The Analysis of an Improved Symmetric

Binary B-tree Algorithm

NIVIO ZIVANI

Departamento de Ciéncia da Computagao, UFMG, CP 702, 30,000 Belo Horizonte, MG, Brazil

HENK J. OLIVIE

Stedelijke Industriéle Hogeschool, Paardenmarkt 94, B-2000 Antwerp, Belgium

GASTON H. GONNET

Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L3G1, Canada

We present an improved version of the original insertion and deletion algorithm for symmetric binary B-trees. We
perform the analysis of the insertion algorithm using a fringe analysis method, and obtain bounds on the expected
number of transformations per insertion and on the expected number of balanced nodes. We also examine empirically
the expected costs to search, insert, and delete keys in symmetric binary B-trees.

1. INTRODUCTION

B-trees were presented in 1972 as a dictionary structure
primarily for secondary storage.! A special case of B-trees,
called 2-3 trees, was introduced by John Hopcroft in 1970
(see Ref. 2, p. 468). In a 2-3 tree every internal node
contains either one or two keys, and all leaves appear at
the same level. Unlike B-trees, 2-3 trees are more
appropriate for use in primary store than secondary.

Bayer proposed a binary representation for 2-3 trees,
asshownin Fig. 1.1*3 Note that the binary representation
for 2-3 trees has an asymmetry: the left edges always
point to a node at the next level, while the right edges
point either to a node at the same level or point to one
at the next level. Removing the asymmetry of the binary
B-trees leads to the symmetric binary B-trees (abbreviated
as SBB trees).*

Figure 1.1. A 2-3 tree and the corresponding binary B-tree.

SBB trees are binary trees with two kinds of edges,
namely vertical edges and horizontal edges (called d-edges
and p-edges respectively, by Bayer), such that:4

(i) all paths from the root to every leaf node
contain the same number of vertical edges;
(ii) there are no successive horizontal edges;
(iii) all leaf nodes are endpoints of vertical edges.

Fig. 1.2 shows a representation of an SBB tree.

For SBB trees two kinds of heights need to be
distinguished: the vertical height A, required for the
uniform height constraint, and calculated by counting
only vertical edges in any path from root to leaf, and the

* Inthis paper theinternal nodes are circular and the leaves or external
nodes are square.

Figure 1.2. An SBB tree with h-height 2 and k-height 4.

ordinary height k, required to determine the maximum
number of key comparisons and calculated by counting
all edges in a maximal path from root to leaf. The
ordinary height k is larger than the vertical height A
wherever the tree has some horizontal edges. In
particular, for a given SBB tree with # internal nodes, we
have
h<k<2h,
and
log(n+1) < k < 2log(n+2)—2.4*

In 1972 Bayer introduced the SBB trees and the
maintenance algorithms, and showed that the class of
AVL trees is a proper subset of the class of SBB trees.*
Later Wirth presented an implementation of the insertion
algorithm using Pascal.> An SBB tree can be seen as a
binary representation for a 2-3-4 tree as defined by
Guibas and Sedgewick (1978),% in which ‘supernodes’
may contain up to three keys and four sons. For example,
such a ‘supernode’ (with keys 3, 5, and 9 and with sons
containing keys 2, 4, 7 and 10) can be seen in the SBB
tree of Fig. 1.2.

Huddleston and Mehlhorn showed that the number of
nodes revisited to restore the SBB property, counted from
the father of the node inserted into the tree to the node
where the retreat terminated, is constant on the average.’
In another paper they used SBB trees as a basic date
structure for representing linear lists.® The University of
Washington’s ESP text editor developed by Fisher,
Ladner, Robertson and Sandberg uses SBB trees as a
basic data structure.®

Olivié proposed a new set of transformations for SBB
trees and son trees.!?- 1! Ziviani and Tompa (1982) showed

* All logarithms are taken to base two.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 417

27

cpy 28

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

N. ZIVIANL H.J. OLIVIE AND G. H. GONNET

experimentally that (i) the new insertion algorithm uses
less transformations per insertion and produces SBB trees
with smaller height than the original algorithm proposed
in Ref. 4, and (ii) SBB trees require less work than AVL
trees to maintain balance, and the search time is only
slightly longer.!2 In Olivié and Schrapp (1982)? a close
relationship is shown between son trees and half balanced
binary trees.!* Due to this relationship Tarjan (1983) was
able to give insertion and deletion algorithms for SBB
trees requiring only a constant number of single rotations
after an insertion or a deletion.1®

The purpose of this paper is to present the analysis of
the improved algorithm for SBB trees. The analytical
results of the insertion algorithm are obtained using a
technique called fringe analysis.’®-1” We use a fringe
analysis method based on a way of describing the
composition of a fringe in terms of tree collections. The
expected costs to search, insert and delete keys are
examined empirically.

In section 2 of this paper the original algorithm
proposed in Ref. 4 and the new algorithm are studied. In
section 3 a fringe analysis of SBB trees is performed. In
Section 4 a performance evaluation of SBB trees is
presented.

2. THE ALGORITHMS

The algorithms to insert or to delete a key from an SBB
tree use local transformations on the path of insertion to
preserve the balance of the tree. The process of insertion
of a new key consists of three parts.

(i) Follow the search path until it is verified that the
key is not in the tree. This is equivalent to finding the place
of insertion, which is located after the lowest vertical
pointer in the tree, and is represented by a leaf node.

(ii) Replace the leaf node by an internal node with two
leaves as sons and containing the new key. This node is
raised to the next higher level by changing the edge that
points to the new node from vertical to horizontal.

(iii) Retreat along the search path and check the
pointers at each node. Depending on the tree’s status
prior to insertion two successive horizontal pointers may
result, and a transformation may become necessary. If a
transformation is performed a node may again be raised
to a higher level and this may require further
transformations to obtain a uniform height.

The process of deletion of a key consists of three parts.

(i) Follow the search path until it is verified that the
key is in the tree.

(ii) Delete the node according to the following: (a) the
key to be deleted belongs to a node with at most one son,
deletion in this case is straightforward; (b) the key to be
deleted belongs to a node with two sons, it is to be
replaced by the rightmost key of its left subtree.

(iii) Retreat along the search path and restore the SBB
tree property.

Fig. 2.1 shows the transformations proposed by
Bayer.* Symmetric transformations may also occur. On
the left side we have the situation where a node has been
lifted up one level, so that there are two successive
horizontal edges. On the right side the result of the
restructuring is shown.

Fig. 2.2. shows a new set of transformations. In the new
transformations for SBB trees the edges marked by a star
in Fig. 2.1 are considered explicitely: only if this edge is
horizontal is a node lifted up to the next higher level.

418 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

rad

(a) left—left split
PR,

Figure 2.1. The two transformations as proposed by Bayer.* The
edges marked with stars may be either vertical or horizontal.

(b) left—right rearrangement
(3)
FXOoR
V—CQ@) (@)

(c) left—left split

S E l‘
ﬂlﬁs@ .
(b) left—right split

(a) left—left rearrangement

Ema—

3
(D—@ (@)

*@ (D—(4)
(d) left—right split

Figure 2.2. The four transformations as proposed by Olivié.!°

The left-left rearrangement and the left-right re-
arrangement require the modification of 3 and 5 pointers
respectively, and the split transformations require the
modification of two bits. The difference between a vertical
and a horizontal pointer is indicated by one bit.
Symmetric transformations may also occur.

When a split transformation occurs, the height of the
transformed subtree is one more than the height of the
original subtree, and this may cause other transformations
along the search path to the root. The retreat along the
search path terminates when either a vertical pointer is
found or a rearrangement transformation is performed.
As the height of the rearranged subtree is the same as the
height of the original subtree, at most one rearrangement
transformation per insertion may be performed.

The implementation of the original algorithm can be
found in Bayer (1972) using Algol, and in Wirth (1976)
using Pascal.* ® The implementation of the new algorithm
can be found in Olivié (1980) and in Ziviani and Tompa
(1982) using Pascal.?- 12 Bayer, Wirth and Olivié used two
bits per node in their algorithms to indicate whether the
right and left pointers are vertical or horizontal. Ziviani
and Tompa implemented only one bit per node, as
suggested by Guibas and Sedgewick:® the information
whether the left (right) pointer of a node is vertical or
horizontal is stored in the left (right) son.

Ziviani and Tompa (1982) have shown empirically that
the insertion algorithm for SBB trees based on the
transformations shown in Fig. 2.2. performs better than
the original algorithm based on the transformations

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

AN IMPROVED SYMMETRIC BINARY B-TREE ALGORITHM

Table 3.1. Summary of the SBB tree results

First-order analysis*

Tree collection size. ..

3

Second-order analysist
30

b(N) 0.51 0.14 0.57 0.28
N [0.51 + ,0.86 ~] [0.57+ 072]
r(N) [0.29, 0.63] [0.36, 0.56]
Pr{0 s(N)} 0.66 0.66
Pr{1 or more s(N)} 0.34 0.34
AN) 0.66 N+0.66 0.85N+0.85

* For N = 6.
t Results are approximated to O(N-5-9%).

shown in Fig. 2.1. In the next section we present an
analysis of thealgorithm based on the new transformations
shown in Fig. 2.2.

3. ANALYTICAL RESULTS

Consider an SBB tree T with N keys and consequently
N+ 1 external nodes. These N keys divide all possible key
values into N+ 1 intervals. An insertion into 7 is said to
be a random insertion if it has an equal probability of
being in any of the N+1 intervals defined above. A
random SBB tree with N keys is an SBB tree constructed
by making n successive random insertions into an initially
empty tree. In this paper we assume that all trees are
random trees.

We now define certain complexity measures.

(i) Let b(N) be the expected number of completely
k-balanced* nodes in an SBB tree after the random
insertion of N keys into the initially empty tree.

(ii) Letr(N)betheexpected number of rearrangements
required during the insertion of the (N + 1)st key into a
random SBB tree with N keys.

(iii) Let Pr{0 s(N)} be the probability that zero splits
occur during the insertion of the (N+ 1)st key into a
random SBB tree with N keys.

(iv) Let Pr{l or more s(N)} be the probability that one
or more splits occur during the insertion of the (N+ 1)st
key into a random SBB tree with N keys.

(v) Let m(N) be the maximum number of rearrange-
ments that may occur outside the fringe in an SBB tree
during the insertion of the (N+ 1)st key into a random
SBB tree with n keys.

(vi) Let fiN) be the expected number of nodes in the
fringe of an SBB tree after the random insertion of N keys
into the initially empty tree.

In section 3.1 the fringe analysis technique is
introduced. In Section 3.2 a small tree collection of SBB
trees of h-height 1 is studied. In Section 3.3. a bigger tree
collection of SBB trees of A-height 2 is proved to be a
closed collection and results on the complexity measures
are obtained.

Table 3.1 shows a summary of the results obtained for
SBB trees.

3.1. Fringe analysis technique

In section 3.1.1 we introduce the concepts necessary to
describe the Markov chain used to model the insertion

* A node in an SBB tree is k-balanced when the k-height of the left
subtree is equal to the k-height of the right subtree.

process. In section 3.1.2. we study the matrix recurrence
relation involved in the Markov process. More details
may be found in Ref. 20 or 17.

3.1.1. The Markov process

Let us define a tree collection as a finite collection
C={T,...,T,} of trees. The collection of SBB trees with
three leaves or fewer forms a tree collection, as shown in

Fig. 3.1.1.1.
—)

Type 1 Ty;)e 2
Figure 3.1.1.1. Tree collection of SBB trees with three leaves or
fewer.

The fringe of a tree consists of one or more subtrees
that are isomorphic to members of a tree collection C.
Typically, the fringe will contain all subtrees that meet
this definition; for example the fringe of a SBB tree that
corresponds to the tree collection of Fig. 3.1.1.1 is
obtained by deleting all nodes at a distance greater than
1 from the leaves. Fig. 3.1.1.2 shows an instance of an
SBB tree with eleven keys in which the fringe that
corresponds to the tree collection of Fig. 3.1.1.1 is
encircled.

(RS rs FRR)

Figure 3.1.1.2. An SBB tree and its fringe that corresponds to the
tree collection of Fig. 3.1.1.1.

The composition of the fringe can be described in
several ways. One possible way is to consider the
probability that a randomly chosen leaf of the tree
belongs to each of the members of the corresponding tree
collection. In other words, the probability p is

piN) =
Expected number of leaves of type i in an n-key tree
n+1

)

Yao (1978) describes the fringe in a different way. His
description of the composition of the fringe considers the
expected number of trees of type i, while we describe it

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 419

27-2

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

N. ZIVIANL H. J. OLIVIE AND G. H. GONNET

Type 1 Type 2 Type 3 Type 4

Type 5

ofES L s ERo BN KX IR S

Type 6

o B L0 £ T EBe o B

Type 7

o IR0 IB5 Sodd

Soobo oo

Type 8

Y
Type 10

oS0 oLt IR0 o0 S0 IS0 odded dosdR

Type 9

Figure3.1.1.3. Tree collection of SBB trees with 10 types (leaves not shown).

in terms of leaves as in Equation (1). As we shall see our
description of the composition of the fringe simplifies the
notation necessary to present the fringe analysis
technique, and also makes easier the task of finding which
complexity measures can be obtained from the analysis
of each search tree.

In fringe analysis problems we always deal with a
collection C ={T,, ..., T,,} of trees. We now introduce
some concepts about the fringes of search trees.

Definition 3.1.1.1. A tree collection C={T,, ..., T,} is
weakly closed if for all je[l, ..., m] an insertion into 7;
always leads to one or more T, i€fl, ..., m].

Definition 3.1.1.2. A tree collection C ={T,, ..., T} is
closed when (i)C is weakly closed and (ii) the effect of an
insertion on the composition of the fringe is determined
only by the subtree of the fringe where the insertion is
performed.

The tree collection of Fig. 3.1.1.1 is an example of a
closed tree collection. This can be shown informally by
noting that an insertion into a type 1 tree always leads
to a type 2 tree, and an insertion into a type 2 tree always
leads to two type 1 tree, and in this case a rearrangement
transformation occurs with probability 2/3.

On the other hand the collection of SBB trees shown
in Fig. 3.1.1.3 is weakly closed but not closed. This is
because an insertion into a type 2 tree of Fig. 3.1.1.3, when
the type 2 tree is part of the fringe of an SBB tree, may
cause a split transformation followed by a rearrangement
transformation higher in the tree, and the composition of
the fringe depends on this rearrangement at the higher
level. Fig. 3.1.1.4 shows an instance of a SBB tree where
an insertion into a type 2 tree does not lead to a type 4
tree as expected.

Definition 3.1.1.3. A tree collection C ={T,, ..., T,} is
ambiguous when a tree in C appears as a subtree

Split and
rearrangement

Figure 3.1.1.4. Example of an insertion that unexpectedly
changes the fringe of an SBB (dotted edge shows the point of
insertion).

of another tree in C. Fig. 3.1.1.5 shows a SBB tree
collection that is ambiguous, since a tree of type 1 is a
subtree of trees of type 3.

A B &

——
Type 1 Type 3

Figure 3.1.1.5. Tree collection of SBB trees with more than 1 and
less than 5 leaves.

Type 2

The transitions between trees of a tree collection can
be used to model the insertion process. In an insertion of
a key into the type 1 tree shown in Figure 3.1.1.1 two
leaves of type 1 are lost and three leaves of type 2 are
obtained. In an insertion of a key into the type 2 tree three
leaves of the type 2 are lost and four leaves of type 1 tree
are obtained.

Clearly the probability that an insertion in one type of
a tree collection C leads to another type of C depends only
on the two types involves, and so the process is a Markov
process (cf. Refs. 18 and 19). A sequence
{Xn} = {Xp,X,...} of random variables taking values on
a state space S is a Markov chain if

PriXy =i|lXy_1=JsXpn_s =j1’~~wX0=jN—_1} .
=PriXy=1iXn_1 =]}

for all i, j, j;,...,Jy_1€S. The current value of Xy
depends on the history of the process only through the
most recent value X _,.

Toillustrate this fact consider the tree collection of SBB
trees shown in Figure 3.1.1.1. In this context, let X, and
Yy, be respectively the numbers of type 1 and type 2 leaves

420 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

AN IMPROVED SYMMETRIC BINARY B-TREE ALGORITHM

after the Nth insertion. Since the tree collection is closed,
the value of X depends only on the value of X,_, and
as a consequence {X v} (or equivalently { Y, }) is a Markov
chain.

The transition probabilities of the chain {X} are given
by

117 i=j—2
PriXy=ilXy_,=j}= N—j
N =/t
while those of Y, are
% i=j—3
PriYy=i|Yy_,=j}= —j
— i=j+3
Let
Then

Jn= E(XN) = E[E(XN I Xn-1 YN—I)]
Xy YN
- gm0 -9 N 4
2 4

_jN—l_NjN-—l +Nk1v—1

and similarly

3 3.
ky = kN—l—NkN—l +NJN—1-

But, by definition

N1 =Np(N=1); jy=N+1D)p(N);
ky1=Np(N—1); ky=(N+1)p,(N).

Substituting these equations into the previous equations
we get

N=2)p,(N—1)+4p,(N—1)

P = N+1
and
3p,(N—1 N-=3)p,(N—1
(N = 22)+1\(I+1)p(N—1)
In matrix notation
N-2 4
BI(N)]= N+1 N+1 [pl(N—l)]
(NI | 3 N3 [Lp(iv—1)
N+1 N+1
or
N _ H P(N—=1)
[pz(N)] = [1 TNy 1] [pz(N— 1)]
where

-3 4 10
H‘[3—4] and 1_[0 J‘

Thus the probability of an insertion occurring in each of
the subtrees of the fringe can be obtained from the
steady-state solution of a matrix recurrence relation in a

Markov chain. In general, let p(N) be an m-component
column vector containing p,(N). Then

N+1

where [is the mxm identity matrix, and H is the
transition matrix.

Extensions to other tree collections with more than two
types requires consideration of a vector process {Xu},
where x; is equal to the number of type j leaves at time

P =| 1+ 5 [o=, @)

3.1.2. The matrix recurrence relation

In fringe analysis problems we always deal with a tree
collection C = {T,, ..., T,,} of trees. Let L, be the number
of leaves of 7;. An insertion into the kth leaf, k€[l, .. ., Lj]
of T; will generate /;;(k) leaves of type T;. Let p;(N) be
defined as in Equation 3.1.1 (1). Then Equation 3.1.1 (2)
can be written as

=+ vy
where

H, = [i * 1,60

, H,=diag(L,, ..
ij_l 1 1

] L)
1<i,j<m

and [is the m x m identity matrix.

Definition 3.1.2.1. Consider a fringe analysis problem.
Equation (1) is the associated recursion equation, where
H = H,— H,—1 = (h;) is its transformation matrix. We
have
1
o — —
(] Lj i
where 6;; is the Kronecker symbol.

Intuitively, the element in the diagonal of H represent
the number of leaves lost due to an insertion minus one,
and off-diagonal elements represent the number of leaves
obtained for each type times the probability that each
type is reached in a transition.

L,
X (k)= 0y(L;+1)
-1

Definition 3.1.2.2. A fringe analysis is connected if there
is an /e[l...m] such that det(H,) # 0, where H,, is
matrix H with the /th column and /th row deleted.

The following theorem shows that the real part of the
eigenvalues of the transition matrix are non-positive. The
proof of this theorem and all the following theorems may
be found in Ref. 17 or 20.

Theorem 3.1.2.1. Consider a connected fringe analy-
sis problem with a m xm transition matrix H as in
Definition 3.1.2.1. Let 4,,...,4, be the eigenvalues
of H. We can order them so that A, =0 and
0> Rely > Reld,> ... = Rel,,.

Definition 3.1.2.3.
Let

L
LT, if X lik)>0,ie. Tj can produce T,.
1=1

%*

The symbol — is the reflexive transitive closure of —.

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 421

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

N. ZIVIANIL H. J. OLIVIE AND G. H. GONNET

The following theorem describes a test for

connectedness.

Theorem 3.1.2.2. A fringe is connected if and only if there
is a T; such that

*
T, »T;, forall je[l...m].

It remains to solve Equation (1) for connected fringe
analysis problems. In a previous version of the proof of
the convergence of the matrix recurrence relation (Ref.
21, Lemma 2.1, p. 4) the eigenvalues of the transition
matrix are assumed to be pairwise distinct. The following
theorem extends the proof to the general case.??

Theorem 3.1.2.3. Let H be the mxm transi-
tion matrix of a connected fringe analysis problem.
Let 4,,...,4, be the eigenvalues of H, where
A4, =0>Rel, > Re;> ...> Rel,, and let q be the
right eigenvector of H corresponding to 4, = 0. Then for
every vector p(0) there is a ¢ such that

|p(N)—cq| = O(NRe*)

where p(N) is defined by Equation (1).

It is important to note the following.

(i) Consider a mxm transition matrix H of a
connected fringe analysis problem. Theorem 3.1.2.3. says
that p(N), the m-component column vector solution of
Equation (1), converges to the solution of

Hqg=0, as N-oo,

where ¢ is also an m-component column vector that is

independent of N, and
P(N) = &, g=O(NFe %), (©)

where ¢ is the right eigenvector of H corresponding to
eigenvalue A, = 0. Furthermore, the eigenvalues of H do
not need to be pairwise distinct.

(ii) Let 4,(N) be the expected number of trees of type
i in a random search tree with N keys. Let L; be the
number of leaves of the type i tree. We observe that
Equation 3.1.1 (1) can be written as

A(N)L;

N+1~ @

Pi(N)=

3.2. First-order analysis.

The analysis of the lowest level of the SBB tree can be
carried out by considering the tree collection of SBB trees
with four or less leaves and h-height 1, as shown in Fig.
3.2.1. The first step necessary to perform the first-order
analysis is to show that the SBB tree collection of Fig.
3.2.1. is closed (Definition 3.1.1.2).

L LARN BN

Y A
Type 2 Type 3

Type 1

Figure 3.2.1. Tree collection of SBB trees with four or less leaves
and A-height 1.

Theorem 3.2.1. The SBB tree collection shown in Fig.
3.2.1. is closed.

Proof. An insertion into type 1 always leads to a type 2
tree. An insertion into a type 2 tree always leads to a type
3 tree, and in this case a rearrangement transformation
occurs with probability 2/3. The only case where a split
transformation occurs is after an insertion into type 3,
and in this case a rearrangement transformation may take
place higher in the tree. But even if this rearrangement
transformation takes place higher it causes no problem
because the smallest subtrees that may be moved around
are exactly type 1 and type 2 subtrees, which are the types
one would obtain anyway if an insertion is performed into
a type 3 tree. O

Theorem 3.2.1 says that all the transitions in the tree
collection of Fig. 3.2.1 are well defined, so that the
theorems presented in Section 3.1.2. can be applied. Thus

-3 0 2
H=| 3 -4 3
0 4 -5

From Equation 3.1.2 (2) we have Hp(N) =0, and
therefore p,(c0) = 8/35, py(o0)=15/35, and p,
(00) = 12/35. Since the eigenvalues of H are 0, —5 and
—7, we observe that p,(N) = 8/35, p,(N) = 15/35, and
ps(N) = 12/35, for N > 6.

Theorem 3.2.2. The expected number of completely
k-balanced nodes in a random SBB tree with N keys is
bounded by

[’ﬁ+‘ﬁ+3’ﬁ] (N+ 1)< B(N) < N—[’-’E] (N+1).
23 4 3

Proof. The lower bound is obtained by using Equation
3.1.2(4) and observing Fig. 3.2.1. The upper bound comes
from the fact that A(N) plus the expected number of
k-unbalanced nodes is equal to N, and the expected
number of k-unbalanced nodes in this case is p,/3(N+1).

O
Corollary.

18 18 bH(N) 6 1

ey < N

BTENS N S7 7N O
Theorem 3.2.3. The expected number of rearrangements
in a random SBB tree with N keys is bounded by

N=6.

2 1
31’2 <rN) =2 1-(p, +§P2)-

Proof. The lower bound is obtained by observing that a
rearrangement transformation happens when an insertion
is performed into the type 2 shown in Fig. 3.2.1, with
probability 2/3. The upper bound is obtained by
observing that the maximum number of rearrangements
per insertion is 1. O
Corollary. 2)7 < r(N) <22/35 for N=6.

Lemma 3.2.4. The probabilities that no split or one or
more splits occur on the (N + 1)st random insertion into
a random SBB tree with N keys are, respectively

Pr{0s(N)} = p,+p.
Pr{1 or more s(N)} = p;.

422 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

AN IMPROVED SYMMETRIC BINARY B-TREE ALGORITHM

Proof. By observing Figure 3.2.1. O
Corollary.
Pr{0 s(N)} = E for N>6
Pr{l or more S(N)} = 12 for N>6

Lemma 3.2.5. The probability of a rearrangement
occurring outside the fringe during the insertion of the
(N+1st key into a random SBB tree with N keys is
m(N) = py. Furthermore, nomore than one rearrangement
may occur.

Proof. An insertion into type 3 shown in Fig. 3.2.1 causes
a split transformation, which may cause a rearrangement
higher in the tree. O

Corollary. m(N) = 12/35 for N > 6.

Lemma 3.2.6. The expected number of nodes in the fringe
of an SBB tree with N keys that corresponds to the tree
collection of Figure 3.2.1 is

AN) = [%H%H%](NH).

Proof. By observing Fig. 3.2.1. O
Corollary. fAN) = 23/35N+23/35 for N > 6.

3.3. Second-order analysis

We can improve the bounds obtained in the previous
section by considering a larger tree collection. Fig. 3.3.1
shows a tree collection of SBB trees with 30 types and
h-height 2.

Theorem 3.3.1. The SBB tree collection of Fig. 3.3.1 is
closed.

Proof. When an insertion into an SBB tree causes no
rearrangement transformation then there is no problem.
When aninsertion does cause a rearrangement transform-
ation somewhere in the tree then we consider two
possible cases.

(1) The rearrangement transformation occurs at a node
that belongs to one of the trees of the tree collection
shown in Fig. 3.3.1. This case obviously causes no
problem.

(ii) The rearrangement transformation occurs at a node
outside the fringe. By examining Fig. 3.3.1 we can see that
there is no type that contains two opposite horizontal
pointers at the second level. This fact implies that in order
to have a transformation out of the fringe we must (a)
have at least any two subtrees from the tree collection of
Fig. 3.3.1 sharing the same root; and (b) an insertion
into one of these two subtrees must cause a split
transformation which will cause the rearrangement
transformation higher in the tree. However, this re-
arrangement transformation has no effect on the com-
position of the fringe because the fringe of the
transformed subtree is entirely contained in the subtrees
that are moved around during the transformation

Fig. 3.3.2illustrates this fact. Assume that T}, T,, T, and
1, contain subtrees that belong to the tree collectlon of
Fig. 3.3.1. Suppose that an insertion into T, (or T;) causes
a split transformation (resulting in subtree T;), which will

b o By b Re o oo odbb odbo Ao L

Type 1 Type 2 Type 3 Type 4

w/o&o&m/&mm m&m o} L B SR

Type 7

Jﬁs&%m&\, O&T&mﬁ&mﬁ?&o&?&o

Type 8 Type 11

oBR L5 oo B o B0 S S
Type 9
LR Ao B odh ol s LB

Type 12 Type 13

Ao B oL o0 0 Hb0 oo

Type 14 Type 16

o3 odE0b LS Bodd S fodbo Ao $Bo0

Type 15

o0 ofbo0b Lo Brocd odhd ododbo Lo Lo

Type 17

Boocd IB5eb0 0dbdB dbodds, odbSdo oo oo Moo

Type 18 Type 19

I Y S A oﬁ&o&?&o

Type 20

&mmmmm%&
Type 21

Soodvo odocd %&&om&&o@m

Type 23

o&o@o&oo&oo&oo&omm

Type 24

B B B0 bS50 LT o ol e

Type 25

oo oo, od oo doSoadns odbodsd odsao

Type 26 Type 28

oS0 oS00 ocbBo Lobo akSoodvo oo

Type 29 Type 30

Figure 3.3.1. Tree collection of SBB trees with 30 types (leaves
not shown).

Intermediate Transformed
situation subtree

AAA L AL LA A
O

Figure 3.3.2. Left-right rearrangement (an insertion into T,

transforms it into T",).

Initial
situation

cause a left-right rearrangement transformation at the
next level. Clearly the subtrees T,, T,, T; and 7, are moved
around without any modification in their structures. []

The matrix H can be easily obtained by observing Fig.
3.3.1. From Equation 3.1.2 (2) we have H p(N) = 0, and
therefore

pl = 874463196/49525503055 p, = 183823695/5660057492

= 1620896463/9905100611 p, = 394971148 /9905100611

p,, = 1102942170/9905100611 p,, = 394971148/9905100611
Ppa = 783174402/9905100611 p,, = 7311869433/198102012220
ps = 176215347/1415014373 p,, = 7311869433/198102012220

Ps = 516201576/9905100611 p,, = 122549130/9905100611

= 183823695/5660057492 p,, = 122549130/990510061 1

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 423

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

N. ZIVIANL H. J. OLIVIE AND G. H. GONNET

P1s = 163398840/9905100611
P1s = 1608763167/99051006110
1y = 1072508778/49525503055
P1s = 1608763167/99051006110
Pro = 330882651 /39620402444
P20 = 330882651/39620402444
sy = 4946862/230351177

Pas = 7420293 /460702354

Pag = 7420293 /460702354

Pae = 114212043/9905100611
Pas = 114212043 /9905100611
P26 = 50133735/9905100611
Par = 340437933/28300287460
Pas = 340437933/28300287460
Pas = 360039042/49525503055
Pao = 78121098/9905100611

Since the eigenvalues of H are 0, —5, —5.96+7.03,
—6.4+2.49i, —7, —8, —8.5+2.34i, —9, —9, —9, —10,
—10, —10, —10, —10.524-4.39i, —10.79+2.38i, — 11,
—11, —11, —12, —12.66 +1.59i, —13.73,
—14.80 +4.22i, the asymptotic values of p(N) obtained
from Equation 3.1.2 (3) are approximated to O(N—5-9),
Theorem 3.3.2. The expected number of completely
k-balanced nodes in a random SBB tree with n keys is
bounded by

0.57097+0'57097+0(N—5~9“)
b(N) 0.28368
< —-x<0.71632— ~5.96),
N 0.71632 N +O(N—59%)
Proof. Similar to the proof of Theorem 3.2.2. Od

Theorem 3.3.3. The expected number of rearrangements
in a random SBB tree with N keys is bounded by

0.35921 4+ 0(N~5%) < r(N) < 0.55672 + O(N—5-%6),
Proof. Similar to the proof of Theorem 3.2.3. O

Lemma 3.3.4. The probability of a rearrangement
occurring outside the fringe during the insertion of the
(N+1)st key into a random SBB tree with N keys is

m(N) = 0.19751 + O(N—5-98),

Proof. Similar to the proof of Theorem 3.2.5. O
Lemma 3.3.5. The expected number of nodes in the fringe
of a SBB tree with N keys that corresponds to the tree
collection of Fig. 3.3.1 is

SIN) = 0.85465N +0.85465 + O(N—59)

Proof. Similar to the proof of Theorem 6.2.6. O

We end this section with the following remarks.

(i) The results on split transformations obtained in the
first-orderanalysiscannot beimprovedin the second-order
analysis, because there is no possibility of a split
transformation at the second level of any type in the tree
collection shown in Fig. 3.3.1. (This fact is the key point
that permits the proof Theorem 3.3.1.)

(ii) A third-order analysis seems difficult to obtain
because of the large number of types involved in a tree
collection of SBB trees with A-height 3. A tree collection
of SBB trees of h-height 3 which have as subtrees the 30
types of the h-height 2 tree collection of Fig. 3.3.1
contains n[n(n+ 1)/2] = 13950 types, since n = 30.

4. Experimental results

The performance evaluation of SBB trees was obtained
by means of a sufficient number of repetitions (for
different tree sizes) of the following experiment: a
permutation of an ordered list is presented one key at a
time to the procedure that inserts keys into an initially
empty tree; this is followed by the presentation of another
permutation to the procedure that deletes keys from the

tree just constructed. In other words, there are N
insertions followed by N deletions.

Consequently, all observations of inserting (deleting)
the ith (i < N) node into a tree are independent events,
which eliminates correlation in the simulation results. A
similar type of design was used in an experimental study
of AVL trees.?? In order to generate random permutations
of an ordered list we used the algorithm presented in Ref.
24. After insertions of the Nth node into the tree the
following values are tabulated:

(i) the average number of comparisons in an unsuc-
cessful search (Cy);

(ii) the average number of comparisons in a successful
search (C,);

(iii) the length of the longest path (i.e. the ordinary
height);

Table 4.1 presents results for trees of various sizes.

Table 4.1. SBB tree statistics (expected number of comparisons)

n C, Variance
S 2.6667+0.0003 0
10 3.5509 +0.0032 0.0005
50 5.85491+0.0051 0.0030
100 6.8621 +0.0053 0.0022
500 9.2234+40.0059 0.0014
1000 10.2435+0.0063 0.0010
5000 12.6056 +0.0073 0.0010
10000 13.6273 +0.0084 0.0009
(a) Expected unsuccessful search
n C, Variance
5 2.2000 +0.0003 0
10 2.9057 +0.0035 0.0005
50 4.972040.0051 0.0031
100 5.9307 +0.0054 0.0023
500 8.2419+0.0059 0.0014
1000 9.2537+0.0062 0.0010
5000 11.6081 +0.0073 0.0010
10000 12.6287 +0.0083 0.0009
(b) Expected successful search
n Longest path Variance
5 3.0000+0.0198 0
10 4.0229+0.0222 0.0225
50 7.0089 +0.0163 0.0311
100 8.0933+0.0330 0.0849
500 11.0267 +0.0259 0.0261
1000 12.1400 +0.0684 0.1216
5000 15.0143 +0.0280 0.0143
10000 16.1800+0.1076 0.1506

(c) Expected worst case search

In addition, the following values are tabulated in order
to estimate the cost of maintaining the properties of SBB
trees
(a) on insertion:

(i) thepercentage of insertions that caused a transform-
ation to be performed, and

(ii) the number of nodes revisited to restore the tree
property, counted from the father of the node inserted
into the tree to the node at which the retreat terminated.
(b) on deletion.

(iii) the percentage of deletions that caused a
transformation to be performed, and

424 THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

AN IMPROVED SYMMETRIC BINARY B-TREE ALGORITHM

(iv) the number of nodes revisited to restore the tree
property, counted from the node to be deleted from the
tree to the node at which the retreat terminated.
Sometimes the retreat terminates immediately at the node
to be deleted; this is not counted as a retreat. For
instance, if the node to be deleted is pointed at by a
horizontal pointer, the only operation to perform is to
replace that pointed by nil. (If the node to be deleted has
two subtrees, it is first interchanged with the rightmost
node of its left subtree before deletion.)

Table 4.2. Insertion and deletion statistics for SBB trees of
10000 nodes

Mean Variance

Insertion

Rearrangements 0.3880+0.0011 0

Splits 0.5119+40.0007 0

Nodes revisited 2.4109+0.0019 0.0001
Deletion

Rearrangements 0.2091+0.0011 0

Splits 0.0018 +0.0001 0

Nodes revisited 0.8596 +0.0014 0

Table 4.2 presents the insertion and deletion results.
These results are actually for trees of 10000 nodes only
because they have been shown to be asymptotically
independent of the number of nodes in the tree. (In fact,
for trees greater than approximately 50 nodes, the results
approach these.)

REFERENCES

1. R. Bayer and E. McCreight, Organization and maintenance
of large ordered indexes. Acta Informatica 1 (3), 173189
(1972).

2. D. E. Knuth, The Art of Computer Programming, vol. 3.
Addison-Wesley, Reading, Mass. (1973).

3. R. Bayer, Binary B-trees for virtual memory. Proc. 1971
ACM SIGFIDET Workshop, San Diego 219-235 (1971).

4. R. Bayer. Symmetric binary B-trees: data structure and
maintenance algorithms. Acta Informatica 1 (4), 290-306
(1972).

5. N. Wirth. Algorithms+ Data Structures = Programs. Pren-
tice-Hall, New Jersey (1976).

6. L. J. Guibas and R. Sedgewick, A dichromatic framework
for balanced trees. 19th Annual Symposium on Foundations
of Computer Science (1978).

7. S. Huddleston and K. Mehlhorn, Robust Balancing in
B-Trees. Lecture Notes in Computer Science 104, Springer-
Verlag 234-244 (1981).

8. S. Huddleston and K. Mehlhorn, A new data structure for
representing sorted lists, Acta Informatica 17 157-184
(1982).

9. R. E. Ladner, Private communication (1980).

10. H. Olivié, Symmetric Binary B-Trees Revisited. Report
80-01, Interstedelijke Industri€le Hogeschool Antwerpen-
Mechelen, Antwerp, Belgium (1980).

11. H. Olivié, On random son-trees. International Journal of
Computer Mathematics 9 287-303 (1981).

12. N. Ziviani and F. Tompa, A look at symmetric binary
B-trees. INFOR — Canadian Journal of Operational Research
and Information Processing 20 (2), 65-81 (1982).

13. H. Olivié and M. Schrapp, Path-Length Balanced Trees.
Report 82-02, Stedelijke Industriéle Hogeschool Antwer-
pen-Mechelen, Antwerpen, Belgium (1982).

5. CONCLUSIONS

As a practical structure symmetric binary B-trees have
been considered as an option for representing dictionary
information. In Section 2 we present an improved version
of the insertion and deletion algorithms for SBB trees.

In the first part of Section 3 we present the fringe
analysis technique; We use the theorem which shows that
the matrix recurrence relation related to fringe analysis
problems converges to the solution of a linear system
involving the transition matrix, even when the eigenvalues
of the transition matrix are not pairwise distinct.2°

In the remainder of Section 3 we accomplish a
higher-order analysis of the improved insertion algorithm
for SBB trees. We obtain a closed tree collection
containing 30 types, and derive results on the expected
number of transformations per insertion and on the
expected number of balanced nodes.

In Section 4 we present experimental results for the
improved versions of theinsertion and deletion algorithms.
We examine empirically the expected costs to search,
insert and delete keys from SBB trees.

Acknowledgements

The work of the first author was supported by the
Financiadora de Estudos e Projetos, Brazil (grant no.
DCC-FINEP-383), and of the third by the Natural
Sciences and Engineering Research Council of Canada
(grant no. A-3353).

14. H. Olivié, A new class of balanced search trees: half
balanced binary searchtrees. RAIRO Theoretical Informatics
16 (1) 51-71 (1982).

15. R. E. Tarjan, Updating a balanced search tree in 0(1)
rotations. Information Processing Letters 16 (5) 253-257
(1983).

16. A. Yao, On random 2-3 trees. Acta Informatica 9 159-170
(1978).

17. N. Ziviani, The fringe analysis of search trees. PhD. Thesis,
Report CS-82-15, Department of Computer Science,
University of Waterloo, Canada (1982).

18. D. R. Cox and H. D. Miller. The Theory of Stochastic
Processes. Chapman and Hall, London (1965).

19. W. Feller. An Introduction to Probability Theory and its
Application, vol. 1. Wiley, New York (1968).

20. B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn and
D. Wood. The Theory of Fringe Analysis and its appli-
cation to 2-3 trees and B-trees. Information and Control 55
(1-3) 125-174 (1982).

21. G. H. Gonnet, N. Ziviani and D. Wood, An Analysis of 2-3
trees and B-trees. Report CS-81-21, Department of
Computer Science, University of Waterloo, Canada (1981).

22. B. Eisenbarth, Allgemeine Fringe-analysis und ihre
Anwendung zur Untersuchung der Overflowtechnik bei
B-Biaumen. Master’s Thesis, Universitit des Saarlandes,
Saarbrucken, West Germany (Adviser K. Mehlhorn)
(1981).

23. P. L. Karlton, S. H. Fueller, R. E. Scroggs and E. B.
Kaehler. Performance of height-balanced trees. CACM 19
(1) 23-28 (1967).

24. R. Durstenfeld. Random Permutation. Algorithm 235,
CACM 7 (7) 420 (1964).

THE COMPUTER JOURNAL, VOL. 28, NO. 4, 1985 425

¥20Z I4dy 60 U0 1senb Aq G626.¢/.L¥/¥/82/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wols papeojumoq

