On the Selection of a Reduced Set of Indexes

MICHAEL HATZOPOULOS* AND J. (YIANNIS) KOLLIAS**
*Department of Mathematical and Ccmputer Sciences, Michigan Technological University, Houghton, MI 49931, USA
**Department of Computer Sciences, National Technical University of Athens, 9 Heroon Polytechnion Ave., Zografou, Athens (621), Greece

The secondary index selection problem (ISP) is known to be an NP-complete problem. The best possible known
algorithm to find an exact solution of the ISP is the one developed by Schkolnick which utilizes the fact that the
objective function of the problem satisfies the regularity condition. In a recent paper Ip et al presented a heuristic
algorithm which solves the ISP with the added constraint that the creation and storage cost of the optimal selection
must not exceed a certain specified cost. The current study observes that in practice this last problem can be translated
to the classical ISP but requiring now that no more than k indexes may appear in the optimal set. It is shown that this
new problem satisfies the regularity property. The study also presents the modifications needed to Schkolnick’s

algorithm for solving the problem considered.

1. INTRODUCTION

In a recent paper Ip et al' studied the problem of the
optimal selection of secondary indexes to support a
database that uses the values of secondary attributes.
This problem is one of the most debated problems in the
area of physical database design (see for example
references 2,3 and the references cited in 1) and it is known
to be NP-complete®. The best known (exact) algorithm,
for solving the index selection problem (ISP), is the one
developed by Schkolnick® which determines the optimal
selection among n candidate secondary indexes by
examining at most O(2V™ log n) combinations out of the
2" possible combinations.

In 5 one planning period was considered and it was
assumed that during that period the system receives
transactions which may request the querying, update,
insertion and deletion of records. The ISP was
formulated as: Find the selection of indexes which
minimizes the quantity roCq + ryCy + 1,C; + r,Cp
(1), where rg, ry, r; and rp are respectively the
probabilities that one transaction is a query, an update,
an insertion or a deletion, and, Cq, Cy, Cy and Cy, are
the costs to process respectively a query, update,
insertion and deletion. The algorithm devevoped substa-
ntially reduces the solution space to be searched when
solving the ISP because it utilizes the fact that the cost
function (1) satisfies the regularity condition. The
condition states that, if while searching for the optimal
set of indexes, a set D is reached and there is an index
j ¢ D which increases (1), then the index j can be ignored
in any subsequent search from D. For a formal definition
of regularity see the Appendix.

The model in reference 1 is very similar to that in
reference S except that it requires the minimization of (1)
(Note: reference 1 asks basically for the maximization
of a quantity of the form A — roCq — ryCy — r,C;
— rpCp, where A is the average cost to perform any type
of transaction if no index exists in the database) subject
to the additional constraint:

n
Txd; <M)
i=1

where

X; = the storage and creation cost for the index of the

j-th attribute,

406 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

M = the storage and creation cost of the optimal index
selection that it can be tolerated, and
d; = 1if the j-th attribute is indexed
0 otherwise

Therefore the problem in reference 1 is the classical ISP
with the restriction that the selection must not lead to
overall index creation and storage cost which exceeds a
specified amount, M.

Unfortunately, the existence of (2) does not ensure the
regularity condition of (1). It has been shown in reference
1 that the (1) — (2) model is equivalent to another
NP-complete problem, namely the knapsack problem®.
In the next section we argue that in practice it is
reasonable to assume that the creation and storage cost,
x, of each secondary index is a constant quite irrespective
of the value of j. This observation allows us to consider
the problem of minimizing (1) when no more than k
indexes may appear in the optimal selection, where k =
LM /xJ. We subsequently show that this new problem
maintains the regularity condition of (1). Section 3
presents the modifications needed to Schkolnick’s
algorithm in order to solve our problem and reports that
the modifications by no means harm the initial
performance of the algorithm.

2. THE NEW MODEL

Our first task is to show why it is reasonable to assume
that each of the quantities x; in (2) can be equated to the
value of a constant x, i.e. in practice it is expected that
secondary indexes have almost the same creation and
storage costs. We examine both these costs in turn.

The creation of a secondary index is undoubtly a batch
operation which takes place periodically. The problem
of determining optimal intervals for creating a new
version of an index is beyond the scope of the ISP as
described in references 1 and 5. (However, there exist
studies which may be used for attacking the optimal
period selection problem™®). Therefore references 1 and
5 implicitly assume that index creation occurs at the very
beginning of the planning period. For the discussion that
follows, we assume that a secondary index will be
structured as an inverted file. The same arguments are
generally applied when less popular filing schemes are
used to structure indexes®. The process of creating an
index j (j = 1, 2, ..., n) normally consists of the following

¥20Z I4dy 01 uo 1senb Aq 8526/¢/90%/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

ON THE SELECTION OF A REDUCED SET OF INDEXES

three steps: Step 1: The primary file is read and
distributed into another sequential file having records
consisting of two fields. The first field is an identification
of the record (normally the primary key and rarely the
address of the record in the disk) and the second is the
value of the j-th attribute. If we assume that the primary
file consists of N records then the output file creation is
an O(N) operation. It is worth noting that if the size of
the file/disk allows it, it is possible, (a) the primary file
to be distributed into more than one output files, or (b)
if one output file is used, then this file may contain more
than one secondary attributes. Both cases although may
lead to different (and cheaper) creation costs will make
(1)-(2) a non-linear optimization problem. Step 2: The
distributed file is now sorted on the values of the attribute
j. If an m-way merging is used for sorting this file® where
m is the order of merging — then again the cost is
O(Nlog,,N) quite irrespective of the attribute). Step 3:
The inverted file is structured by applying some type of
hierarchical structure, e.g. B-tree'?, etc. If we show that
the number of nodes of the hierarchical structures are
almost the same, for every index j, then the validity of
our argument about the identical index creation cost is
proved. This issue is immediately discussed in relation
to the index storage costs.

An entry of the inverted directory for the j-th index
logically consists of two parts: a distinct value of the j-th
attribute and a list of identification of records (see above)
which contain that particular key value. If a tree
structure is employed to structure an inverted directory
then the leaves of the tree have to point at exactly N
records quite irrespective of the attribute j. Therefore
each secondary index requires a storage of O(bN) =
O(N), where b is the length in bytes to store a record
identifier (i.e. a primary key value or a disk address).
Naturally, a secondary attribute which is coded, say, as
one character may require some more space for its index
than another attribute which is coded, say, as two
character string. Nevertheless, the difference in space is
so small that it allows us to assume that a secondary index
requires the same storage cost with any other secondary
index on the system. The discussion also proves that the
cost to perform the Step 3 above is the same for all
indexes since each tree contains the same number of
nodes. At this point we feel appropriate to comment on
the fact that in many implementations the few top levels
of every secondary index are placed in the main memory
for purposes of fast retrievals. The case is catered for in
(2) and it can be covered by our model provided of course
that the variable x takes now a larger value.

From the above discussion it follows that the (1)-(2)
model may be translated in practice as: ‘Find -the
selection of indexes which minimizes the quantity rgCq
+ ryCy + 1;C; + rpCp when no more than k indexes
can appear in the optimal solution, where k = LM/x1.’
Before studying this new model we shall point out
another possible application of the model. Secondary
index selection is normally performed by the database
administrator who utilizes special commands. For
example, System R offers the two related commands
CREATE and DROP INDEX!. However, database
systems operating on machines with limited capacities
cannot leave uncontrolled the number of secondary
indexes to be selected. In fact we are aware that the
maximum degree of indexing allowed by software

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

running on the CDC S-18 and IBM S/34 computers is
4 and 15 indexes respectively. This suggests another
application of the new model.

Our next step is to prove that the new ISP is regular.
We first define a few more variables using the notation
in reference 1. Let:

D = the set of attributes for which an index exists. In
our case |D| < k,

pi(7;) = the probability that the j-th attribute is specified
in a query (update),

F(§) = the time required to perform a transaction
(query/update/insertion/deletion) on any index for
the j-th attribute, and

N; = the number of distinct values taken by the j-th

attribute.

With the above introduced variables and following the
arguments in reference 1 then (1) can also be written as

E(D) = E) H())+G(D) 3
where ’
q H(J) =r1¢qp; F(j) + 1y y; F()+ (r1 +1p) F(j)
an

G(D) =rq N.I})(l —pi+p;/N;y)
Je

It can be seen that in (3), H(j) represents the cost of
maintaining the index for the j-th attribute and
manipulating it during retrievals; G(D) is the cost of
retrieving the records via the intersection lists of D (Note:
The process of intersecting indexes is thoroughly
described in reference 1).

We now show that (3) is regular. Since our proof will
use some of the results in reference 5 we list, in the
Appendix, these results.

Theorem: Let E(D) as defined in (3). Then E(D) is
regular.

Proof. By definition

4(D,j)

Il

H(G) + GD v §)— G(D)
= H(Q) — (p; — p;/N)G(D)

= H() — py(1 — 1/Ny)G(D).

The fact the G(D) is a monotone nonincreasing function
proves the theorem Q.E.D. (see Lemma in Appendix).

In the next section we show how the above theorem can
be utilized to extend Schkolnick’s algorithm to cover the
ISP when considering the storage and creation cost
constraint.

3. THE MODIFIED ALGORITHM

Let S be the set of all candidate indexes, |S| = n.
Schkolnick’s algorithm partitions S into w (disjoint)

407

¥20Z I4dy 01 uo 1senb Aq 8526/¢/90%/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

M. HATZOPOULOS AND J. KOLLIAS

chains. The set of candidates to be adjoined to a current
partial solution D (Initially D = ¢) is obtained by
considering the subset of independent points among the
set of points which are maximal in each chain. If n,, n,,
..., n, are the number of points in each chain, the
maximal number of sets examined will be less than

(1 + n)A + ny..(1 +ny) < (1 + n/w)*. (4)

The modification we propose reflects the fact that our
problem must also satisfy |D| < k. This requires the
following two modifications of the algorithm:

Modification 1. When searching for a local optimal the
condition |D| = k must be examined (this implies that the
test if P # ¢ and ¥V j ¢ D (4(D — {j}, /) < 0in reference 5
must be augmented with the condition ‘and |D| = k).

Modification 2. Before a new index enters D the condition

ID| < k must be checked. (This implies that the push
to the stack operation in reference 5 must be preceeded
by the test ‘if [D| < k’).

REFERENCES

1. M.Y.L. Ip, L.V. Saxton and V.V. Ragharan, On the
selection of an optimal set of indexes, IEEE Trans. on Soft.
Eng., vol. 9, pp. 135-143, (1983).

2. J.G. Kollias, A heuristic approach for determining the
optimal degree of file inversion, Inform. Syst., vol. 4, pp.
307-316, (1979).

3. M. Hatzopoulos and J.G. Kollias, Some rules for
introducing indexing paths in a primary file, Comp. J., vol.
23, pp. 207-211, (1980).

4. D. Comer, The difficulty of optimum index selection, ACM
TODS, vol. 3, pp. 440445, (1978).

5. M. Schkolnick, The optimal selection of secondary indices
for files, Inform. Syst., vol. 1, pp. 141-146, (1975).

6. E. Horowitz and S. Sahni, Fundamentals of Data Structures
(Comput. Software Eng. Series) Comput. Sci. Press, (1978).

408 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

Theorem 1 and the above two modifications achieve the
optimal selection of the required reduced set of indexes.
This is managed without reducing the efficiency of the
algorithm since now (4) becomes

(1 + min(n,,k))(1 + min(nyk))...(1 + min(ny,k)) <
1 + n/w)v.

APPENDIX

The purpose of the appendix is to list the definitions and
results® which are utilized in this study.

Definition 1: Let E be a cost function defined on subsets
of a set S of points. Let 4(D,j) = E(D U {j}) — E(D).
Then E is said to be regular if A4(D’,j) < 4(D,j) for any
point j and sets D,D’ for which D = D" and j ¢ D".
Definition 2: Let k be a function which maps subsets of
S to any totally ordered domain with order relation given
by < . Then k is said to be monotone nonincreasing (mni)
if D < D’ implies k(D) < k(D). Lemma. Let E be a cost
function such that 4(D,j) = E(D U {j}) — E(D) can be
written as 4(D,j) = A(j) — B(D,j) where, for each fixed
j, B(D,j) is mni . Then E is regular.

7. M. Hatzopoulos and J.G. Kollias, A dynamic model for the
selection of secondary indexes, Inform. Syst., vol. 8,
pp. 159-164, (1983).

8. G.M. Lohman and J.A. Muckstadt, Optimum policy for
batch operations: backup, checkpointing, reorganization
and updating, ACM TODS, vol. 2, pp. 209-222, (1977).

9. T.J. Teorey and J.P. Fry, Design of Database Structures,
Prentice Hall, (1982).

10. R. Bayer and E. McGreight, Organization and maintenance
of large ordered indices, Acta Informatica, vol. 1, pp. 173-
189, (1972).

11. CJ. Date, An Introduction to Database Systems (The
Systems Programming Series) Addison-Wesley, 3rd Ed., p.
110, (1981).

¥20Z I4dy 01 uo 1senb Aq 8526/¢/90%/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

