Multiple Generation Text Files using Overlapping Tree

Structures*

F. WARREN BURTON ¥

Department of Electrical Engineering and Computer Science, University of Colorado at Denver, Denver, Colorado 80202, USA

MATTHEW M. HUNTBACH
Cognitive Studies, University of Sussex, Brighton, U.K.

J. (YTANNIS) G. KOLLIAS

Department of Computer Science, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Zografou Athens (624), Greece

When repeatedly editing a text file, one is often faced with a choice of keeping previous generations for backup or
deleting previous generations to reduce storage requirements. Since one generation of a text file is often very similar to
the previous generation, the above conflict can often be resolved by sharing much of the common information.

We propose using a tree structure to represent a text file. Common subtrees can be shared. Results of an experiment

with one file are reported.

INTRODUCTION

In many applications it is necessary to keep a large
number of files all of which contain similar information.
We might consider for example a collection of files which
are all variants of some standard file. In the case of a file
which is changing slowly with time it will often be
necessary to keep past generations so as to be able to
recover from errors. Again one generation of a file is likely
to be similar in content to previous generations.

Rather than store repeated copies of the same
information it would be possible to store files with shared
substructures for those parts which they have in common.
The sharing of common substructures has been advocated
by Hoare® and is usually supported automatically in
functional programming languages.* Schemes have been
presented for modifying a file, leaving the original intact
by sharing data.® 7 This paper reports on some results
obtained in practice using such a scheme.

THE METHOD

We use the method of overlapping tree structures
described in Ref. 3. Files are represented by a tree
structure,! 2 ¢ with information common to several files
represented by a shared subtree. Each node has a
reference count® which contains the number of pointers
currently referencing it. All nodes with a reference count
greater than 1, together with their descendants, contain
shared information.

When a file is modified, a duplicate is produced by
creating a new pomter to the tree representing the file (and
therefore increasing the reference count of the root node
by 1). During a modification it is necessary to copy nodes
encountered with a reference count greater than 1 since

* This work was supported in part by a grant from the United
Kingdom Science and Engineering Research Council. In addition, in
part this material is based on work supported by the National Science
Foundation under Grant No. ECS-8312748.

+ Some of this work was done while the first two authors were at

the University of East Anglia. Correspondence should be addressed to
the first author.

414 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

oe//:sdyy wouy papeojumo(

the new copy will be on the path to the modification whlle
the original should remain unchanged. When a node i ISQ_
copied the children which become shared have theirg
reference counts increased. Provided parents are copied &
before children are considered, only nodes with referenceu
counts greater than 1 need be copied, as other nodes will 3
not be shared and thus may be freely modified.

To see how an insert works with overlapping tree
structures, consider the tree shown in Fig. 1 (we are using =
overlapping binary trees here). Suppose we wish to insert 3
a node containing ‘N’ in alphabetical order. The root &
node ‘E’ is unshared and so does not need to be copied.
Node ‘G’ is also unshared and so may be modified =
without being copied Node ‘M’ though has a reference = N
count of 2 and so is shared and must be copied. Since both &
the original ‘M’ and its copy will contain pointers to 3 N
nodes ‘H’ and ‘P’, these nodes will have reference counts w
of 2 after node * M has been copied. Hence node ‘P’ will <
be copied when it is encountered. Finally node ‘N’ will c
be inserted under the new copy of node ‘P’. Fig. 2 shows
the structure after the insertion of node ‘N’ has been
completed.

:“ Another

[uJOO/Lu

e/|

LyIvI8¢2/al

20z 14dy 60 U0 }so

Figure 1. A tree with shared subtrees.

OVERLAPPING TREE STRUCTURES FOR MULTIPLE GENERATION FILES

1

;" Another, "
tree

N\
EIEXVAINSE FICIAIN
VAR /

[2]n], |

Figure 2. The tree of Fig. 1 after an insertion.

IMPLEMENTATION

In our implementation, files are stored using overlapping
B-trees of order 3 (2-3 trees). Each leaf node will store
1 or 2 records, with a record being equivalent to a line
of text. Larger leaf nodes could have been used. However,
at least one new leaf node must be produced for each
update, so larger leaf nodes will tend to reduce the
amount of information which can be shared. At any node
we keep a count of the number of records in each subtree.
This enables lines to be accessed using their position
relative to the start of the file as a key. These counts are
updated as the file is modified. Files may be accessed
sequentially by performing a tree traversal.

We have incorporated this into a simple editing system
which allows new files to be created and lines to be added
or deleted.

6000 ,
Key:

v Total records stored

+ Actual records stored

5500
5000 1
4500 4
4000 1§
3500 4
3000 3
2500
2000 4§
1500
1000 1

500 1

0

01 2 3 45 6 7 8 9 101112131415
Generation

Figure 3. Growth in storage with each new generation.

EXPERIMENTAL RESULTS

The overlapping tree structure editor was used in the
preparation of a paper which went through a total of 14
generations before the final version was ready. On
average for each generation, about 4 lines out of 5 could
be found in the previous generation without change. Each
generation was saved, resulting in a final data structure
with 14 overlapping trees. After producing a new
generation of the paper a count was made of the actual
number of records stored (that is counting those shared
only once). This was compared with the number of
records which would be necessary were each generation
to be stored separately. Fig. 3 shows the changes in these
two figures as each new generation was added.

It will be noted that adding each new generation
requires an average of about one-fifth of the space that
would be required were it to be stored without shared
substructures. If this system were to be used on a larger
scale it should be noted that a B-tree of a higher order
may be used to reduce the number of node accesses. This
would tend to increase the amount of data which needs
to be copied. However, with larger files the proportion of
data which is common between generations is also likely
to be greater. Analysis of the amount of space saved by
using shared substructures is given in Refs. 3 and 7.

ERROR RECOVERY

When a file is updated, existing nodes are left unchanged
except for their reference counts. Should a system failure
occur during an update then the reference counts may not
be correct. There are two solutions to this problem.

Reference counts can be recomputed by traversing all
trees after a system failure. Alternatively, if reference
counts are always increased before a new pointer is set
and decreased after a pointer has been changed, then any
error in a reference count will make it overly large. If old
generations are sometimes deleted, then some form of
garbage collection will be required to remove leaves which
are no longer being used but have overly large (greater
than zero) reference counts.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 415

¥20Z I4dy 60 Uo 1senb Aq £826.¢/¥ L ¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

F. W. BURTON, M. M. HUNTBACH AND J. G. KOLLIAS

Periodic reorganisation may be desirable. This could
order the nodes in the most recent generation of a file
sequentially, to speed access, and collect unreferenced
nodes which have been left behind due to system failures
as described above.

CONCLUSION

We have used overlapping tree structures in a practical
text-editing situation. We have shown that in this

REFERENCES

1. R. Bayerand E. McGreight, Organization and maintenance
of large ordered indexes. Acta Information 1 (3) 173-189
(1972).

2. R. Bayer and K. Unteraner, Prefix B-trees. ACM Trans.
Database Syst. 6 (1) 174-193 (March 1981).

3. F. W. Burton and J. G. Kollias, Representing multiple
generations files using overlapping tree structures. Tech-
nical Report. University of East Anglia, Computer Studies.

4. P. Henderson, Functional Programming. Application and

416 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

situation a considerable saving of space can be made by
storing past generations of a file using this method. Qur
results indicate that overlapping tree structures may be
used with benefit in applications where it is necessary to
store large numbers of similar files. Details such as
optimal leaf size will depend on the machine being used
and the anticipated pattern of use, as well as the
relative importance of economy of storage vs speed of
access.

Implementation. Prentice-Hall, Englewood Cliffs, New
Jersey (1980).

5. C. A. R. Hoare, Recursive data structures. J. of Computer
and Inf. Sciences 4 (2) 105-132 (1975).

6. D. E. Knuth, The Art of Computer Programming, Funda-
mental Algorithms, Vol. 1, Addison-Wesley, Reading,
Mass. (1973).

7. J. K. Mullin, Change area B-trees: a technique to aid error
recovery. Computer Journal. 24 (4) 367-373 (1981).

a

202 Iudy 60 uo 1senb Aq £826.E/7 1L ¥/¥/82/8101ue/|ulwoo/wod dno-olwapede//:sdiy Wolj papeo|umo

