An Approximation Algorithm for Secondary Index Selection in
Relational Database Physical Design

R.BONANNO
CRAI, Cosenza, Italy

D. MAIO anp P. TIBERIO

CIOC-CNR, Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna

The operational efficiency of a relational DBMS is greatly dependent on the effectiveness of the physical design. A
problem of considerable interest for the DBA is to provide an efficient set of access structures taking into account both
memory constraints and workload characteristics. The paper presents an approximation algorithm which produces a
near-optimal solution to the secondary index selection problem for the entire set of DB relations, given that primary

access structures have already been chosen.

1. INTRODUCTION

As DBMSs and their usage become complex, the
physical design becomes an increasingly difficult operation
due to the high number of factors to be considered. For
this reason a considerable research effort has been made
in developing automatic tools to help the database
administrator (DBA) to make decisions and trade-offs.
One of the ultimate objectives of a database designer is
to provide an optimal set of access path structures in
order to minimise the time spent in I/O operations, taking
into account maintenance costs, memory constraints and
workload characteristics. This problem has to be solved
not only on DB installation but also for subsequent
tuning, when the workload is expected to change and/or
new files may be added to an existing DB. The paper
focuses attention on the secondary index selection
problem in relational DBMSs.

At loading time most file systems require the creation
of a primary access path on a given relation column.!-3
Secondary indexes are also allowed in order to reduce the
access time for some DB operations. In System R a tool
named DBDSGN is available which accepts all valid SQL
statements in the workload and solves the combined
problem concerning the column on which each relation
should be ordered and on which other columns’
secondary indexes should be created. A methodology for
secondary index selection, primarily applicable to
small/medium-size¢ DBMSs whose characteristics are
more limited than those of System R, has been developed
at the University of Bologna within the Informatica
(DATAID) project supported by the Italian National
Council of Research.?® These methodologies consider
the case of DBMSs which use at most one index per
relation to retrieve tuples when executing a statement. An
overall description of the major steps of the index
selection method follows.

Step (1) The specification of DB statistics and work-
load characteristics.

Step (2) The cost evaluation for each transaction class
and for each possible access path.

Step (3) The access path effectiveness comparison, in
order to determine those indexes which are obviously
useless or providing minor benefits when others are
present; in other words, the generation of an efficient set
of indexes taking into account the constraints on storage.

398 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

Step (1) derives directly from the DB logical design in
terms of workload and relation characteristics. At the
implementation time, collecting more accurate para-
meters would require monitoring on an operating data-
base system.

The objective of step (2) is to find, for each relation,
a set of indexes which are candidates for the optimal set.
A correct solution for this step can be reached by looking
at statistical models and evaluation functions, provided
precise considerations are made on both the physical
implementation of the relations and indexes and the
strategies used in solving transactions (in particular, join
methods and index maintenance techniques.®12

Step (3), that is the generation procedure of the optimal
set, has to select the indexes that ensure the minimal
global cost under the constraints imposed by the DBA on
the memory. This problem has been shown by Comer!3
to be NP-hard even for simple cost criteria. In* the design
tool utilises an algorithm which requires an exponential
exploration of all possible index subsets if applied
without restrictions being introduced under user control.
More recently in'* it was shown that the index selection
problem can be solved by solving a properly chosen
instance of the Knapsack problem (KP). In the context
of a query-processing model which assumes the use of
intersection lists Ref. 14 presents, for a single relation,
an approximation algorithm which solves the KP in
polynomial time. Another recent study concerns Wang’s
approach to the optimal physical design of multiple
relational data bases, ! in which two algorithms based on
the theory of separability are presented. A theory was
introduced in'® as a formal basis for understanding the
interrelationships among files: i.e. joins are separated into
single-table queries, given a set of join methods that
satisfies a certain property called separability. (Note that
not all join methods are ‘separable’, see for instance those
used in System R.) A separability-based method for
secondary index selection was presented in Ref. 3. Finally
it is also worth mentioning that other approaches and
formalisations of the index selection problem for files can
be found in Refs. 17-22.

The aim of this paper is to describe a secondary index
selection method, based on optimal assignment princi-
ples, that explores a number of combinations linearly
proportional to the cardinality of the candidate indexes
set. The method is applied in a multiple environment pro-

papeojumoq

)
—
=
o

3

¥20¢ I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/wod dno-olwspeoe//:sdpy

AN APPROXIMATION ALGORITHM FOR SECONDARY INDEX SELECTION

vided join methods are separable. Section 2 introduces
assumptions on the query-processing model. Definitions
and notations are also discussed in the same section.
Section 3 formulates the index selection problem in terms
of minimisation of an objective function and proposes an
approximation algorithm. Section 4 gives an example.

2. ASSUMPTIONS AND DEFINITIONS

Several assumptions are made throughout the paper. We
assume that the DBMS being considered provides the
following characteristics:

(a) the indexes are structured as B*-trees and the leaves
contain all the key values, each followed by the set
of tuple identifiers (TIDs) where the value appears;

(b) at most, one index per relation can be used to access
tuples in executing a statement;

(c) joins are performed according to separable or
approximately separable methods:

(d) anindex cannot be used to access tuples for an update
statement when it is currently modified, since this may
lead to hitting the same TID more than once in
practical systems.®

We do not deal with details concerning the first two design
phases: (1) the specification of DB statistics and
workload characteristics and (2) the cost evaluation for
each transaction class and each possible access path. A
comprehensive analysis of these two mandatory steps of
the physical design is given in Refs. 3, 4, 5, 7, 9 and 15.
In the following we suppose, as a result of steps (1) and
(2) of the previous section, a set of matrices to have
been built which will represent, along with some

workload characteristics, the inputs to the secondary
index selection algorithm. Here we would repeat that our
approach assumes that the choice of the primary keys has
already been made in the DB logical design phase.
Hypothesis (c) on the join execution method allows
application of the query-separability concept;!® in order
to compare the effectiveness of indexes built on columns
belonging to the same table the join itself is considered
to be subdivided into distinct, single-table queries.
Therefore the workload satisfies the following rules:
all the joins are separated in single-table queries; queries
and update statement are grouped in order to characterise
a workload for each table independently.
Since the system uses only one index per table, in order
to evaluate the effectiveness of a given index on the global
workload cost, the methodology requires computation of
the cost of each statement where only that index is present
in the relative table. This cost is generally expressed as the
weighted sum of I/0 and CPU operations. Let us intro-
duce the following notations:

1, a generic table subject to the physical design,
h=1, ..., NT.
On the set of NQ, statements g? which refer to table

T,. All the Q, are disjoint sets (joins have
already been separated); Q = U,Q, is denoted
as the global workload with NQ cardinality.

ISET, the set of the NI, secondary indexes which are
candidates to be built on the 7, table. All the
ISET,, are disjoint sets: we denote ISET as
U,ISET, with cardinality NI.

|A%| the access cost matrix relative to table 7;, . In the

case of a selection statement g€ Q, the element
A% represents the minimum cost of accessing

ISET, ISET, ISETy
Primary Primary
o, A? access access
on T, on T,
Primary Primary
0, access A? access
on T, onT,
I : T T T T T T T [I
! I I]
| | | | |
| | |
| | I I
|
I | | | :
| | | | |
| | ! | "
I | ! | |
| | | | |
| | ' ! !
| : | | !
Primary Primary
Onr access access ANT
on Typ on Tyrp

Figure 1. The access cost global matrix.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

399

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

R.BONANNO, D. MAIO AND P.TIBERIO

ISET, ISET,
0, e %]
0, 1] U?
| ; |
: | i
| |
I I :
|
| : !
| | |
| | |
o
|
| : |
Onr %) %]

UNT

Figure 2. The maintenance cost global matrix.

tuples when only the secondary index /7 € ISET),
is available, in addition to the primary access
path and, possibly, the sequential relation scan
when allowed. In the case of a maintenance
statement g7, A}, also includes the maintenance
cost of the primary access and relation.

|UM| the secondary index maintenance cost matrix

relative to table 7,. Each U represents the cost

of updating the index I? € ISET, due to the g7

€ O, statement.

the storage cost vector for each table 7;; each

MEM? element represents the secondary storage

~ pages required by the index I € ISET,.

pr the primary access cost vector for table 7}, ; each
P element represents the minimum between the
cost of the primary access path on 7, and the
cost of the sequential relation scan (if allowed)
paid to access tuples in solving the statement g%.
Where ¢? is a maintenance statement then P?
includes the primary access maintenance cost
and the relation maintenance cost.

In the former definitions we have implicitly supposed
that index maintenance costs are constant, no matter the
access path chosen. This assumption is commonly made
in most of the papers on index selection, even if it is an
approximation as shown in Ref. 9. We have kept the
above hypothesis, since it simplifies the optimal set
generation algorithm, and the approximations introduced
are in most cases of the same level as those commonly
made in estimating costs.

A remark is perhaps in order. Each statement g, that the
DBA considers to be relevant for the design must be
included in the workload Q. The choice of relevant
statements is carried out by analysing the user’s

400 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

requirements, which are derived from questionnaires
and/or available measurements. For each ¢g; the DBA
analysis of the workload must provide a weight w; that
is a function of:

the frequency of execution over the period of time ¢ during
which the workload is not expected to change
substantially;

distribution of its execution during ¢;

particular needs for response time.

In order to find a mathematical formulation of the
index selection problem let us introduce the following
further definitions.
|GA| the global matrix obtained as in Fig. 1.

Let g; € Q and I; € ISET,

|GA| is defined as follows:

foralli,j,i',j/q;=q} and I;=1':GA; = AL,
foralli,j, i’,j/qg;=q} and I ;£ 1%:GA;; =Pl

~ Analogously we define the global matrix |[GU| obtained

as in Fig. 2, where

foralli,j,i,j'/q;=q" and L =1}
GU” = 1':1/]./
foralli,j,7,j/q; ¥ q} and [; £ I}

Since the cost matrices for the multi-table problem were
unified, in the following section r is denoted, for
simplicity of exposition, as the statement identifier, r = 1,
..., NQ. Furthermore, we denote s as the index identifier,
s=1, ..., NL

3. THE INDEX SELECTION PROBLEM

On the basis of the definitions introduced in the previous
section, the index selection problem can now be
formulated as follows.

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

AN APPROXIMATION ALGORITHM FOR SECONDARY INDEX SELECTION

Given the set ISET of the secondary indexes, find the
subset BSET < ISET such that the global cost is minimal

C=2ZXwx[min{GA,,/se BSET}+ Y GU,,

SEBSET
C can be rewritten as:

C =X min{w,*GA,;/se BSET}+ ¥ X wax*GU,,
T SEBSET r

Denoting with GA4,, = w,*GA,, forallr, s
GU; =X wxGU,, foralls
T

we have

C =Y min{GA,,/se BSET}+ X
T SEBSET

GU; ()

The problem is then approached by the minimisation of
the following objective function:

z=Y3 GA;s*xrs+z GU;*ys
r s s

subject to
Y MEM¢< M
seBSET
and;
Xx,=1 for r=1,...,NQ
S
X<y for r=1,...,NQ; s=1,...,NI
ys<<9 for s=1,...,NI
where:

x.s = 1 means that we are considering the statement r as
solved using the index s or the primary access

path;

X,s = 0 means that the index s is not used for r;

ys=1 if se BSET:

ys=0 if se BSET:

M is the total memory constraint for the secondary
indexes (recall that for all s € ISET we have
MEM, < M).

Let ¥ be the vector which, in the rth entry, stores the
identifier of the access path used by the statement r. The
search for an initial solution BSET provides for
initialisation of ¥ initially ¥, contains the identifier of the
index (secondary or primary) whose access GA,, is
minimum for the statement r. Note that the initial BSET
does not necessarily coincide with ISET.

Let TEST be the set of secondary indexes which, at a
given step of the generation algorithm, have already been
tested for a given group of statements. Initially it is the
empty set.

The approximation algorithm SIS (secondary index
selection) is essentially composed of two parts: the first
(p1) finds an optimal solution without memory constraint,
the second (p2) operates when the unconstrained solution
does not fit in the available memory. Since the initial
solution was found without considering the update costs,
part pl tries to remove from BSET the indexes with higher
update cost. In this phase indexes can simply be removed
from BSET or others substituted that were not
considered in the initialisation.

All the indexes are tested in order to minimise the
objective function. Part p2 takes the constraint on the
memory into account by performing substitutions in
BSET. More precisely, we remove from BSET the index
whose memory requirement (weighted by a function

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

26

F (MEM,) defined by the user) multiplied by its global
cost, is maximum. Then, we replace it with another index
whose ratio between the global cost increase and the
memory gain is minimum. We repeat substitutions until
the indexes in BSET satisfy the memory limit. SIS is
reported as follows. We suppose that the initial BSET has
been already chosen. Furthermore, we denote P, as P.xw,.

SIS: Secondary index selection

pl: (» find BSET without constraints on the storage+)
while (3 s € BSET/s € TEST) do

begin

pl.l:(* find the candidate s to be removed from
BSET*)
find s € BSET/GU; = max {GUj/j € BSET, j ¢
TEST}:

pl.2:(* evaluate the effectiveness of the index s for the

group of statements which use s*)
for all k € ISET do

begin

r/Vy=s
(* discover if the maintenance cost has to be
considered*)

if (k ¢ BSET or k = 5) and
(3 GA/V, = 5= GA,, # P))
then SOM,: = SOM, + GU;
end;
(* search the index k which is more useful than s)
find kmin/SOM,,,;, = min {SOM, /k € ISET}:
(* update the vector Vx)
forall r/V,=sdo V,: = kmin:
p1.3:(* update the solution *)
BSET: = {k € ISET/3V, = k}
if kmin € TEST then TEST: = TEST kmin;
(* update the set of the indexes already tested#)
TEST: =TEST U s

end:
(* check the validity of the solution *)
for all r
do begin j: = V;
if GA;; = P, then V,: = 0:
end:
BSET: = {k/3r such that V, = k}
(* end pl*)
p2: (* take into account the constraints on the memory#*)
while Y MEM,> Mdo
seBSET
begin
p2.1: for all k € BSET

do PROD; =(X GA,+GUy)* F(MEM,);
r/Vy=k
(* F(MEM) is a function defined by the user *);

(* find the index candidate to be removed from
BSETx)

find kmax € BSET/PROD,. .o, = max {PROD,/
SEBSET},

(#find the set of indexes which can substitute
kmaxx)

SSET: = ISET-kmax-{k e [SET-BSET/MEM, >
MEMkmaI}

(*as in the p1.2 step*)

401

cpy 28

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

R.BONANNO, D. MAIO AND P.TIBERIO

for all k € SSET U kmax do
begin SOM,:= Y GAy;

r/Vy=kmax
if (k¢ BSET o/r k = kmax) and

(3 G4,/ V, = kmax = GA,, # P,)
then SOM,.: = SOM,+G U,

end:
(* find the index kmin which substitutes kmax *)
find kmin € SSET such that the ratio is the
minimum:
SOM,.—SOM 0z

min {(¥ MEM,-M),(MEM,,,..,-NEWMEM,)}

SEBSET
NEWMEM, = & if k e BSET
NEWMEM, = MEM,, if k ¢ BSET;
(* is the ratio between the drawback introduced
by k and the maximum memory gain (not greater
than the memory overflow)*)
(* update ¥ and BSET
for all r/V, = & and GA;, kmin # P,
do V,:=kpn;
forall r/V, =k,,,
do if GA,, k,,;, # P,
then V,: = kmin else V,: = (¥;
BSET: = {k/3r such that V, = k
end (* p2 %)

where

p2.2:

4. AN EXAMPLE

In order to show the application of the algorithm SIS and
to explain the meaning of its steps, we have built up a
simple example. Let us suppose we have to select indexes
for two relations. The following tables report the cost
matrices as defined in section 2.

relation T,

L L Lon
qi 13 62 q 0 10
|44 : g3 18 14 U g} 0 0
93 40 40 q 10 10
L L
qi | 62 MEM' : 100 5
P! g | 40
9 | 40
relation T,
L5 L IR
g | 17 671 27 q; 0 2 o
4% - 43 16 21 IU?| : g3 0 0 0
a3 40 40 15 'H 8 8 5
L R
q 67 MEM:® : 10 8 6
Pog | 25
'H 40

402 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

we obtain the following global matrices:

1 2 3 4 5 1 2 3 4 5
1 |13 62| 62 62 62 010 o o o
IGAl : 2 |18 14| 40 40 40 Gu: | o of o o o

3 |4 40| 40 40 40

4 |67 67| 17 61 27 0 0| o0 2 o
s |25 25| 11 6 21 o0| 0o o o
6 |40 40| 40 40 15 0 o] 8 8 5
1 62
2 40
1 2 3 4 s
3 4
i 4 67 MEM ;|10 5 10 8 6
5 25
6 40

Let us suppose weights are given as:

1 100
2 50
3 20
w
4 100
5 200
6 50

By applying the transformation formula (1) of section 3
we obtain:

1| 1300 6200 6200 6200 6200 1] 6200
2 (900 700 2000 2000 2000 2 | 2000
3] 80 800 800 800 800 3 800
IGA| : P
4| 6700 6700 1700 6700 2700 4 | 6700
5| 5000 5000 2200 1200 4200 5 | 5000
6 | 2000 2000 2000 2000 750 6 | 2000
1 2 3 4 5
GU : 200 1200 400 2400 250
MEM 10 5 10 8 6

We suppose a memory constraint M = 20, and
F(MEM,) = MEM,,.

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

AN APPROXIMATION ALGORITHM FOR SECONDARY INDEX SELECTION

BSET initially is built by choosing for each query the
identifier of the secondary index whose access cost is
minimum. Thus we have

BSET={1,2,3,4,5) TEST = {&}

1 1
2 2

_ 3 2

V=
4 3
s | 4
6 5

(1) The application of the step pl.1 of SIS leads to:
s=4
After pl.2, kmin = 3 and V is updated as:

1 1

2 2
_ 3 2
V=

4 3

5 3

6 5

Step p1.3 updates BSET and TEST as follows
BSET ={1, 2, 3, 5} TEST = {4}

(2) The new candidate to be removed from BSET is
s = 2. Applying p1.2 and p1.3 we have kmin = 1.

BSET ={1, 3, 5}
TEST =1{2, 4}
T
2|
3|
V=
4 3
51 3
6| s
(3) Nows =3

kmin =3 BSET ={1, 3,5} TEST={2, 3, 4}

Note that this iteration does not change BSET and
consequently V.
(4) Nows =5

kmin=95 BSET ={l, 3,5} TEST={2, 3,4, 5}

(5) As a result of the last iteration of pl:

s=1 kmin=1 BSET={l,3,5}
TEST ={l, 2, 3, 4, 5}

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

AN
Il

4 3
5 3
6 5

Note that it could happen in other cases that an index,
previously removed from BSET for some group of
statements, may again enter into BSET for a larger group.
This leads, as a consequence, to increasing the number of
iterations at most to N/+ NQ.

The next step to be performed consists in checking the
validity of the solution obtained without constraints on
the memory. In fact, the third query in reality does not
use the secondary index 1 but the primary access. Thus
we update ¥ as follows:

= 3| @
V=
4 3
S 3
6 5

The last step p2 takes into account the constraints on the

memory by performing substitutions in BSET.

The kmin index is chosen among those belonging to
the following two sets:

{BSET-kmax} with no restriction;

{ISET-BSET} but considering only those indexes whose
memory requirement is less than kmax memory
occupation.

Referring to our example, as a result of p2 first iteration
we have:

1]
kmax =3, kmin=135 2 |
_ 3| o0

V=
4| s
BSET ={1,5} s | s
6 | s

This solution satisfies the memory constraints and has a
global cost of 11100. The number of combinations
examined is 7.

In order to validate SIS’s results we have implemented
an exhaustively searching algorithm. We found for the
previous example the same result by performing (2°-1)
explorations. Tests on SIS have been performed to try and
measure the deviations of the heuristic solution from the
optimal one. In most situations SIS produced the optimal
solution. Because physical design is such a complex

403

26-2

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

R.BONANNO, D. MAIO AND P.TIBERIO

problem, finding the mathematical worst-case bound on
the deviations from the optimal solutions produced by
heuristic algorithms is virtually impossible.’s Intuitively
the introduced approximation is due to the fact that SIS
does not consider the possibility of replacing an index
with a group of indexes. Let us refer to the following
example, in which we have to select indexes for a single
relation. We assume unitary weights for all queries.

1 110 210 180 1 0 40 0
2 200 300 190 2 0 3 0
3 300 240 205 3 80 0 0
1GA'| :
4 60 55 50 4 0 0 0
5 120 110 325 5 0 0 70
6 300 10 180 6 0 0 0
1 210
2 300
_ 3 300 o
P M 10 8 12
4 100
5 325
6 400

We suppose a memory constraint M = 23.
The optimal solution is BSET = {1, 2} with cost = 875.
SIS’s solution is BSET = {2, 3} with cost = 885. In fact

REFERENCES

1. M. M. Astrahan e al., System R, a relational approach to
database management. ACM TODS 1 (2) (1976).

2. M. Stonebraker E. Wong and P. Kreps, The design and
implementation of INGRES. ACM TODS 1 (3) (1976).

3. F. Bonfatti, D. Maio and P. Tiberio, A separability-based
method for secondary index selection in physical data base
design. In Methodology and Tools for Data Base Design,
edited S. Ceri. Amsterdam, North-Holland (1983).

4. M. Schkolnick and P. Tiberio, Considerationsin developing
a design tool for a relational DBMS. Proceedings of the
IEEE COMPSAC Conference, Chicago, Nov. 1979; and in
Data Base Management in the 1980’s, IEEE catalogue no.
EHO-181-8 (1981).

5. F. Bonfatti, D.Maio and P. Tiberio, Metodologie di
progetto fisico in DBMS relazionali. Rivista di Informatica,
8, (2) (1983).

6. M. M. Astrahan, W. Kim and M. Schkolnick, Evaluation
of the System R access path selection mechanism. Pro-
ceedings of the IFIP Conference Tokyo/Melbourne, Oct.
1980.

7. F. Bonfatti, D. Maio and P. Tiberio, Alcune considerazioni
sul calcolo dei costi di esecuzione delle interrogazioni in una
base di dati relazionale. Proceedings of the AICA
Conference, Pavia, Sept. 1981.

8. S. B. Yao, Approximating block accesses in database
organizations, Communications of the ACM 20, (4) (1977).

404 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

when, during the execution of SIS, we reach the solution
BSET = {2, 3} the situation of the vector V is:

3 3
4 3
5 2
6 2

Then we stop the execution because no index can be
replaced completely by another. On the other hand, we
could obtain the optimal solution {1, 2} only if we
substituted the index 3 with the couple of indexes {1, 2}
for the first four queries.

Another deviation introduced by SIS is caused by the
fact that the necessary constraint is taken into account
only after a first approximation solution has been found.

CONCLUSIONS

We have presented an approximation algorithm which
produces a near-optimal solution to the secondary index
selection problem in multifile relation DB. The complexity
of the exploration is linear.

Future work in this direction will try to extend the
complexity to the square of the cardinality of the indexes
in order to avoid the approximation described above.
This last algorithm is currently under development and
will be published in a future paper.

9. M. Schkolnick and P. Tiberio, A Note on Estimating the
Maintenance Cost in a Relational Database. IBM Research
Report RJ 3327, San Jose Ca. (1981). To appear on ACM
TODS.

10. E. Wong and K. Youssefi, Decomposition: a strategy for
query processing. ACM TODS 1 (3) (1976).

11. K. Y. Whang, G. Wiederhold and D. Sagalowitz, Estima-
ting block accesses in database organizations: a closed
non-iterative formula. Communication of the ACM 26,
(11) (1983).

12. T. Y. Cheung, A statistical model for estimating the
number of records in a relational database. Information
Processing Letters 15 (3) (1982).

13. D. Comer, The difficulty of optimum index selection, ACM
TODS 3 (4) (1978).

14. M. Y. L.Ip, V.V.Raghavan and L.V.Saxton, An
approximation algorithm for the index selection problem.
Proceedings of the [IEEE COMPSAC Conference, Chicago,
(1981).

15. K. Y. Whang, Physical Design Algorithms for Multiple
Relational Databases. Internal Report, Stanford University
(1982).

16. K. Y. Whang, G. Wiederhold and D. Sagalowicz, Separ-
ability: an approach to physical database design. Pro-
ceedings of the International Conference on Very Large
Databases, Cannes, France. (1981).

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

AN APPROXIMATION ALGORITHM FOR SECONDARY INDEX SELECTION

17. W.F. King, On the Selection of Indices for a File. IBM 21. M. Stonebraker, The choice of partial inversions and
Research Report RJ 1641, San Jose Ca. (1974). combined indices. International Journal of Computer and
18. J. G. Kollias, A heuristic approach for determining the Information Sciences 3 (2) (1974).
optimal degree of file inversion. Information Systems 4 22. H. D. Anderson and P. B. Berra, Minimum cost selection
(1979). of secondary indexes for formatted files. ACM TODS 2 (1)
19. A. Putkonen, On the selection of access path in inverted (1977).

database organization. Information Systems 4 (1979).
20. M. Schkolnick, The optimal selection of secondary indices
for files. Information Systems 1 (1975).

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

405

¥20¢Z I4dy 60 Uo 1senb Aq 6126.£/86€/¥/82/2101e/|ulWwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

