stored in a single copy. In this way, the
more the values are repeated in the tuples, the more
memory we save.

(b) The implementation of a Data Pool as an inverted
file allows for a very fast selection of the tuples which
satisfy particular conditions. Moreover the B*-tree
implementation for the DICTIONARY files permits fast
retrieval not only in case of = conditions, but also for
<, <, >, =, # conditions (the tree structure maintains
the keys sorted).

(c) Afastexecution of the Join operation, which makes
it possible to formulate complex queries but which is
usually the most time-consuming relational operator. In
our case, the Data Pool schema implements the Join
operation directly. The Join is simply realised by scanning
the dictionary associated to the domain on which the two
attributes of the joined relations are defined. For each
value belonging to both relations, the corresponding lists
of TIDs are collected in order to obtain the cartesian
product resulting from the Join operation.

Let us now consider the cost of query execution in some
detail. Since a wide range of different features can be used
in formulating queries (various comparison operators,
arithmetic expressions, aggregation functions), we only
consider the performance of the basic steps involved in
query execution and we refer to some sample queries
which operate selections and joins followed by
projections.

The performance index we use for quantifying the
query cost is the number of page accesses necessary for
retrieving data. Two basic steps are performed when
executing a query. The first one consists in identifying the
tuples which satisfy the conditions expressed in the query;
the second one consists in retrieving the values to be
printed. The first step is accomplished by accessing the
DICTIONARY and INDEX files and it has an almost

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

A RELATIONAL DBMS FOR MICROCOMPUTERS

constant cost. The second step is performed by accessing
the RELAT and DATA files and it is strongly dependent
on the number of selected tuples (query selectivity) and
on the number of projected attributes. In appendix A we
report the formulas used in calculating the cost of our
sample queries, which are selections which use ‘="
conditions (example of simple queries), semijoins which
use ¢ =’ condition (example of compound queries), and
equijoins (example of join queries).

In order to assess the query-processing capability of
our system, we compare its performance to DBASE 11,2
which is very widely used on microcomputers like ours.
The sample queries mentioned can be requested in
DBASE II by a single command. They are a reasonable
basis for a comparison based on our analytic model
because operations requested by means of a sequence of
commands involve overhead due to files management
between the execution of single commands.

DBASE 1I stores relations as flat files and is able to
build B-tree indexes on selected attributes. The index is
used to execute selections which define a single ‘="
condition. In all other cases, selections are executed by
scanning the relation. The join command is executed by
the nested-loop algorithm. The formulas used in
calculating the cost of these operations are given in
appendix A.

We use a sample data base for evaluating query costs.
The size of the database and selectivity factors of the
queries we use can be found in other case studies.?'®* We
consider relations of 1000 tuples, where each tuple has 8
attributes of 16 bytes. We assume that the values of
secondary keys are uniformly distributed and each value
is duplicated three times, on the average. As far as the
physical data layout is concerned, we assume that there
are pages of 512 bytes (according to the CP/M operating
system), an average of 2 page accesses for retrieving a
specified value in an index, an average of 16 keys in the
leaves of a B*-tree in Mimirel, and 2 bytes for TIDs.

Printing the whole relation requires 250 page accesses
for DBASE II and about 8000 for Mimirel; therefore,
that operation can be considered expensive in our system.
The cost of executing real queries is illustrated in Tables
1 and 2. As we can see, DBASE II is fast when the
selections have a single ‘ =’ condition, while in the other
cases scanning the file involves a larger number of page
accesses. Thecost of joincommandsincreasesdramatically
and makes the operation very time-consuming. On the
contrary, Mimirel is also able to execute complex queries
(that is, predicates with several conditions and joins) in
a satisfactory way. Moreover, it gives its best results with
very selective queries. It may be noted that our cost index
only refers to approximate execution time for two main

Table 1. Number of page accesses in selections on a 1000-tuple
relation by predicates with m ¢ =’ conditions. The two values
attributed to Mimirel correspond to retrieving 1 or 8 attributes
per tuple

Mimirel DBASE II
Number of
output tuples m =1 m=2 m=1 m =2
1 4-11 3
3 9-30 12-33 5 250
10 26-96 250

Table 2. Number of page accesses in equijoins on 1000-tuple
relations. The two values attributed to Mimirel correspond to
retrieving 1 or 8 attributes for semijoin and 2 or 15 attributes
for join

Mimirel DBASE II
Number of

output tuples

Semijoin Join Semijoin Join

10 44-114 52-182 62500
100 254-954 328-1628 62500

62500
62500

reasons. The first is that it does not consider the overhead
for file managing, which is especially expensive for
DBASE II because it is not able to maintain more than
two files open at the same time. The second reason is that
special features for reducing I/O times, such as buffer
management techniques, which reduce the number of
physical I/O operations, are not considered. At any rate,
our cost index is meaningful for preliminary comparison
purposes.

7. SYSTEM IMPLEMENTATION AND
PORTABILITY

In order to give the Mimirel system a high degree of
flexibility, both the design and implementation are
studied in such a way as to maintain its characteristics of
modularity and portability.

Portability is obtained by means of the programming
language used for implementation. Mimirel is fully
implemented in a Pascal version running under CP/M
operating system supporting random access files. Pascal
language is chosen both because it offers all the
advantages of modern structured and modular program-
ming languages and because it is widely used on
microcomputers. Two main characteristics have been
maintained in designing our programs:

() file organisation partially independent of operating
system;

(b) an interface file which makes system reconfiguration
easier.

As far as file implementation is concerned, it is useful
to have flexible management of the variable dimensioning
of the files, while operating systems running on personal
computers, such as CP/M, usually do not allow this. In
the strategy chosen for the implementation we used
self-contained management of the disk space instead of
assigning it to the operating system. A single file is defined
for storing homogeneous structures. So only four
‘physical’ files are defined for storing all the ‘logical’
RELAT, INDEX, DATA and DICTIONARY files.
Inside each physical file, the space allocation for the
logical files is managed directly by the Mimirel system in
a dynamic way. In the main memory we have four I/O
windows associated with the four file types and four
buffers, managed by a modified LRU technique, used for
maintaining pages of B*-trees in order to speed up their
access. Therefore 10K bytes altogether are used for the
various I/O buffers.

As far as step (b) is concerned, in the present version
of the Mimirel system we have introduced an interface file
which contains the definition of global constants and
variables used in all programs. These are of two types.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 395

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

F. CESARINI AND G. SODA

The first one concerns the maximum values allowed for
the database parameters, such as number of relations,
domains, attributes, number of attributes definable on the
same domain, number of keys contained in a B*-tree
page, and so on. The second one concerns screen para-
meters which consider cursor addressing, width and
height, character set and so on.

The interface file is actually a portion of a Pascal
program containing the declarations of the above-
mentioned global parameters. It can be edited with the
standard editor of the host operating system and
appended to the programs to be compiled.

In brief, we can say that the feature of step (a) allows
portability with few changes in the programs. Since
random access files are not standard in Pascal, the used
primitives are strictly related to the used Pascal version
(AMC Pascal), and they may need to be changed in case
of different versions. The feature of step (b) allows us to
adapt the system to a particular environment by
recompiling the programs appended to the interface file.

8. CONCLUSIONS

We have presented the design and implementation of a
DBMS for microcomputers. The inverted Data Pool
schema, used in the physical data organisation, allows for
space saving and fast data search. Particular care has been
devoted to user interface. A conversational approach has
been used to implement the schema definition and driven
data input. The Sequel-like query language allows for
inquiry of reasonable complexity and also offers the
possibility of obtaining calculated data by means of
aggregation built-in functions. All these features make
the system a simple and flexible tool, oriented to
non-specialist end users.

REFERENCES

1. G. Falquet, D. Petitpierre, N. Magnenat-Thalmann and
D. Thalmann, A portable relational Data Base Manage-
ment System for microcomputer, Microprocessing and
Microprogramming, 9, 17-25 (1982).

2. Micro Data Base System Inc. MDBS DDL-DMS-QRS
Reference Manual, Lafayette, Indiana (1981).

3. Ashton-Tate Inc., DBASE II Reference Manual, Los
Angeles, CA, (1981).

4. J. D. Ullman, Principles of Database Systems, Computer
Science Press, Maryland (1980).

5. E. F. Codd, ‘A relational model of data for large shared
data banks’, CACM, 13, 6 (1970).

An attempt has also been made to obtain some
compromise between the needs of totally non-expert end
users and users with some knowledge of their system. We
have indicated three moments in which the end user could
usefully personalise his data management: in disk space
dimensioning, restructuring of existent files, and elabora-
ting in a special way data selected from the data base.
Suitable features are provided for these activities.

The Mimirel system is strongly oriented towards
selective inquiry, and this is also a limit to its usefulness.
Better performance is obtained when non-repetitive
queries with different degrees of complexity are formula-
ted. On the other hand, our experience has been limited
to a microcomputer environment, with space and time
constraints. Therefore a flexible, high-level interface
involves a limitation on the user profile especially
addressed by the system.

Mimirel is presently implemented on the AMD SYS
8/8 microcomputer equipped with two floppy disks and
64K bytes of main memory. It is completely implemented
in AMC Pascal supporting random access files and runs
under the CP/M operating system. Due to its design and
implementation, the system has a high degree of
portability.

As far as the main memory layout of the present
implementation is concerned, about 9K bytes are
occupied by the CP/M operating system, 31K by the
Pascal interpreter and only 24K are utilisable by the
Mimirel system. Due to these constraints, the programs
run in overlay.

Acknowledgements

We thank the referee for his suggestions as to how to
improve the final version of our paper.

6. F. Cesarini and F. Pippolini, Analysis of an Inverted Data
Pool Organization, Tech. Rep. DATANET/DBMAC,
Rome (1981).

7. D. D. Chamberlin et al., ‘SEQUEL 2: a unified approach
to data definition, manipulation and control’, IBM J. Res.
Develop., 20, 6 (1976).

8. J. L. Abbott, ‘A comparison of five database management
programs’, Byte (May 1983).

9. D. J. De Witt and P. B. Hawthorn, ‘A performance
evaluation of database machine architectures’, Proceedings
of the 7th International Conference on Very Large Data
Bases, Cannes, 1981.

APPENDIX A

Cost of query execution

Let r be the number of tuples which satisfy the query;
n be the number of attributes to be projected;
d be the number of page accesses to the dictionary for
retrieving a selected key;
s be the number of page accesses necessary for scanning
the dictionary leaves;
Jbe the number of pages occupied by a relation stored
as a flat file;
t be the average length of a tid list;

b be the byte size of a tid;

p be the byte size of a page.

The formulas we have attributed to the operations are
made up of three terms. The first one counts the
DICTIONARY file accesses, the second one counts the
INDEX file accesses and the third one counts the RELAT
and DATA file accesses. As far as the primary keys are
concerned the second term is missing because the TID is
stored in the dictionary instead of the pointer referring
to the TID list.

396 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

A RELATIONAL DBMS FOR MICROCOMPUTERS

Mimirel

)

Selection (Simple query) with ‘=" conditions on m
attributes

Cost=mxd+mxTbxt/pl+r(l+n), where Tbx t/p?

number of tuples constituting the result, let each relation
contribute with 4/r tuples to the result. The number of
TID lists to be retrieved for each relation is T/r/11.

is the number of pages occupied by a single TID list. DBASE I
Semijoin (Compound query) with ‘ =’ condition Selections with one ‘ =" condition
Cost =s+"r/fVx b x t/pV+r(l+n), where r/f1is the Cost = d+r
number of TID lists to be fetched. Selections of another kind
Equijoin (join query) Cost =f
Cost = s+2xy/r/t1xTh x t/pV+r(I+n). The second Join
term is based on the following assumptions. Since r is the Cost = f, X f,
APPENDIX B

Query language syntax

{QUERY) :: =
{SIMPLE_QUERY) | (COMP_QUERY) | <JOIN_
QUERY)
(SIMPLE_QUERY) :: =
SELECT (A1) FROM (REL_NAME) WHERE
(C1)
{COMP_QUERY) :: =
SELECT (A1) FROM (REL_NAME)> WHERE
(RED_COND)
SELECT {EXP) FROM (REL_ NAME)
WHERE (C1)
{JOIN_QUERY) :: =
SELECT (A2)/<{A2) FROM (REL_NAME),
(REL_NAME) WHERE (ATTR) =
SELECT (ATTR) FROM (REL_NAME)
WHERE (C1)
(Al) :: =empty | (AIl)
(All) :: = (EXP) | (All), (EXP)
{C1) :: = empty | (AND_COND) | (OR_COND)
(A2) :: =empty | (RED_EXP)

(RED_EXP) :: = (ATTR) | (RED_EXP), (ATTR)
(EXP) :: =

(TERM) | {TERM) (OP) (CONST) | (CONST)

{OP) <TERM) | % COUNT

(AND_COND) :: =

{COND) | (AND_COND}).AND.{COND)
{(OR_COND) :: =

(COND) | (OR_COND).OR.{(COND>

{RED_COND) :: = (ATTR) (<COMP)
{COND) :: =

{ATTR) (COMP) (VAL) | (ATTR) (COMP)

(KVAL_LIST))

{VAL_LIST) :: = (VAL) | <VAL_LIST), <VAL)
(TERM) :: = (ATTR) | (FUNCT) (<ATTR))
(FUNCT) :: =% AVG | %, MAX | % MIN | 9%, SUM
OP) i:=+|—]| x|:
(COMPy ::==[(|<|>] #
{(ATTR) :: = attribute name
{REL_NAME) :: = relation name
{(VAL) :: = attribute value
{CONST) :: = numeric constant

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 397

¥20Z I4dy 01 uo 1senb Aq 8£z6.¢/16€/F/82/2101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq

